
Dynamic Web Service Composition: A New Approach in Building Reliable Web
Service

Pat. P. W. Chan and Michael R. Lyu
Department of Computer Science and Engineering

The Chinese University of Hong Kong
Hong Kong, China

pwchan, lyu@cse.cuhk.edu.hk

Abstract

The use of services, especially Web services, became a
common practice. In Web services, standard communica-
tion protocols and simple broker-request architectures are
needed to facilitate exchange of services, and this standard-
ization simplifies interoperability. In the coming few years,
services are expected to dominate software industry. There
are increasing amount of Web services being made avail-
able in the Internet, and an efficient Web services compo-
sition algorithm would help to integrate different algorithm
together to provide a variety of services. In this paper, we
provide a dynamic Web service composition algorithm with
verification of Petri-Nets. Each Web service is described by
Web Service Definition Language (WSDL) and their inter-
actions with other services are described by Web Service
Choreography Interface (WSCI). Our algorithm compose
the Web services with the information provided by these two
descriptions. After the composition, we verify the Web ser-
vice to be deadlock free with modeling the Web service as
a Petri-Net. We conduct a series of experiments to evalu-
ate the correctness and performance of the composed Web
service.

1. Introduction

Service-oriented Architectures (SOA) [9] are based on a
simple model of roles. Every service may assume one or
more roles such as being a service provider, a broker or a
user (requestor).

The use of services, especially Web services, became a
common practice. In Web services, standard communica-
tion protocols and simple broker-request architectures are
needed to facilitate exchange (trade) of services, and this
standardization simplifies interoperability. In the near fu-
ture, services are expected to dominate software industry.

There are an increasing number of Web services available in
the Internet. Web services can be a component of a system
and different Web services would provide different services.
To fit different requirements from different clients, different
Web service components can be combined together to pro-
vide the services. To achieve this, an efficient Web service
composition algorithm is important.

Several Web service composition approaches have been
proposed for Web services in the literature [4, 8]. Most of
the existing algorithms are aggregating the Web service in
a static approach, that is, making the composition after all
the Web services are available. However, as the number of
Web services is increasing, this would make the approach
inflexible and hard to scale. In this paper, we propose a
dynamic Web service composition algorithm which attacks
these issues in a unified approach.

The rest of the paper is organized as follows. Related
work of Web service composition is presented in Section
2. In Section 3, our composition algorithm is described, in
which an example is employed to illustrate our approach.
Experiments and the results are presented in Section 4. Fi-
nally, conclusions are made in Section 5.

2. Related Work

There are a number of techniques to enable the compo-
sition of Web services. The Web Service Choreography In-
terface (WSCI) [2] is an XML-based interface description
language that describes the flow of messages exchanged by
a Web Service participating in choreographed interactions
with other services. WSCI describes the dynamic interface
of the Web Service involved in a given message exchange
by means of reusing the operations defined for a static in-
terface. WSCI works in conjunction with the Web Ser-
vice Description Language (WSDL), the basis for the W3C
Web Services Description Working Group. It can also work
with other service definition languages that exhibit the same

22nd International Conference on Advanced Information Networking and Applications

1550-445X/08 $25.00 © 2008 IEEE
DOI 10.1109/AINA.2008.133

20

22nd International Conference on Advanced Information Networking and Applications

1550-445X/08 $25.00 © 2008 IEEE
DOI 10.1109/AINA.2008.133

20

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 30,2020 at 06:30:58 UTC from IEEE Xplore. Restrictions apply.

Figure 1. Proposed architecture for depend-
able Web services.

characteristics as WSDL.
Business Process Execution Language (BPEL) [1] for

Web services is an XML-based language designed to en-
able task-sharing for a distributed computing or grid com-
puting environment even across multiple organizations, us-
ing a combination of Web services. Written by developers
from BEA Systems, IBM, and Microsoft, BPEL combines
and replaces IBM’s Web services Flow Language (WSFL)
[10] and Microsoft’s XLANG specification.

Moreover, a number of Web service composition
schemes are proposed. SWORD is one of the proposed so-
lution. It is a set of tools for the composition of a class of
Web services including “information-providing” services.
In SWORD, a service is represented by a rule to express
that with given certain inputs, the service is capable of pro-
ducing particular outputs. A rule-based expert system is
then employed to automatically determine whether a de-
sired composite service can be realized with the existing
services.

When large-scale Web services are available, Chen et al.
propose a structure to handle the composition. Then the
mutual search operations among Web Service operations,
inputs and outputs are studied, and a novel data structure
called Double Parameter Inverted File (DouParaInverted-
File) is proposed to implement these operations. An algo-
rithm to build DouParaInvertedFile is provided as well.

Apart from the self-contained algorithm, some algo-
rithms are based on the current existing standards. In [8],
a BPEL-based Web service composition using high-level
Petri-Nets (HPN) approach is proposed. By analyzing the
structure of Web service composition based on BPEL, the
corresponding HPN is constructed. The dynamism and oc-
currence are presented in HPN with guard expression with
colored token. After translation, the equivalent HPN of the

Web service composition based on BPEL can be verified on
existing mature tools.

Although a number of approaches have been proposed to
aggregate the Web service, there is a need for a dynamic ap-
proach to compose the increasing number of Web services
to provide new services. In this paper, we aim at proposing
an innovative dynamic Web service composition algorithm.

3 Web Service Composition

Diversity is one of the key elements in the proposed
paradigm. In the emergence of service-oriented computing,
different versions of Web services or even different versions
of their components are abundantly available in the Internet.
The combination of different versions of the Web service or
their components is thus becoming critical for enabling dif-
ferent versions in a server application using the N-version
approach [11]. In our pervious work [4, 5, 6, 7], we pro-
pose a Web service paradigm for improving the reliability
of the system. We describe the methods of dependability en-
hancement by redundancy in space and redundancy in time.
The architecture of the proposed system is shown in Figure
1. In the system, the Web servers work concurrently and a
Round-robin algorithm [14] or N-version programming is
applied for scheduling the work among the Web services.
The Web services run on different machines. When there
is a Web service fault, the other Web servers can immedi-
ately provide the required service. The replication mecha-
nism shortens the recovery time and increases the availabil-
ity of the system. The Web services are coordinated by a
Replication Manager, which schedules the workload of the
Web services and keeps updating the availability of each
Web service. To evaluate the reliability of Web services, we
perform a series of experiments employing several replica-
tion schemes and compare them with a non-redundant sin-
gle service. In the experiment, we find that N-version pro-
gramming is one of the efficient method to improve the re-
liability of the system. Thus, in this section, we propose
an approach for composing Web services with an N-version
Programming Web for improving the reliability of the over-
all system.

3.1 Web Service Description

The description of a Web service is statically provided by
WSDL, including Web service functional prototypes. How-
ever, its static nature limits the flexibility for composing
Web services. Different Web services provide their services
at different times, and so a dynamic composition approach
is necessary for composing different versions of Web ser-
vices available in the Internet.

In Web services, the communication mainly depends on
the messages exchanged between different Web servers.

2121

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 30,2020 at 06:30:58 UTC from IEEE Xplore. Restrictions apply.

The Web Service Choreography Interface (WSCI) [2] is an
XML-based language for the description of the observable
behavior of a Web service in the context of a collaborative
business process or work-flow.

3.2 The Proposed Composition Method

Our proposed service composition method is based on
two standard Web service languages: WSDL and WSCI.
WSDL describes the entry points for each available service,
and WSCI describes the interactions among WSDL opera-
tions. WSCI complements the static interface details pro-
vided by a WSDL file describing the way operations are
choreographed and its properties. This is achieved with the
dynamic interface provided by WSCI through which the
inter-relationship between different operations in the con-
text of a particular operational scenario.

The flow of the composition procedure is as follows:
First, get the WSDL of the Web service components from
UDDI. Then, through the messages between the Web ser-
vices, obtain the WSCI of the components. Afterwards,
examine the input and output of the components through
WSDL and determine the interactions between different
components to provide the service through WSCI. Finally,
perform the composition of the Web service with the infor-
mation obtained in the composition procedure. The detailed
composition algorithm is shown in Algorithm 1.

In Algorithm 1, we aim to build the tree for the Web ser-
vice composition. We use a bottom-up approach to perform
the composition, that is, we build the composition tree from
output to input.

When we get the required output, search the Web ser-
vices in the WSDL. In the operation tag of the WSDL, the
output information is stated. When the desired output is
found, that Web service component (CPn) is inserted as the
root of the tree. Then, if the input of that operation matches
the required input, the searching is finished and the input is
inserted as a child of the CPn. Otherwise, we will search
the action in WSCI in finding matches to the operation in
CPn. After the action is completed, we can determine the
previous action. Then, we can find the operation prototypes
in the WSDL. If the input of this operation matches the re-
quired input, then the composition is finished. Otherwise,
we will iterate until the root of the WSCI is reached.

If the desired input is still not found, we will search for
the operations in other WSDL whose output is equal to the
input of CPn. If the next Web service component found
is CPm, then CPm is inserted as the child of CPn. We
perform the searching iteratively and continue to build the
tree until all the inputs match the required input.

Algorithm 1 Algorithm for Web service composition

Require: I[n]: required input, O[n]: required output

1: CPn: the nth Web services component
2: for all O[i] do
3: Search the WSDL of the Web services, and find the

CPn ’s operation output = O[i]. Then, insert CPn

into the tree.
4: if the input of the operation = I[j] then
5: Insert the input to the tree as the child of CPn.
6: else
7: Search the WSCI of CPn, WSCI.process.action =

operation.
8: Find the previous action needing to be invoked.
9: Search the operation in WSDL equal to the action.

10: if input of the operation = I[i] then
11: Insert input to the tree as the child of CPn

12: else
13: go to step (8)
14: end if
15: end if
16: until reaching the root of WSCI and not finding the

correct input, search other WSDL with output = I[j],
insert CPm as the child of CPn and go to step (7) to
do the searching in WSCI of CPm.

17: end for

Data

Internet

Agent

Server

MTR

Data
 KCR

Data

Agent

Server

MTR

Data
 KCR

Search

engine

Checkpoint

server

ASP for Web

Window form

for

standalone

program

Figure 2. Best Route Finding system archi-
tecture.

2222

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 30,2020 at 06:30:58 UTC from IEEE Xplore. Restrictions apply.

3.3 Case Study

To illustrate the above procedure, we present the Web
services composition with the Best Route Finding system
(BRF) [3] whose architecture is shown in Figure 2. This
system suggests the best route for a journey within Hong
Kong by public transport, based on input consisting of the
starting point and the destination. BRF consists of differ-
ent components, including a search engine, agent servers,
and the public transport companies. We acquired several
versions of BRF, which are implemented by different teams
using different components. Also, the Web service com-
ponents may differ from versions to versions; thus, in this
experiment, we try to compose the Web services from dif-
ferent versions with the WSDL and WSCI provided therein.

Also, the following shows part of the WSDL and WSCI
specification of the search engine. The WSDL identifies the
input and output parameters of the services provided by the
search engine.

<?xml version="1.0" encoding="UTF-8"?>
...
<portType name=BRF">
<operation name=shortestpath">
<input message=

"tns:startpointDestination"/>
<output message="tns:pathArray"/>

</operation>

<operation name=addCheckpoint">
<input message="tns:pathArray"/>
<output message=

"tns:addAcknowledgement"/>
</operation>
...
</operation>

</portType> </definitions>

The following shows part of the WSCI specification of
the search engine.

<correlation name=pathCorrelation
property=tns:pathID></correlation>

<interface name=busAgent>
<process instantiation="message">
<sequence>

<action name="ReceiveStartpointDest
role="tns:busAgent
operation="tns:BRF/shortestpath">
<correlate correlation=

tns: pathCorrelation/>
<call process=tns:SearchPath/>

</action>

...
</sequence>

</process>
...

Based on Algorithm 1, a composition tree is built , giving
the result as shown in Figure 3.

Bus Agent

Search

Agent

Train

Agent

Bus :KMB

Starting

P1

Train:MTR

Starting

P2

Figure 3. Composition tree of BRF.

3.4 Verification with Petri-Net

To verify the correctness of the composed Web service,
Petri-Net [13] is employed. We first construct a Petri-Net
for the Web service with the information provided in BPEL.

3.4.1 BPEL and Building Block of Petri-Net

After a Web service is composed with the proposed Algo-
rithm 1, a BPEL is constructed. BPEL describes the compo-
sition properties of the Web service, such as communication
and specific behaviors.

In the verification process, we employ Petri-Nets to build
the model of the Web service to prevent deadlock and con-
struct dynamic relations. Different building blocks of Petri-
Nets are defined according to the activities in BPEL schema,
including inner-service, intra-service, inter-activity, and
intra-activity. With the defined blocks, we map the oper-
ations or activities specified in BPEL to the Petri-Net build-
ing blocks. Then, a Petri-Net for a specified Web service is
generated.

A Web service operation is composed of basic activities
(including Receive, Reply, Assign, Invoke, Empty, Termi-
nate, and Wait) and structures activities (including While,
Switch, Sequence, Link and Flow. The sample basic activi-
ties translation are shown in Figure 4. With the activities in
BPEL, Web services are described procedurally. In a Petri-
Net, a place connected to a transition intuitively expresses

2323

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 30,2020 at 06:30:58 UTC from IEEE Xplore. Restrictions apply.

the states before and after executing the corresponding ac-
tion. Firing a transition means that the corresponding action
is executed. Moreover, Web service invocation is expressed
by entering a token in a place which denotes the starting
point of the operation.

Input

Input transition
 Receive

Input

message

Finish

Figure 4. Basic Petri-Net building block – Re-
ceive.

Figures 4 illustrate the basic Web service operations
composited with Petri-Net building blocks. A building
block is presented by a place with a token whose type is
specified by the block type. An arc is used to link the tran-
sition with another arc corresponding to the input or output
message consisting of those blocks.

Input

Input transition

Block 1

Block 2

Operation

Finish

(output to block 3)

Finish

(output to block 4)

Figure 5. Composited Petri-Net building
block graph.

With the Petri-Net building blocks and the BPEL of the
BRF, Petri-Nets of different versions of BRF can be gen-
erated. One of the composited BRF is shown in Figure 6.
With the constructed Petri-Net, we perform the operation
to check the correctness and verify that the Web service is
deadlock-free.

4 Experiment

In this section, we preform experiments to evaluate the
properties, correctness and performance of the proposed
Web service composition algorithm. We generate different
versions of BRF with the Web service composition algo-
rithm and evaluate with program metrics. Furthermore, we
perform an acceptance test on the composed version to eval-
uate the correctness of the algorithm.

Receive

Input transition
 Wait

Bus Assign

Train Assign

Invoke

Invoke

Reveive

Reveive

Sequence

Sequence

Reply

Reply

Terminate

Figure 6. The Petri-Net of a BRF.

4.1 Different versions of Best Route Find-
ing

We obtained several versions of BRF, which are im-
plemented by different teams using different components.
Also, the Web service components may differ between par-
ties; thus, in this experiment, we try to compose the Web
services from different versions with the WSDL and WSCI
provided to create new versions.

According to the Web service composition algorithm de-
scribed in Section 3, different versions of BRF are com-
posed. The program metrics for 15 versions of BRF are
shown in Table 1, where the first 11 versions are imple-
mented by different teams and the rest are composed by
the proposed algorithm. In the experiment, we recorded the
following information of each versions: number of lines in
the program, number of lines without comments, number of
functions, complexity [12], composition time (the time for
composing the version), and deadlock-free checking result.

4.2 Acceptance test

To test the correctness of the composed Web service, an
acceptance test is prepared. Once the composition is fin-
ished, 100 test cases are run on the system. For the BRF,
the acceptance test is designed as follows.

There are 100 tests cases. In each test, we provide a start
point and a destination. The system will give out the best
route with the transit points, total price and time. For each
test case, we have the solution with which we compare the
output from the system.

4.3 Discussion

After composition, a BPEL for that version of Web ser-
vice would be created and the corresponding Petri-Net is

2424

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 30,2020 at 06:30:58 UTC from IEEE Xplore. Restrictions apply.

Table 1. Program metrics of the 15 versions
ID Lines Line without Number of Complexity time for Deadlock free Acceptance

comment function composition (s) test

01 3452 3052 59 64 - yes pass
02 2372 1982 47 87 - yes pass
03 2582 2033 26 45 - yes pass
04 3223 3029 78 124 - yes pass
05 2358 2017 34 89 - yes pass
06 4478 3978 56 107 - yes pass
07 1452 1320 38 46 - yes pass
08 5874 5275 80 124 - yes pass
09 3581 3214 45 74 - yes pass
10 4578 4187 47 113 - yes pass
11 2364 2015 36 76 - yes pass
12 2987 2336 65 147 1.48 yes pass
13 4512 3948 75 155 1.74 yes pass
14 3698 3247 60 192 1.58 yes pass
15 4185 3856 34 88 1.62 yes pass

constructed for deadlock free-checking. The result is also
shown in Table 1. With our proposed composition algo-
rithm, the average Web service composition time for dif-
ferent versions is 1.605 seconds and all the versions are
deadlock-free. Compare with the existing algorithms, it is
0.3 seconds faster and deadlock-free guaranteed. Accord-
ing to the acceptance test results, the correctness of our al-
gorithm is good. All the test cases are passed. Moreover,
another advantage of our algorithm is dynamic. Whenever
there are new components, our algorithm can be applied to
generate new version without rewriting the specification.

5. Conclusions

In the paper, we surveyed and addressed composition
techniques for Web services and proposed a dynamic Web
service composition algorithm which facilitates an element
for improving the reliability of Web service by applying the
N-version programming technique. The composed Web ser-
vices are verified to be deadlock-free by Petri-Net model-
ing. Furthermore, we carried out a series of experiments to
evaluate the correctness and performance of the proposed
Web service composition algorithm.

References

[1] A. Alves and e. al. Web services business process
execution language version 2.0. In http://www.oasis-
open.org/committees/documents.php, 2006.

[2] A. Arkin, S. Askary, S. Fordin, W. Jekeli, and e. al.
Web Service Choreography Interface (WSCI) 1.0. W3C,
http://www.w3.org/TR/wsci/, 2002.

[3] P. Chan. Best Route Finding specification.
http://www.cse.cuhk.edu.hk/pwchan/BRF.doc, 2006.

[4] P. Chan and M. Lyu. Developing aerospace applications with
a reliable web services paradigm. In Proc. of IEEE 22nd In-
ternational Conference on Advanced Information Network-
ing and Applications., Okinawa, Japan, 25-28 Mar. 2008.

[5] P. Chan, M. Lyu, and M. Malek. Making services fault tol-
erant. In Proc. of the 3rd International Service Availability
Symposium, volume 4328, pages 43–61, Helsinki, Finland,
15-16 May 2006. Springer.

[6] P. Chan, M. Lyu, and M. Malek. Reliable web services:
Methodology, experiment and modeling. In Proc. of IEEE
International Conference on Web Services, Salt Lake City,
Utah, USA, 9-13 Jul 2007.

[7] P. P. W. Chan. Building Reliable Web Services: Methodol-
ogy, Composition, Modeling and Experiment. PhD thesis,
The Chinese University of Hong Kong, Hong Kong, Dec
2007.

[8] W.-L. Dong, H. Yu, and Y.-B. Zhang. Testing bpel-based
web service composition using high-level petri nets. In Proc.
of the 10th IEEE International Enterprise Distributed Ob-
ject Computing Conference (EDOC ’06), pages 441–444,
Oct. 2006.

[9] S. Jones. Toward an acceptable definition of service
[service-oriented architecture]. IEEE Transactions on Soft-
ware, 22(3):87–93, May-Jun 2005.

[10] F. Leymann. Web services flow language (wsfl 1.0). Tech-
nical report, Member IBM Academy of Technology, IBM
Software Group, May 2001.

[11] M. R. Lyu, editor. Software Fault Tolerance. John Wiley
and Sons Inc, Apr 1995.

[12] McCabe and J. Thomas. A complexity measure. IEEE
Transactions on Software Engineering, 2(4):308–320, Jan
1976.

[13] J. Peterson. Petri Net Theory and the Modeling of Systems.
Prentice-Hall, 1981.

[14] M. Shreedhar and G. Varghese. Efficient fair queueing using
deficit round-robin. IEEE/AMC Transactions on Network-
ing, 4(3):375–385, Jun 1996.

2525

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 30,2020 at 06:30:58 UTC from IEEE Xplore. Restrictions apply.

