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Abstract—For the purpose of effective epileptic seizure pre-
diction, this paper presents a new representation for the elec-
troencephalogram (EEG) signal by recurring to their primary
amplitude and frequency components. This formulation is then
applied on an epoch-by-epoch basis to the preictal and interictal
states of EEG signals in order to extract the most dominant
amplitude and frequency characteristics. Through inspecting
and identifying the distinctive EEG signal changes and stage
transitions revealed by these extracted feature vectors, upcoming
epileptic seizures could be predicted in due course. Machine
learning approaches have been employed to construct patient-
specific classifiers that can divide the extracted feature vectors
into preictal and interictal groups. In this context, our work
is distinguished from most currently adopted feature extraction
process which employs time-consuming high-dimensional param-
eter sets. We have made special efforts to derive discriminative
and comprehensive features for the front-end of the epileptic
seizure prediction algorithm. To reduce false alarms due to trivial
signal fluctuation, a simple yet effective post-processing step is
incorporated thereafter. Performance of the prediction algorithm
is assessed through out-of-sample evaluation on the intracranial
EEG (iEEG) recordings provided by the publicly available
Freiburg data set. It has been shown by simulation results that the
proposed feature estimation method leads to promising prediction
results in terms of sensitivity and specificity. In particular, only
four out of the 83 seizures across all the patients included in our
experiment were missed by the prediction, which means that a
sensitivity as high as 95.2% has been achieved.

Index Terms—Epileptic seizure prediction, electroencephalo-
gram signal representation, instantaneous amplitude and fre-
quency modulation features.

I. INTRODUCTION

Epilepsy is one of the most common neurological disorders
worldwide, second only to stroke. Around 1% of the world’s
population are affected by various types of epilepsy. Epilepsy
characterized by recurring seizures are resulted from sudden
disturbances of brain function. For people with epilepsy,
apart from the embarrassing situations that may happen at
unpredictable occasions, they are threaten by sudden lapse
of attention or convulsion. The aftermath of seizures such
as dyspnoea or serious injuries usually does the most harm
to them. Two thirds of patients can achieve sufficient seizure
control with the help of anti-convulsive medication, another
8 ∼ 10% people could get benefit from resective surgery.
However, for the remaining 25% of patients, no adequate
treatment is currently available [1].

There are several major phases of seizures. By the definition
given by the epilepsy foundation of America [2], preictal is
a period of time before the seizure onset occurs, which can

0                                5                                10                                15                       20                                2

2000

1000

0

-1000

-2000

time (in second)

am
pl

itu
de

 (u
V

)

Pre-ictal Seizure (ictal) Post-ictal

Seizure onset

Fig. 1. EEG preictal-postictal transition.

last from minutes to days. Ictal is the period during which
the seizure takes place. Postictal is the period after the seizure
ends, which can sometimes take several hours. Interictal is the
time between seizures. In Figure 1, the preictal-postictal stage
transition for an example seizure cycle is illustrated. Recent
clinical studies have found premonitory symptoms for seizures
from a certain portion of patients with epilepsy [3], [4]. There
are also evidences showing that the interictal-ictal transition
is not abrupt. During this period of time, the person with
epilepsy manifests changes in medical measurements such
as cardivascular, metabolic, and EEG recordings [5]. These
changes will help a neurologist to predict an upcoming seizure.
The most common way for epilepsy diagnosis is through
analysis of EEG. The EEG is typically described in terms
of rhythmic activity and transients [6]. The rhythmic activity
is divided into bands by frequency like those shown in Figure
2.

Epileptic seizure onset detection algorithms aim to raise
alarms as soon as a seizure occurs on a patient from examining
his/her EEG data [7]. These alarms will startup devices that are
capable of quickly reacting to a seizure by delivering therapy
or notifying a caregiver, thus alleviating fatal consequences of
seizures.

On the other hand, there is the challenge of predicting
epileptic seizures, which is approached by searching for dis-
tinctive changes in the EEG before seizure onsets. An epileptic
seizure prediction algorithm has to forecast an upcoming
seizure by raising an alarm prior to seizure onset. The time
interval after an alarm within which a seizure is expected to
take place is called Seizure Prediction Horizon (SPH) in the
context of seizure prediction characteristic. SPH ranges from
several minutes to few hours [8]. If a seizure occurs within the
SPH, the alarm is regarded as a correct prediction; otherwise,
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Fig. 2. Typical rhythmic activities in an EEG signal.

it is counted as a false alarm.
Current seizure prediction approaches mostly adopt a two-

step strategy: extracting measurements from EEG signals
along the time line, and then determining their phases to
be either preictal or interictal within a binary classification
framework. The machine learning based approaches have been
employed in state-of-the-art seizure prediction and detection
algorithms [7], [9], [10], [11], [12], [13], [14], [15]. The
studies on feature extraction and classification for EEG data
in seizure prediction methods have achieved noticeable im-
provement throughout these years. However, considering the
variation issue and non-stationary nature of EEG signals,
hardly any systematic analytical models have been accounted
in expressing essential epilepsy-related EEG characteristics in
a comprehensive yet compact way. In [7] and [10], the spectral
structure, the channels on which a seizure manifests, and its
short-term temporal evolution, in total 432 parameters from
6 second windows of EEG waveforms, were produced by the
front-end feature extractor for a support vector machine (SVM)
classifier. Mirowski et al. in [11] and [12] proposed a bivariate
pattern method to capture the brainwave synchronization mea-
sures, where the spatio-temporal bivariate features constitute
vectors with dimension as high as 6300 for a 5-minute
time span. The power spectra of time- and space-differential
EEG signals have been employed as seizure prediction char-
acteristics in [14]. Spatio-temporal correlation structure of
multi-channel EEG data were also taken as seizure indicators
[15]. Besides these spectral, temporal information, and their
correlation, the auto-regression parameters were proven dis-
criminative in distinguishing ictal/preictal states from others
[13]. Current seizure prediction patterns mostly consist of a
large number of parameters. Although sophisticated machine
learning tools can alleviate the computational burden caused
by feature classification in a very high dimensional data space,
the high complexity of feature extraction process still greatly
increase the operational cost of these algorithms. Besides,
it is known that the amplitude-frequency modulation theory
provides an apposite way to study the dynamic mechanism
of narrow-band signals like EEG rhythms. Dáaz et al. have
reported their findings in characterizing preictal, ictal, postictal
and interictal phases within a recurrent seizure cycle through

the instantaneous amplitude modulation (AM) and frequency
modulation (FM) components of a given EEG signal [16].
They also gave a graphical and analytical description of
epileptic seizures based on multi-band AM, FM parameters.
The AM-FM representation of EEG signals helps to visualize
the phase-transition of an epileptic seizure as well as to probe
the underlying epilepsy mechanisms.

Consider the fact that few research efforts have been spe-
cialized in extracting amplitude-frequency modulation patterns
of EEG signal for seizure prediction purposes. In this paper,
with the attempt to derive amplitude-frequency related patterns
as epileptic seizure indicators, a pertinent representation for
the dominant rhythms present in the EEG signal is first
developed. The representation is then applied to epochs of the
EEG signal to derive effective epilepsy-related characteristics.
Finally, these features are evaluated on a patient-specific basis
under state-of-the-art machine learning based epileptic seizure
prediction algorithms.

II. SEIZURE PREDICTION FEATURES

This section first observes the primary amplitude-frequency
modulation components in an EEG signal, and then introduces
the feature extraction process.

A. Amplitude-frequency modulation signal representation for
the EEG signal

A narrow-band signal, whose bandwidth is sufficiently
small, can be viewed as a monocomponent amplitude and fre-
quency modulating (AM-FM) signal. Among the frequencies
spanning over the signal spectrum, there is one frequency bin
assuming a majority of the signal energy. The two determining
parameters in an AM-FM signal is amplitude and phase.
The kth EEG rhythm sk(n) as shown in Figure 2 could be
formulated as an AM-FM term by Equation (1):

sk(n) = Ak(n)cos
[
Θk(n)

]
, (1)

with the EEG rhythm being characterized by two sequences:
• Ak(n) – Amplitude of rhythm;
• Θk(n) – Phase of rhythm.
Teagers proposed to employ a multicomponent AM-FM

model in exploring amplitude-frequency modulation patterns
in speech resonances [17]. Likewise, considering the multiple
characteristic bands of EEG, we can also interpret it as a
multicomponent AM-FM signal. An EEG signal can thus be
written as a linear combination of amplitude and frequency
modulated components which we call the primary components,

s(n) =

K∑

k=1

Ak(n)cos[Θk(n)] + η(n) (2)

=

K∑

k=1

Ak(n)cos

{[
Ωc(k)n+

n∑

r=1

qk(r)

]}
+ η(n),

where Ak(n) denotes the instantaneous amplitude of the
kth primary component and Θk(n) denotes its instantaneous
phase. With the backward difference between Θk(n) and
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Fig. 3. Detection of the present rhythms in a 5-second long EEG epoch.

Θk(n−1), the instantaneous frequency sequence is defined as
Ωk(n) = Ωc(k) + qk(n) =

2π
fs
fc(k) + qk(n), where fs is the

sampling frequency, qk(n) is the frequency modulation com-
ponent. Note η(n) takes into account additive noise and errors
of modeling, especially those errors due to finite summation.
The dominant rhythms in an EEG signal are therefore captured
by the primary AM-FM components in the corresponding
frequency bands. Depending on applications, the number of
primary components required for processing may vary. For
epileptic seizure prediction purposes, the necessary compo-
nents are identified as the existing constituent brain waves.
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Fig. 4. The instantaneous frequency estimate Ω(n) in the detected EEG
rhythms.

Figure 3 gives an example of a 5-second long EEG signal
from the 3rd preictal stage of patient 1 in the Freiburg
database [18] and the present rhythms detected through band-
pass filtering. In Figure 4, instantaneous frequencies of these
subbands have been shown. From Figure 4, it is obvious
that a primary component dominates the frequency variation
in each subband, and this principal value differs from one
subband to another. Similar observations could be found for
the instantaneous amplitude quantities. An effective feature
extraction process can therefore be considered as to identify
and estimate these constituent primary components from the
AM-FM EEG representation.

B. Feature extraction overview

A common approach of getting these inclusive components
in EEG signals is through nonlinear signal decomposition.

Consequently, we employ the multi-band AM-FM model on
the EEG signal to extract the averaged instantaneous envelope
(AIE) and averaged instantaneous frequency (AIF) feature
vectors. The process of computing the AIE and AIF features
is summarized as follows:

1) Signal segmentation: The EEG signal in each channel is
segmented into 5 second epochs with no overlap.

2) Signal decomposition: Each epoch is divided into 5
subbands: delta (0-4 Hz), theta (4-8 Hz), alpha (8-13
Hz), beta (13-30 Hz), and gamma (>30 Hz) through
a bank of 48th ordered finite impulse response (FIR)
filters, where a 48-point Hanning window is applied
before the filtering process.

3) Multi-band demodulation: Teager’s energy separation
algorithm [19] is employed to obtain the instantaneous
envelope (IE) sequence |A(n)| and the instantaneous
angular frequency (IF) Ω(n) one epoch by another for
each subband signal.

4) Sequence smoothing: A 21-point median filter is applied
to remove the abrupt impulses in the epochs of IE and IF
sequences, where the order 21 is empirically determined.

5) Spatio-temporal averaging: This process is conducted on
each subband epoch by following a two-step calculation:

• Temporal averaging: The averaging operation is
undertaken on the smoothed IE and IF sequences
first to remove the fluctuations over time.

• Spatial averaging: These temporal IE, IF mean
values are then averaged across different channels
to compensate for possible channel variability.

III. EVALUATION METHODOLOGY

In this section, the Freiburg EEG data set employed in the
evaluation is described first, and the examination metrics of
the relevant amplitude-frequency modulation feature vectors
are introduced thereafter.

A. Database

Our epileptic seizure prediction algorithm is evaluated on
the Freiburg EEG database [18]. It is a publicly available
intracranial EEG data set, which contains invasive EEG
recordings of 21 patients suffering from medically intractable
focal epilepsy. The data were recorded during an invasive pre-
surgical epilepsy monitoring at the Epilepsy Center of the
University Hospital of Freiburg, Germany. The epileptic focus
was located in neocortical brain structures for 11 patients,
in the hippocampus for eight patients, and in both for two
patients. In order to obtain a high signal-to-noise ratio with
fewer artifacts, and to record directly from focal areas, in-
tracranial grid-, strip-, and depth-electrodes were utilized. The
EEG data were acquired using a Neurofile NT digital video
EEG system with 128 channels, 256 Hz sampling rate, and a
16-bit analogue-to-digital converter.

For each of the patients, there are two sets of data that con-
tain EEG signals from ictal and interictal stages, respectively.
For prediction purposes, at least 50 minutes preictal data were
retained prior to each epileptic seizure. As for the interictal
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states, approximately 24 hours of EEG recordings without
seizure activity were provided. At least 24 hours of continuous
interictal recordings are available for 13 patients. For the
remaining patients, interictal invasive EEG data consisting of
less than 24 hours were joined together, so as to end up with
at least 24 hours of interictal recordings per patient. For each
patient, the recordings of three focal and three extra-focal
electrode contacts are available.

B. Performance metrics

We measure the performance of our epileptic seizure predic-
tion algorithm in terms of sensitivity and specificity. Sensitivity
refers to the number of seizures that have been predicted
correctly. Once an alarm of seizure has been raised in the
preictal stage, and there is seizure occurring in the subsequent
SPH, it is regarded as a correct prediction. Specificity in the
seizure prediction task is counted as the number of false alarms
generated during the interictal period per hour.

C. Cross-validation and classification

The epileptic seizure prediction is to classify the feature
vectors into two groups: preictal, where a seizure is about
to take place in the following SPH; or interictal, where no
seizure could be foreseen so far. The patient-specific binary
classification of feature vectors is implemented with a sup-
port vector machine through employing the Libsvm software
package [20]. Nonlinear decision boundaries are generated to
separate the preictal and interictal data by using radial basis
function (RBF) kernel.

In order to estimate the prediction performance in an in-
sample optimization and out-of-sample evaluation manner, 5-
fold cross validation is applied to obtain the optimal parame-
ters during the training stage. Suppose there is NS 50-minute
preictal records, and NNS 1-hour interictal records included
in a patient’s data. In measuring the prediction sensitivity, one
classifier is trained from NS − 1 preictal records, and another
classifier is trained from all NNS interictal records. The
predictor is then tasked with determining the class of samples
in the withheld preictal record. This process is repeated NS

times until all preictal records are tested. True positive (TP)
and false negative (FN) measurements are counted in the
process. To estimate the predictor’s specificity, the classifiers
are trained from the NS preictal records and NNS−1 interictal
records, respectively. The withheld interictal record is used as
testing data, and this process is repeated NNS times such that
all interictal records are tested. The false alarms (FA) which
have occurred are noted as well.

In general, for disease prediction tasks, the samples falling
into the two classes are usually unbalanced in number. The
overall accuracy in these scenarios sometimes cannot make
good trade-off with the loss due to missing detection and false
alarm errors; consequently, the Fβ measurement might be a
good choice instead. Fβ is a performance metric for binary
classification functions that is weighted on the harmonic mean
for the classifier’s TP, FN, and FA, its definition is denoted by

Equation (3):

Fβ =
(1 + β2) · TP

(1 + β2) · TP + β2 · FN + FA
, (3)

where we set the weighting factor β to be 2 in this paper.
In each cross-validation training round, the target function is
optimized by choosing SVM cost parameter C and RBF kernel
parameter γ through a 21× 21 grid search, where log2C and
log2γ range from -10 to 10, respectively. The parameter set
[C, γ] chosen in the training stage is subsequently adopted
in the respective evaluation round. Two sets of parallel ex-
periments have been conducted. One set is to maximize the
overall accuracy, and is noted as ExpAcc, while the other one
that optimizes the F2 measurement is noted as ExpF2.

IV. PERFORMANCE

The epileptic seizure prediction algorithm is evaluated on
19 out of 21 patients in the Freiburg iEEG data set. The other
two patients that contain less than 3 seizures are discarded. The
seizure numbers and interictal period for patients included in
the evaluation set are tabulated in Table I. The SPH is set to
be 50 minutes in this study.

A. Feature aggregation

The short-term parameter sets AIE and AIF are generated
from the characteristic bands of EEG signals on an epoch-
by-epoch basis. They capture the dominant amplitude and
frequency components in the concerned temporal span and
spatial range of these bands. The dimension of AIE and
AIF feature vectors depend on the number of subbands that
are included, which is five for both AIE and AIF in this
study. The number of data samples extracted from a fixed
set of EEG data depends also on the epoch length, which
is empirically set to be 5 second. In order to achieve a
more comprehensive description of the distinct amplitude and
frequency components with respect to the prediction results,
two aggregation procedures are taken. First, a 0-1 weighting
scheme is employed to decide the AIE weight wAIE and that
of AIF wAIF for a feature combination consideration. When
[wAIE , wAIF ] = [1, 0], AIE is the only information source
that is taken into account; on the other hand, AIF is fully
emphasized when [wAIE , wAIF ] = [0, 1]. AIE and AIF are
concatenated one after the other in a vector form when wAIE

and wAIF are both set to be 1. These newly generated AIEF
vectors are therefore of a dimension which equals to the sum
of those of AIE and AIF vectors.

Furthermore, as the physiological situations of epilepsy
patients in a way transit between regimes of the seizure and
non-seizure states, and the patients may be in many possible
scenarios, like awake or sleep, when a seizure is forthcom-
ing, the EEG data are therefore a nonstationary process. To
eliminate the false decisions caused by insufficient inspection
time and scarce evidence, the short chunks of EEG features are
concatenated sequentially in time to form a longer observation
interval [12]. In order to search for a suitable aggregation
degree for these newly derived parameters, we have taken a
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vector.

performance-driven method. Having the preictal stage roughly
containing 50 minutes of EEG data each, we set the maximum
vector duration to be 5 minutes so that each preictal testing
record includes at least ten vectors in the set. In Figure 5,
six patients’ epileptic seizure prediction performance by the
AIEF parameter sets that temporally integrated into 1-minute,
2-minute and 5-minute vector forms are shown. It is found that
the false alarm performance of the AIEF features are evidently
improved when the integrating length increases from 1 to
5 minutes. Meanwhile, their corresponding sensitivity results
show no degradation. Therefore, the feature vectors employed
in the following evaluation are set to be of 5-minute’s duration
for all three sets of features.

B. Sensitivity of prediction

Figure 6 illustrates the prediction sensitivity averaged over
19 patients for the AIE, AIF, and AIEF parameters respec-
tively, in the ExpAcc tests. It is observed that the dominant
frequencies in the EEG signals have shown greater discrimina-
tive power than that of the amplitude parameters and even the
combination of both of them in terms of sensitivity. It has also
been revealed that, for some patients, the feature performance
achieved in ExpAcc could be considerably improved by using
F2 metric instead. In pursuit of an accurate prediction as
per patient, the best performing features from this ExpAcc

experimental findings are then re-evaluated by the ExpF2 tests
in a patient-specific manner. The final sensitivity results for
all 19 patients are thuswise determined from these two sets of
experiments.
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Figure 7 records the prediction sensitivity achieved patient
by patient. The overall sensitivity achieved across all patients
is 95.2% , which means 79 out of 83 seizures in the evaluation
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set have been successfully predicted. For 16 out of 19 patients,
all seizures are correctly forecasted in advance.

C. Specificity of prediction

The specificity of the epileptic seizure prediction algorithm
is inspected through measuring the average false alarms oc-
curred per hour. Considering the observation that a majority
of isolated positive detections happen to be falsely generated
alarms, we employ a simple one-step post-processing scheme
to filter out these single positives. Figure 8 shows the FA/hr
results before and after taking this two-in-a-row filtering step
for individual patients. As a consequence, we have obtained a
specificity result of 0.130 FAs per hour on average.
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D. Overall performance

The epileptic seizure prediction performance on a patient-
specific basis is indicated in detail by Table I. In comparing
our approach with other published parameter sets that were
evaluated under similar classification methods, which are rep-
resented by [14] and [15] as a typical approach, the sensitivity
results we achieved are found to be excellent for both of
them. Note, however, that our approach has been articulated
with an interpretation of the physical meaning of the involved
parameters. For the specificity performance, our method which
involves only a one-step post-processing operation has ob-
tained a comparable result with that reported in [14], where
a collaborative patient-specific post-processing operation was
undertaken. This means our approach requires less assumption
in post-processing, and leaves room for improvement in future.

V. DISCUSSIONS AND CONCLUSION

Machine learning based feature classification approaches
have been adopted in epileptic seizure prediction for EEG
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TABLE I
PATIENT-SPECIFIC SEIZURE PREDICTION RESULTS.

Patient Seizure Interictal Sensitivity FP/hr
Id. No. Hr. (%)
01 4 24 100 0.000
02 3 24 66.7 0.000
03 5 24 100 0.000
04 5 24 100 0.000
05 5 24 100 0.708
06 3 24 100 0.042
07 3 25 100 0.000
09 5 24 100 0.000
10 5 25 100 0.082
11 4 24 75.0 0.166
12 4 25 100 0.000
14 4 24 100 0.294
15 4 25 100 0.200
16 5 24 100 0.208
17 5 24 100 0.083
18 5 26 100 0.232
19 4 24 100 0.041
20 5 25 60.0 0.284
21 5 25 100 0.401

Total Mean
19 83 461 95.2 0.130

signals. In pursuing high prediction accuracy, discriminative
epileptic indicators from EEG signals are much desirable.
This paper deals with the epileptic seizure prediction prob-
lem from a feature-based perspective. An amplitude and
frequency modulation modeling technique that fits well for
narrow band signals is employed to produce lower-dimensional
feature vectors which are capable of distinguishing preictal
and interictal EEG stages for the current classifiers in use.
To work out an effective formulation for characterizing the
primary preictal/interical stages of an EEG signal, the pertinent
representation for most dominant components present in the
EEG signal is first developed. It is then applied to epochs
of the EEG rhythms to extract concerned pre-seizure and
interictal attributes, respectively. By evaluating these extracted
parameters in the binary classification system implemented
with support vector machine, it has been found that: (1)
the amplitude-frequency modulation signal representation is
capable of capturing the changes of EEG signal characteristics
both with and without upcoming epileptic seizures; (2) the
feature derivation method can provide promising epileptic
seizure prediction performance in the context of standard
machine learning approach; and (3) the derived parameters
perform well in detecting pre-seizure attributes manifested
by the EEG signal, which leads to a perfect sensitivity per-
formance for most patients in the experimental data set. As
observed, a simple one-step post-processing method has led to
noticeable specificity improvements for most of the patients.
It is therefore considered that by attaching a more relevant
post-processing step, the promoted feature derivation front-end

could be refined for further improvement.
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