
Reliable Web Services: Methodology, Experiment and Modeling

Pat. P. W. Chan, Michael R. Lyu
Department of Computer
Science and Engineering

The Chinese University of Hong Kong
Hong Kong, China

pwhchan, lyu@cse.cuhk.edu.hk

Miroslaw Malek
Department of Computer
Science and Engineering

Humboldt University Berlin,
Germany

malek@informatik.hu-berlin.de

Abstract

We identify parameters impacting Web services depend-
ability, describe the methods of dependability enhancement
by redundancy in space and redundancy in time, and per-
form a series of experiments to evaluate the availability of
Web services. To increase the availability of Web services,
we employ several replication schemes and compare them
with a single service. The Web services are coordinated by
a replication manager. It provides a round robin algorithm
for scheduling the workload of the Web services and keeps
updating the availability of each Web service. The repli-
cation algorithm and the detailed system configuration are
described. Experiments are performed to evaluate the re-
sulting service availability. Modeling on the Web services
with Petri-net is constructed and verified through experi-
ments with different applications. With the parameters ob-
tained from the experiments, the proposed model can be en-
gaged to demonstrate the characteristics of the Web service.

1. Introduction

As the use of Web services is growing, there is an in-
creasing demand for dependability. Service-oriented Archi-
tectures (SOA) [5] are based on a simple model of roles.
Every service may assume one or more roles such as being
a service provider, a broker or a user (requestor).

The use of services, especially Web services, became a
common practice. In Web services, standard communica-
tion protocols and simple broker-request architectures are
needed to facilitate exchange (trade) of services, and this
standardization simplifies interoperability. In the coming
few years, services are expected to dominate software in-
dustry. As services begin to permeate all aspects of human
society, the problems of service dependability, security and

timeliness are becoming critical, and appropriate solutions
need to be made available.

Several fault tolerance approaches have been proposed
for Web services in the literature [2, 9], but the field still
requires theoretical foundations, appropriate models, ef-
fective design paradigms, practical implementations, and
in-depth experimentations for building highly-dependable
Web services. We attack these issues in a unified approach.

The rest of the paper is organized as follows. Related
work of dependable services is presented in Section 2, in
which the problem statement about reliable Web services is
stated. In Section 3, methodologies for reliable Web ser-
vices and experimental results are described, in which we
describe experimental settings and offer a roadmap to de-
pendable Web services. Reliability modeling is presented
in Section 4. Finally, conclusions are made in Section 5.

2. Related Work

Fault tolerance can be achieved via spatial or tempo-
ral redundancy, including replication of hardware (with ad-
ditional components), software (with special programs),
and time (with diversified operations) [7]. Spatial redun-
dancy can be dynamic or static, both of which use repli-
cation. In static redundancy, all replicas are active at the
same time and voting takes place to obtain a correct result.
The number of replicas is usually odd and the approach is
known as n-modular redundancy (NMR). Redundancy can
be achieved by replicating hardware modules to provide
backup capacity when a fault occurs, or redundancy can be
obtained using software solutions to replicate key elements
of a business process.

In any redundant systems, common-mode failures
(CMFs) result from failures that affect more than one mod-
ule at the same time, generally due to a common cause.
These include design mistakes and operational failures that
may be caused externally or internally. Design diversity

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 11,2021 at 06:55:40 UTC from IEEE Xplore. Restrictions apply.

has been proposed in the past to protect redundant systems
against common-mode failures [1] and has been used in
both firmware and software systems [6]. The basic idea is
that, with different design and implementations, common
failure modes can be reduced.

One of the design diversity techniques is N-version pro-
gramming, and another one is Recovery Blocks. The key
element of N-version programming or Recovery Block ap-
proaches is diversity. By attempting to make the develop-
ment processes diverse it is hoped that the independently
designed versions will also contain diverse faults.

Based on the discussed techniques, a number of reliable
Web services techniques appeared in the recent literature.
WS-FTM (Web Service-Fault Tolerance Mechanism) is an
implementation of the classic N-version model with Web
services [9] which can easily be applied to systems with
a minimal change. The Web services are implemented in
different versions and the voting mechanism is conducted
in the client program.

FT-SOAP [8], on the other hand, is aimed at improving
the reliability of the SOAP when using Web service. The
system includes different function replication management,
fault management, logging/recovery mechanism and client
fault tolerance transparency. FT-SOAP is based on the work
of FT-CORBA, in which a fault-tolerant SOAP-based mid-
dleware platform is proposed.

FT-Grid [15] is another design, which is a deployment of
design diversity for fault tolerance in Grid. It is not orig-
inally specified for Web services, but the techniques are
applicable to Web Services. The FT-Grid allows a user
to manually search through any number of public or pri-
vate UDDI repositories, select a number of functionally-
equivalent services, choose the parameters to supply to each
service, and invoke those services. The application can then
perform voting on the results returned by the services, with
the aim of filtering out any anomalous results.

Although a number of approaches have been proposed to
increase the Web service reliability, there is a need for sys-
tematic modeling and experiments to understand the trade-
offs and to verify the reliability of the proposed methods.

In the paper, we proposed a framework for the deploy-
ment of reliable Web services, and enhance a previous
scheme [3] with Round-robin algorithm and N-version pro-
gramming in the Web services. We focus on the systematic
analysis of the replication techniques when applied to Web
services. We analyze the performance and the availability
of the Web services using spatial and temporal redundancy,
and study the tradeoffs between them. A generic Web ser-
vice system with spatial as well as temporal replication is
proposed, its prototype is implemented as an experimental
testbed.

3. Methodologies for Reliable Web Services

In the following section, we propose a replication Web
service system for reliable Web services. In our system,
the dynamic approach is considered and its architecture is
shown in Figure 1.

Figure 1. Proposed architecture for depend-
able Web services.

3.1. Scheme details

In the proposed system, we applied two different ap-
proaches for managing the spacial replication, including:
Round-robin (RR) algorithm and N-version programming.
We preformed different experiments to evaluate the reliabil-
ity of the system.

In the first approach, the Web servers work concurrently
and a Round-robin algorithm [14] is applied for scheduling
the work among the Web services. The Web service is repli-
cated on different machines. When there is a Web service
fault, the other Web servers can immediately provide the
required service. The replication mechanism shortens the
recovery time and increases the availability of the system.

The main component of this system is the replication
manager (RM), which acts as a coordinator of the Web ser-
vices. The replication manager is responsible for:

1. Choosing (with an anycasting algorithm) the best (fastest,
most robust, etc.) Web service [13] to provide the service
which is called the primary Web service.

2. Keeping the availability list of the Web services.

3. Registering the Web Service Definition Language (WSDL)
with the Universal Description, Discovery, and Integration
(UDDI).

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 11,2021 at 06:55:40 UTC from IEEE Xplore. Restrictions apply.

4. Continuously checking the availability of the Web services
by using a watchdog.

5. Applying the Round-robin algorithm for the scheduling the
workload of the Web service.

The replication manager schedules the work of the Web
service with the Round-robin algorithm; therefore the re-
sources of the system can be fully utilized. The replication
manager distributes the work to different Web servers ac-
cording to the availability of the servers. The requests are
sent to different Web services accordingly. The replication
manager maps the new address of the Web service which
provides the service to the WSDL, thus the clients can still
access the Web service with the same URL. This failover
process is transparent to the users. The detailed procedure
is shown in Figure 1.

The replication manager is running on a server, which
keeps checking the availability of the Web services by the
polling method: It sends messages to the Web services pe-
riodically. If it does not get the reply from the primary Web
service, it will select another Web service to replace the pri-
mary one and map the new address to the WSDL. The sys-
tem is considered failed if all the Web services have failed.

In the second approach, different versions of the Web
service are employed. The requests from the clients will be
forwarded to all versions of the Web services. When all the
results are ready, a voting algorithm is applied to obtain the
majority result and return the answer to the corresponding
client.

The architecture of the system is similar to the first ap-
proach. However, the functionality of the replication man-
ager is different. The replication manager is responsible for:

1. Selecting the primary Web service for holding the voting pro-
cedure. Once the selected Web service gets the request, it
will forward the request to all the Web services.

2. Keeping the availability list of the Web services.

3. Registering the Web Service Definition Language (WSDL)
with the Universal Description, Discovery, and Integration
(UDDI).

4. Continuously checking the availability of the Web services
by using a watchdog.

3.2. Roadmap for Experimental Research

We take a pragmatic approach by starting with a single
service without any replication. The only approach to fault
tolerance in this case is the use of redundancy in time. If
a service is considered as an atomic action or a transaction
where the input is clearly defined, no interaction is allowed
during its execution, and the termination has two outcomes:
correct or incorrect. In this case, the only way to make such

service fault tolerant is to retry or reboot it. This approach
allows tolerance of temporary faults, but it will not be suffi-
cient for tolerating permanent faults within a server or a ser-
vice. One issue is how much delay can a user tolerate, and
another issue is the optimization of the retry or the reboot
time.By handling services as atomic transactions, excep-
tion handling does not help in dealing directly with inherent
problems of a service. Consequently, continuous service is
only possible by performing re-execution using a retry or
reboot at the termination points or after a timeout period.

If redundancy in time is not appropriate to meet depend-
ability requirements or if the time overhead is unacceptable,
the next step is redundancy in space. Redundancy in space
for services means replication where multiple copies of a
given service may be executed sequentially or in parallel.
If the copies of the same services are executed on different
servers, different modes of operations are possible:

1. Sequentially, meaning that we await a response from a pri-
mary service and in case of timeout or a service delivering in-
correct results, we invoke a back-up service (multiple backup
copies are possible).

2. In parallel, meaning that multiple services are executed si-
multaneously and if the primary service fails, the next one
takes over. Another variant is that the service whose response
arrives first is taken.

3. There is also a possibility of majority voting using n-modular
redundancy, where results are compared and the final out-
come is based on at least �n/2 + 1� services agreeing on the
result.

4. If diversified versions of different services are compared, the
approach can be seen as either a Recovery Block (RB) sys-
tem where backup services are engaged sequentially until the
results are accepted (by an Acceptance Test), or an N-version
programming (NVP) system where voting takes place and
majority results are taken as the final outcome. In case of
fault, the failed service can be masked and the processing
can continue.

NVP and RB have undergone various challenges and
vivid discussions. Critics would state that the development
of multiple versions is too expensive and dependability im-
provement is questionable in comparison to a single ver-
sion, provided the development effort equals the develop-
ment cost of the multiple versions. We argue that in the
age of service-oriented computing, diversified Web services
permeate and the objections to NVP or RB can be mitigated.
Based on market needs, service providers competitively and
independently develop their services and make them avail-
able to the market. With abundance of services for specific
functional requirements, it is apparent that fault tolerance
by design diversity will be a natural choice. NVP should be
applied to services not only for dependability but also for
higher performance purpose.

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 11,2021 at 06:55:40 UTC from IEEE Xplore. Restrictions apply.

Table 1. Summary of the experiments
Experiment ID 1 2 3 4 5 6 7 8

Spatial replication 0 0 0 0 1 1 1 1
Reboot 0 0 1 1 0 0 1 1
Retry 0 1 0 1 0 1 0 1

We need to formulate several additional quality-of-
service parameters to service customers. We propose a
number of fault injection experiments showing both de-
pendability and performance with and without diversified
Web services. The outlined roadmap to fault-tolerant ser-
vices leads to ultra reliable services where hybrid tech-
niques of spatial and time redundancy can be used for opti-
mizing cost-effectiveness tradeoffs. In the next section, we
describe the various approaches and some experiments in
more detail.

3.3. Experiments

A series of experiments are designed and performed for
evaluating the reliability of the Web service. In the sys-
tem, we applied retry, reboot and spatial replication with
Round-robin or N-version Web services. Table 1 shows all
the combinations of the experiments.

3.3.1 Experiment Setup

Our experimental system is implemented with Visual Stu-
dio .Net and runs with .Net framework. The Web server is
replicated on different machines and the Web service which
provides service is chosen by the replication manager.

In the experiments, we run different Web services in our
system to evaluate the availability of the proposed fault tol-
erant techniques under different situations. Faults are in-
jected in the system and the fault injection techniques are
similar, for example, to the ones referred in [10]. A num-
ber of faults may occur in the Web service environment.The
faults are also further divided into permanent fault (the
server is down permanently once this fault occurs) and tem-
porary fault (the fault only occurs randomly). Our experi-
mental environment is defined by a set of parameters. Table
2 shows the parameters of the Web services in our experi-
ments.

For both approaches described in Section 3.1, different
experiments are performed. We compare eight approaches
as shown in Table 1 for providing the Web services in each
approach. The details of the experiments are described in as
follows:

1. Single server without retry and reboot The Web ser-
vice is provided by a single server without any replication.
No redundancy technique is applied to this Web service.

Table 2. Parameters of the experiments
Parameters Current setting/metric

1 Request frequency 1 req/min
2 Polling frequency 10 per min
3 Number of replicas 5
4 Client timeout period for retry 1 mins
5 Max number of retries 5
6 Fault rate λ number of faults/hour
7 Load (profile of the program) 78.5%
8 Reboot time 10 min
9 Failover time 1 s
10 Communication time to

Computational time ratio 10:1
11 Round-robin rate 1 s
12 Temporary fault probability 0.01
13 Permanent fault probability 0.001

2. Single server with retry The Web service provides
the service and the client retries another Web service when
there is no response from the original Web service after
timeout.

3. Single server with reboot The Web service provides
the service and the Web server will reboot when there is no
response from the Web service. Clients will not retry after
timeout where there is no response from the service.

4. Single server with retry and reboot The Web service
provides the service and the Web server will reboot when
there is no response from the Web service. Clients will retry
after timeout when there is no response from the service.

5. Spatial replication with Round-robin / N-version
We use a generic spatial replication: For the first approach,
the Web service is replicated on different machines and the
requests are transferred to different Web services according
to the scheduling of the workload by the replication man-
ager. For the second approach, five different versions of the
Web services are employed. The requests are sent to all ver-
sion and majority answer is chosen by voting and sent back
to the client.

6. Spatial replication with Round-robin / N-version
and retry This is a hybrid approach which is based on the
approach in Exp 5. However, the clients will retry after
timeout when there is no response from the service.

7. Spatial replication with Round-robin / N-version
and reboot This is similar to the Exp 5 where the Web ser-
vice is replicated on different machines and the request is
transferred to the server scheduled by the manager. In addi-
tion, the Web server will reboot when there is no response
from the Web service.

8. Hybrid approach with spatial replication, retry
and reboot This is the proposed hybrid approach. The Web
service is replicated as described in Exp 5. The server will
reboot when there is no response from the Web service. The
client will retry after timeout.

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 11,2021 at 06:55:40 UTC from IEEE Xplore. Restrictions apply.

Table 3. Experimental results with Round-
robin algorithm

Experiments
(number of fault / 1 2 3 4

response time)

Normal case 0/183 0/192 0/190 0/187
Temp 705/190 0/223 723/231 0/238
Perm 6144/– 6337/– 1064/– 5/2578

Experiments
(number of fault / 5 6 7 8

response time)

Normal case 0/188 0/195 0/193 0/190
Temp 711/187 0/233 726/188 0/231
Perm 5637/– 5532/– 152/187 0/191

3.3.2 Experimental Results

The Web services were executed for 5 days for each exper-
iment generating a total of 7200 requests from the client. A
single fault is counted when the system cannot reply to the
client. For the approach with retry, a single fault is counted
when a client retries five times and still cannot get the result.
A summary of the results with the Round-robin algorithm is
shown in Table 3 and a summary of the results with the N-
version programming is shown in Table 4.

Tables 3 and 4 show the improvement of the reliability of
the system with our proposed paradigm. Under different sit-
uations, the availability of the system improved differently.
In the normal case, there is no failure in different systems.
For further investigation, we insert various kinds of faults
into the system.

When no redundancy techniques are applied on the Web
service system (Exp 1), it is clearly seen that the failure
rate of the system is the highest. Consequently, we try to
improve the reliability of the Web service in two differ-
ent ways, including spatial redundancy with replication and
temporal redundancy with retry or reboot.

Single server with retry When the system is under tem-
porary fault, the experiment shows that the temporal redun-
dancy helps to improve the reliability of the system. For the
Web service with retry (Exp 2), the number of faults is re-
duced to zero. This shows that the temporal redundancy
with retry can significantly improve the reliability of the
Web service. When there is a fault occurrence in the Web
service, on the average, the clients need to retry twice to get
the response from the Web service. However, the response
time of the Web service is increased. When there is perma-
nent fault, this scheme cannot reduce the number of faults
in the system.

Single server with reboot Another temporal redun-

Table 4. Experimental results with N-version
programming

Experiments
(number of fault / 1 2 3 4

response time)

Normal case 0/318 0/320 0/315 0/319
Temp 429/321 0/356 423/364 0/356
Perm 3861/– 3864/– 614/– 3/4027

Experiments
(number of fault / 5 6 7 8

response time)

Normal case 0/322 0/318 0/321 0/319
Temp 0/325 0/321 0/322 0/324
Perm 1544/323 1546/324 63/324 0/323

dancy is Web service with reboot (Exp 3). For the exper-
imental result, it is found that the fault rate of the system is
reduced when there is permanent fault. When there is per-
manent fault, the server will try to reboot. Once the server
finishes rebooting, it can provide the service again. The
fault rate is reduced from 85.3% to 14.0%. For temporary
fault, the improvement is not as substantial as the temporal
redundancy with retry. It is due to the fact that when the
Web service cannot be provided, the server will take time to
reboot.

Single server with retry and reboot With retry and re-
boot, the fault rate of both temporary and permanent cases
are reduced. It takes the advantages of both algorithms.
For temporary fault, the number of fault is reduced to zero.
For permanent fault, the number of fault is significantly re-
duced from 85.3% to 1%; however, the response time is also
greatly increased.

Spatial replication with Round-robin With the spatial
replication in Exp 5, the fault rate in the permanent fault
is reduced from 85.3% to 78.3%. The fault rate is reduced
because there are more servers in the system. When server
is failed, the replication manager will update the availability
list and forward the requests to other servers. When all the
servers are failed, the system will not be able to handle the
requests from the clients.

Spatial replication with N-version programming With
the spatial replication in Exp 5, the fault rate of the Web
service is greatly reduced. When a fault occurs to a Web
service, other Web services are still operating, and the ma-
jority result will be selected and returned to the client. Thus,
the failure of a Web service will not affect the system. When
permanent faults occur, the fault rate is reduced from 85.3%
to 21.4% with this scheme. The fault rate is reduced because
other versions of Web service are available and majority re-
sult is returned to the client. In the N-version approach, the
fault rate is much lower than the that of Round-robin ap-

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 11,2021 at 06:55:40 UTC from IEEE Xplore. Restrictions apply.

Table 5. Number of failure with varying time-
out period for retry

Timeout period Number of failure Number of failure
for retry in temporary fault in permanent fault

0 2 81
2 0 2
5 0 0

proach.
Spatial replication, retry or reboot In Exp 6 and 7, hy-

brid approaches with retry (Exp 6) or reboot (Exp 7) are
conducted. We found that the fault rate is not much im-
proved comparing with that in Exp 4. However, the average
response time of the Web service is reduced.

Spatial replication with Round-robin / N-version,
retry and reboot After performing the above experiments,
we propose a hybrid approach for improving the reliabil-
ity of Web service which includes spatial redundancy, retry
and reboot. The reliability of the system is improved more
significantly: the fault rate of the system is reduced from
85.3% to 0 and the average response time is short. The
replication manager keeps checking the availability of the
Web services. When there is a server failure, other servers
are responsible to handle the requests. At the same time,
the failed server will reboot. Thus, the response time for
handling the requests are greatly reduced. In Exp 8, it is
demonstrated that this setting results in the lowest fault rate.
This shows that combining spatial and temporal redundancy
in a hybrid approach achieves the highest gain in reliability
improvement of the Web service.

3.3.3 Optimal Parameters

To evaluate the parameters in the system, we preform a set
of experiments. Through the experiments, we obtained a
set of optimal parameters setting for the Web service sys-
tem. The parameters we examined include: number of tries,
timeout period for retry, polling frequency, number of repli-
cas and load of server. The results are shown in Table 5 to
7, respectively. In each experiment, a total of 9000 requests
are handled in a 30-minutes duration.

In Table 5, as the timeout period for retry is too short,
the replica cannot reboot on time, causing the number of
failures to increase. Also, another cause of the failure is that
the replication manager cannot respond on time to switch
the primary Web service. There are five tries, and the reboot
time for a server is around 50 seconds.

Table 6 shows the number of failures varies with polling
frequency. If the polling frequency is low, the replication
manager cannot respond on time and the request will still
be sent to the failed server causing the failures in the sys-

Table 6. Number of failure with varying
polling frequency

Polling frequency Number of failure Number of failure
(number of requests in temporary fault in permanent fault

per mins)

0 0 7124
1 0 811
5 0 12
10 0 1
15 213 254
20 1124 1023

Table 7. Number of failure with varying load
of the server

Load of Number of failure Number of failure
the server in temporary fault in permanent fault

75% 0 0
80% 2 3
85% 10 14
90% 512 528
95% 3214 3126
99% 8792 8845

tem. When the polling frequency increases, the situation
improves. The replication manager can respond on time and
reduce the number of failures.

From Table 7, the optimal load of the Web server is 75%.
If the load of the server is too high, the server is not able to
handle the requests, which increases the failure rate of the
system.

Also, we performed experiment on the number of fail-
ures changes with the number of retry. From the experi-
ments, we found that the number of retry depends on the
failure rate of the Web service. If the failure rate of the
Web service is large, the number of retry is needed for the
application. Another parameter we evaluate is the number
of replicas. We found that three replicas are sufficient to
reduce the number of failures nearly to zero.

4. Reliability Modeling

We develop a reliability model of the proposed Web ser-
vice paradigm using Petri-Net [11] and Markov chains [4].
The model is shown in Figure 2(a), Figure 2(b) and Figure
3. The reliability model is analyzed and verified through us-
ing the tool SHARPE tool [12]. Petri-Net is built for evalu-
ating the performance of the system and the Markov chains
model is developed for analyzing the system availability.

In Figure 2(a), we model a system which is composed

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 11,2021 at 06:55:40 UTC from IEEE Xplore. Restrictions apply.

of two Web services. When the messages arrive at the first
Web service, a message queue is formed and the Web ser-
vice will handle the request in the message queue. In the
model, the messages are queued up in the queue state. Next,
the token will be passed to the service and arrive at finished
job state. Then, the token is passed to the quene2 which is
for the second Web service.

The availability of the service is directly affected by the
availability of the Web server. When the server is down, the
two Web services will not be available. In our system, when
the server fails, the backup server will be invoked.

In Figure 2(b), we model the system with N versions
of Web service. The messages are queued up in the
queue state. Then, the token will be passed to the service
servicev1 to servicev5. When the job is finished, it arrives
at the finished job state. Finally, the token is passed to the
voting state.

(a)

(b)

Figure 2. (a) Petri-Net based reliability model
for the proposed system with Round-robin al-
gorithm (b) Petri-Net based reliability model
for the proposed system with N-version pro-
gramming

In Figure 3(a), the state s represents the normal execu-
tion state of the system with n Web service replicas. In the
event of a fault causing, the primary Web service to fail,

Table 8. Model parameters
ID Description Value

λN Network fault rate 0.01
λ∗ Web service fault rate 0.025
λ1 Temporary fault rate 0.01
λ2 Permanent fault rate 0.001
µ∗ Web service repair rate 0.286
µ1 Temporary fault rate 0.979
µ2 Permanent fault repair rate 0.979
C1 Probability that the RM response on time 0.9
C2 Probability that the server reboot successfully 0.9

the system will either go into the other states (i.e., s − j
which represents the system with n − j working replicas
remaining, if the replication manager responds on time), or
it will go to the failure state F with conditional probability
(1 − C1). λ∗ denotes the fault rate at which recovery can-
not complete in this state and C1 represents the probability
that the replication manager responds on time to switch to
another Web service.

Figure 3. Markov chain based reliability
model for the proposed system

When the failed Web service is repaired, the system will
go back to the previous state, s − j + 1. µ∗ denotes the
rate at which successful recovery is performed in this state,
and C2 represents the probability that the failed Web server
reboots successfully. λn represents the network fault rate.

States (s − 1) to (s − n) in Figure 3(a) represent the
working states of the n Web service replicas and the relia-
bility model of each Web service is shown in Figure 3(b).
There are two types of faults simulated in our experiments:
P1 denotes a temporary fault and P2 denotes a permanent
fault. If a fault occurs in the Web service, either the Web
service can be repaired with µ1 (to enter P1) or µ2 (to en-

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 11,2021 at 06:55:40 UTC from IEEE Xplore. Restrictions apply.

ter P2) repair rates with conditional probability C1. If the
fault cannot be recovered, the system goes to the next state
(s − j − 1) with one less Web service replica available. If
the replication manager cannot respond in time, it will go
to the failure state. From the graph, two formulae can be
obtained:

Reliability over Time with repair rate 0.286

Failure Rate

0.005
0.01

0.025

seconds

Figure 4. Reliability with different fault rates
and repair rates

Based on the experiments described in Section 3.3, we
obtain the fault rates and the repair rates of various compo-
nents in the system; the results are shown in Table 8. The
reliability of the system over time is further calculated with
the tool SHARPE. Figure 4 shows the reliability over time
at different fault rates λ∗; the repair rate is (set at) 0.286
faults/s. Note that the fault rate obtained from the experi-
ments is 0.025 failure/s. This failure rate is measured under
an accelerated testing environment.

5. Conclusions

In the paper, we surveyed and addressed applicability of
replication and design diversity techniques for reliable Web
services and proposed a hybrid approach to improving the
availability of Web services. Furthermore, we carried out
a series of experiments to evaluate the availability, perfor-
mance and reliability of the proposed Web service system.
From the experiments, we conclude that both temporal re-
dundancy and spatial redundancy are important to the re-
liability improvement of the Web service. Modeling tech-
niques by Petri-Net and Markov chain provide further in-
sights of Web service system reliability with the proposed
fault tolerant mechanisms.

Acknowledgment

The work described in this paper was fully supported by
a grant from an internal block grant project from the Re-

search Committee of the Chinese University of Hong Kong,
under Project No. 3/06C-SF.

References

[1] A. Avizienis and L. Chen. On the implementation of n-
version programming for software fault-tolerance during
program execution. In Proc. of First International Com-
puter Software and Applications Conference, pages 149–
155, 1977.

[2] R. Bilorusets and A. Bosworth. Web services reliable mes-
saging protocol ws-reliablemessaging. Technical report,
EA, Microsoft, IBM and TIBCO Software, Mar 2004.

[3] P. Chan, M. Lyu, and M. Malek. Making services fault tol-
erant. In Proc. of the 3rd International Service Availability
Symposium, volume 4328, pages 43–61, Helsinki, Finland,
15-16 May 2006. Springer.

[4] K. Goseva-Popstojanova and K. Trivedi. Failure correlation
in software reliability models. IEEE Transactions on Relia-
bility, 49(1):37–48, Mar 2000.

[5] S. Jones. Toward an acceptable definition of service
[service-oriented architecture]. IEEE Transactions on Soft-
ware, 22(3):87–93, May-June 2005.

[6] J. Lala and R. Harper. Architectural principles for safety-
critical real-time applications. In Proc of IEEE, volume 82,
pages 25–40, Jan 1994.

[7] D. Leu, F. Bastani, and E. Leiss. The effect of statically
and dynamically replicated components on system reliabil-
ity. IEEE Transactions on Reliability, 39(2):209–216, 1990.

[8] D. Liang, C. Fang, and C. Chen. Ft-soap: A fault-tolerant
web service. Technical report, Institute of Information Sci-
ence, Academia Sinica, 2003.

[9] N. Looker and M. Munro. Ws-ftm: A fault tolerance mech-
anism for web services. Technical report, University of
Durham, 19 Mar 2005.

[10] N. Looker and J. Xu. Assessing the dependability of soap-
rpc-based web services by fault injection. In Proc. of the 9th
IEEE International Workshop on Object-oriented Real-time
Dependable Systems, number 163-170, 2003.

[11] J. Peterson. Petri Net Theory and the Modeling of Systems.
Prentice-Hall, 1981.

[12] R. Sahner, K. Trivedi, and A. Puliafito. Performance and
Reliability Analysis of Computer Systems. An Example-
BasedApproach Using the SHARPE Software Package.
Kluwer Academic Publishers, Boston/London/Dordrecht,
1996.

[13] M. Sayal, Y. Breitbart, P. Scheuermann, and R. Vingralek.
Selection algorithms for replicated web servers. In Proc. of
Workshop on Internet Server Performance 98, Madison, WI,
Jun 1998.

[14] M. Shreedhar and G. Varghese. Efficient fair queueing using
deficit round-robin. IEEE/AMC Transactions on Network-
ing, 4(3):375–385, June 1996.

[15] P. Townend, P. Groth, N. Looker, and J. Xu. Ft-grid: A
fault-tolerance system for e-science. In Proc. of the UK OST
e-Science Fourth All Hands Meeting (AHM05), Sept 2005.

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 11,2021 at 06:55:40 UTC from IEEE Xplore. Restrictions apply.

