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Abstract—Prognostics and health management (PHM) in the
context of space missions focuses on the fundamental issues of
system failures in an attempt to predict when the failures may
occur, and links these issues to system life cycle management.
Space missions that are targeting for aerospace exploration or
aviation also pose great challenges on the health conditions of
people involved, such like astronauts, crew members, aviators,
etc. Considering the inherent risks of space missions and the
difficulty of direct communications between crew and ground
support medical specialists, we see that greater autonomy in
medical operations for crew is required. Namely, there is an
urgent call for an effective onboard medical system to predict
and prevent health problems in a timely manner, rather than fol-
lowing reactive approaches which are inherent to conventional
medicine.

Interdisciplinary research is underway to develop computer-
based, self-diagnosis and self-directed treatment programs for
the crew to autonomously predict, prevent, and manage po-
tential health problems of two types: physiological and psy-
chological. Predictive diagnostics aims at identifying negative
health trends with concerned premonitory symptoms followed
by predicting the future health condition and raising alarms in
case of emergency. These alarms will startup devices that are
capable of quickly reacting to an acute disease by delivering
therapy or notifying a caregiver, thus avoiding fatal conse-
quences likely to occur. Acute diseases such as cardiovascular
and epileptic seizures are found to be frequently incident in-
flight medical events, where the aftermath of seizures such as
dyspnoea or serious physical injuries usually does the most harm
to the subject. Consequently, a predictive diagnostics system
that is able to provide early and actionable real-time warnings
of impending health problems would play an extremely crucial
role in aerospace medicine. In this process, the diagnostic
determination is based on the differences between current health
status and the predefined normal status. Besides, considering
the underlying concepts in predictive diagnostics of aerospace
medicine in which every crew member is unique, the develop-
ment of a processing strategy specially designed for each individ-
ual on a subject-by-subject basis is not only necessary but also
feasible. The highly autonomous predictive diagnostics system
in aerospace medicine would then be able to perform real-time
health assessment followed by a comparison of inspection results
with a crew member’s health baseline, where the health baseline
refers to a normal health state in which the crew member is
identified as a physically and mentally healthy person to meet
in-flight specific requirements.

On the Information Technology side, machine learning tech-
niques have made tremendous progress recently in medical
diagnosis and health data analytics. We consequently initiate
an effort on bringing machine learning based disease prediction
technology as predictive diagnostics applications in the context
of aerospace medicine. In space missions the physiological and
psychological health conditions of crew are subject to contin-

978-1-4673-1813-6/13/$31.00 c⃝2013 IEEE

uous monitoring, in which electroencephalogram (EEG), elec-
tromyogram (EMG) and electrocardiogram (ECG) signals can
be critical. EEG is broadly used to study the nervous system,
monitoring of sleep stages, biofeedback and control, and diag-
nosis of epilepsy. Considering EEG has long been employed in
crew selection and training, and recently been widely recognized
as an effective means for disease diagnosis and prediction, in this
paper we mainly focus on EEG in our investigation for aerospace
medicine.

After introduction of EEG and its applications in predictive di-
agnostics, we explore and extract amplitude-frequency patterns
in EEG to provide distinctive features as health indicators. To
further achieve predictive diagnostics for aerospace medicine,
we propose a machine learning based framework involving
physiological signals for automatic health monitoring and dis-
ease prediction. This framework incorporates feature extraction
as front end, and employs state-of-the-art data mining and clas-
sification mechanism to proactively distinguish between normal
and abnormal health conditions in real time. Automatic disease
prediction for crew members can therefore be timely provided
for proper actions. To illustrate the effectiveness of our proposed
paradigm, we employ epileptic seizure prediction as a case study.
It is shown through experiments that the proposed predictive
diagnostic system leads to promising prediction results. As an
application of the disease prediction framework on physiological
sources other than EEG, we have further discussed its employ-
ment on measuring and diagnosing disrupted neuromuscular
characteristics and muscle fatigue for astronauts and aviators
with EMG signals. We expect the framework described in this
paper will result in a positive impact on enhancing the medical
operation autonomy in aerospace medicine.
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1. INTRODUCTION TO
ELECTROENCEPHALOGRAM

Aerospace medicine, also known as aviation medicine or
flight medicine, is a preventive or occupational medicine in
which the patients or subjects are pilots, aircrews, or persons
involved in spaceflight. This field of expertise focuses on
treating or preventing conditions to which aircrews are par-
ticularly vulnerable physically or mentally. Such capability is
a critical component of aviation safety, as it applies medical
knowledge to the human factors for risk reduction in aviation
and aerospace [1].

In aerospace medicine, cardiovascular diseases are a major
health problem worldwide and a leading cause of mortality
and morbidity in industrialized nations, making them a major
concern for aeromedical disposition and aircrew standards.
Besides cardiac diagnosis, aerospace medicine specialists
are typically required to relate the neurologic condition to
aviation safety and to accomplish an appropriate aeromed-
ical disposition. Traumatic brain injury (TBI), a common
cause of neurologic disability among people between 20 and
55 years of age, is frequently encountered in avionics and
aerospace. The evaluator in aerospace medicine is not as
much concerned with acute management as with the possi-
bility of persistent residual neurologic impairment. A major
aeromedical worry following TBI is the risk of seizures.
A seizure is an abnormal, paroxysmal excessive discharge
of cerebral neurons. Epilepsy, a major aeromedical issue
which we will investigate in detail in this paper, is a chronic
condition characterized by a tendency for recurrent (two or
more), unprovoked seizures. Not all seizures signify epilepsy,
though. It is noted that all persons have a constitutional or
genetically determined threshold for seizures, which when
exceeded, leads to a clinical event. This threshold is not only
individual-dependent, but also affected by hormonal influ-
ences, sleep deprivation, and other factors. It also fluctuates
with time of day [1]. Fatigue is another omnipresent risk in all
modes of transportation, particulary in aviation. In avionics
and aerospace environments, cognitive performance degrades
with sleep loss, often referred to as a fatigue effect [2]. Pilot
fatigue associated with jet lag is a major concern in aviation,
especially with travel across multiple time zones. Involved
flight crews often experience disrupted circadian rhythms and
sleep loss. Studies have reported episodes of fatigue and
the occurrence of uncontrolled sleep periods (microsleeps)
in pilots [3]. When flight crewmembers remain at their
destination only for a short period, they would not have the
opportunity to adjust physiologically to the new time zone or
altered work schedule before getting on another assignment;
therefore, their risk for fatigue drastically increases. Simi-
larly, astronauts can also experience performance decrements
and fatigue in space, which may lead to considerable risk no
matter how well they are trained [4].

To address the above issues in aerospace medicine, the elec-
troencephalogram (EEG) signal comes as a handy technique
for rescue. EEG is a medical test used to measure the elec-
trical activity of the human’s brain. EEG can help diagnose a
number of conditions, including epilepsy, sleep disorders and
brain tumours. The EEG is typically described in terms of
rhythmic activity and transients [5]. The rhythmic activity is
further divided into bands by frequency as shown in Figure
1. During past decades, EEG has been engaged as part
of the medical screening of candidates for aircrew training
[6], [7]. Furthermore, studies on military personnel have
gained insight on the role of interictal EEG in the diagnosis
of epilepsy [8].
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Figure 1. Typical rhythmic activities in an EEG signal.

Standard EEG instrumentation settings used are lowpass fil-
tering at 75 Hz, and paper recording at 100 µV/cm and 30
mm/s for 10-20 minutes over 8-16 simultaneous channels.
On the other hand, monitoring of sleep EEG and detec-
tion of transients related to epileptic seizures may call for
multichannel EEG acquisition over several hours. Special
EEG techniques include the use of needle electrodes, the use
of naso-pharyngeal electrodes, the recording of intracranial
EEG from an exposed part of the cortex, and the use of
intracerebral electrodes. Evocative techniques for recording
EEG include initial recording at rest (eyes open vs. eyes
closed), hyperventilation (after breathing at 20 respirations
per minute for 2-4 minutes), photic stimulation (with 1-50
flashes of light per second), auditory stimulation with loud
clicks, sleep (of different stages), and pharmaceuticals or
drugs [5].

As an example, Figure 1 shows the traces of EEG signals
together with the rhythms. EEG rhythms are associated
with various physiological and mental processes. The alpha
rhythm is the principal resting rhythm of the brain, which is
common in wakeful, resting adults, especially in the occipital
area with bilateral synchrony. The alpha wave is replaced
by slower rhythms at various stages of sleep. Theta waves
appear at the beginning stages of sleep, while delta waves
appear at deep-sleep stages. High-frequency beta waves
appear as background activity in tense and anxious subjects.
The depression or absence of the normal (expected) rhythm
in a certain state of the subject could indicate abnormality.
The presence of delta or theta (slow) waves in a wakeful
adult would be considered to be abnormal. Focal brain
injury and tumors may lead to abnormal slow waves in
the corresponding regions. Unilateral depression (left-right
asymmetry) of a rhythm could indicate disturbances in cor-
tical pathways. Spikes and sharp waves could indicate the
presence of epileptogenic regions in the corresponding parts
of the brain. There are a few events and transients that might
occur in EEG signals, which are summarized in Table 1 [5].

EEG is broadly employed in the study of the nervous system,
disease diagnosis and detection, as well as sleep monitoring,
which are critical to the health conditions of crew or astro-
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Table 1. Main events and transients existing in EEG signals.

EEG events Distinctive characteristics

K-complex
Transient complex waveform with slow waves
Occurring spontaneously or in response to a stimulus during sleep

Lambda (λ) waves
Monophasic, positive, sharp waves associated with visual exploration
Occurring in the occipital location

Mu (µ) rhythm
Rhythm with an arcade or comb shape in the central location
Occurring as a group of waves in the frequency range of 7-11 Hz

Spike
Transient with a pointed peak
Occurring with a duration in the range of 20-30 ms

Sharp wave
Transient with a pointed peak
Occurring with a duration in the range of 70-200 ms

Spike-and-wave rhythm
Rhythm
Occurring as sequence composed of surface-negative slow waves and associated spikes

Sleep spindle
Episodic rhythm
Occurring maximally over the fronto-central regions during certain stages of sleep

Vertex sharp transient or V -wave
Sharp potential that is maximal at the vertex and is negative in other areas
Occurring spontaneously during sleep or in response to a sensory stimulus during sleep or wakefulness

nauts. In aerospace medicine, EEG has been considered as
an essential metric to assess the health conditions of people
involved in space missions. With in-flight medical opera-
tion autonomy being emphasized nowadays, a self-diagnosis
system which can automatically diagnose and manage the
potential medical emergencies is urgently required for flight
safety’s sake. The application of EEG data in predictive
diagnostics under an autonomous, proactive, and real-time
scenario consequently attracts greater interests, and expects
to play a more and more significant role for the advancement
of aerospace medicine.

2. APPLICATIONS OF EEG IN PREDICTIVE
DIAGNOSTICS

Mission design for future human exploration spaceflight (in-
cluding the moon, asteroids, and Mars), with their inher-
ent risks and communications delays, requires a shift in
aerospace medicine from a telemedicine paradigm to that of
medical autonomy. As interactive medical ground support
may be not accessable in a space mission, an automatic
clinical decision-making process for crew health monitoring
and diagnostics may be required to assist the onboard Crew
Medical Officer (CMO), if such a dedicated personnel is
available. Predictive diagnostics, consequently, is a specific
data analysis methodology supported with a toolset including
a set of algorithms and computing capabilities, such as data
mining, machine learning, pattern recognition, and other
advanced computing techniques. Predictive diagnostics pro-
vides early and actionable real-time warnings of impending
health problems that would have otherwise gone undetected.
Based upon the differences between real-time health status
and predefined normal status, predictive diagnostics detect
and isolate abnormal circumstances and negative trends,
in the context of flight operating conditions of the crew
members. An underlying thesis in predictive diagnostics in
aerospace medicine is that every crew member is unique. As
a result, it requires the development of a distinctive data set
for each individual. This personalized data set should covers
at least the following areas: medical history, genetic predis-
position, recent medical events, baseline health assessments,
etc. Vital signs in terms of operational and emotional contexts

(e.g. extra-vehicular activity, melancholy), should also be
included. In aerospace medicine the system would further
be required to perform real-time health assessment followed
by a systematic comparison of assessment results with a crew
members health baseline, a health pattern corresponding to a
”normal” health state in which the crew member is identified
as a physically and mentally healthy person who can meet
in-flight specific requirements. Predictive diagnostics could
then recognize potential alarming incidents and provide noti-
fications of developing problems to the CMO [9].

In [10], Sirven et al. made a great effort to analyze the fre-
quency of neurologic events during commercial airline flights
and to assess whether onboard emergency medical kits are
adequate for in-flight neurologic emergencies. By reviewing
the Mayo In-flight Advisory Report which contains a record
of all in-flight events from 1995 to 2000 for a US airline,
the authors found that neurologic symptoms are the most
common medical complaint requiring air-to-ground medical
support, even surpassing cardiovascular and gastrointestinal
symptoms. Among the incidence of neurologic symptoms,
seizures are considered to be the most frequently encountered
events, second only to dizziness. They therefore suggested
adding anti-epileptic drugs to the onboard medical kit and
providing greater emergency medical training for in-flight
personnel so as to potentially reduce the number of distrac-
tions for in-flight neurologic incidents.

In fact, epilepsy is one of the most common neurological dis-
orders worldwide, second only to stroke. Around 1% of the
world’s population is affected by various types of epilepsy.
Two thirds of patients, nevertheless, can achieve sufficient
seizure control with the help of anti-convulsive medication,
and another 8-10% people could get benefit from resective
surgery. However, for the remaining 25% of patients, no
adequate treatment is currently available [11]. There are
several major phases of seizures. As defined by the epilepsy
foundation of America [12], preictal is a period of time
before the seizure onset occurs, which can last from minutes
to days. Ictal is the period during which the seizure takes
place. Postictal is the period after the seizure ends, which can
sometimes take several hours. Interictal is the time between
seizures. In Figure 2, the preictal-postictal stage transition for
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Figure 2. EEG preictal-postictal transition.

an example seizure cycle is illustrated, where the note on the
left, e.g, ”P3-O1” indicates the channel to which the signal
belongs. Recent clinical studies have found premonitory
symptoms for seizures from a certain portion of patients with
epilepsy [13], [14]. There are also evidences showing that the
interictal-ictal transition is not abrupt. During this period of
time, the person with epilepsy manifests changes in medical
measurements such as cardiovascular, metabolic, and EEG
recordings [15]. These changes will help a neurologist to
predict an upcoming seizure.

The most common way for epilepsy diagnosis is through
analysis of EEG, which has therefore been widely employed
in epilepsy diagnosis as well as prediction [11], [16], [17],
[18]. Epileptic seizure onset detection algorithms aim to
raise alarms as soon as a seizure occurs on a patient from
examining his/her EEG data [17]. These alarms will startup
devices that are capable of quickly reacting to a seizure by
delivering therapy or notifying a caregiver, thus alleviating
fatal consequences of seizures. An even more important
issue in the context of predictive diagnostics under aerospace
environment is the challenge of predicting epileptic seizures,
which is approached by searching for distinctive changes in
the EEG before seizure onsets. An epileptic seizure predic-
tion algorithm should be able to forecast an upcoming seizure
prior to seizure onset by raising an alarm. The time interval
after an alarm within which a seizure is expected to take place
is called Seizure Prediction Horizon (SPH) in the context of
seizure prediction characteristic. SPH ranges from several
minutes to a few hours [19]. If a seizure occurs within the
SPH, the alarm is regarded as a correct prediction; otherwise,
it is counted as a false alarm. Due to its high interest in
aerospace medicine, epileptic seizure prediction issue will be
explored as a case study later in the paper.

EEG rhythms associated with various physiological and men-
tal processes produce high dimensional feature data which
are used to be hard for computers to handle. During the
past years, fortunately, sophisticated machine learning tools
have been developed to alleviate the computational burden
caused by feature classification in a very high dimensional
data space. Current seizure prediction approaches mostly
adopt a two-step strategy: extracting measurements from
EEG signals along the time line, and then determining their
categories to be either preictal or interictal within a bi-
nary classification framework. The machine learning based
approaches have been employed in state-of-the-art seizure
prediction and detection algorithms [17], [20]. The reduced
requirements on computational resources and the subject-

specific strategy taken in the machine learning based seizure
prediction methods make them applicable components in the
aeromedical predictive diagnostics framework.

3. AMPLITUDE AND FREQUENCY
PROPERTIES IN EEG

In this section we first observe the primary amplitude-
frequency modulation components in an EEG signal, and then
introduce the feature extraction process that we will use in our
proposed framework.

Amplitude-frequency modulation signal representation

A narrow-band signal, whose bandwidth is sufficiently small,
can be viewed as a monocomponent amplitude and frequency
modulating (AM-FM) signal. Among the frequencies span-
ning over the signal spectrum, there is one frequency bin as-
suming a majority of the signal energy. The two determining
parameters in an AM-FM signal are amplitude and phase. A
monocomponent AM-FM signal is described by Equation (1)
[21],

x(n) = A(n)cos
[
Θ(n)

]
, (1)

where A(n) denotes the instantaneous amplitude of the
monocomponent signal and Θ(n) denotes its instantaneous
phase.

The kth EEG rhythm sk(n) as shown in Figure 1 could be
formulated as an AM-FM term by Equation (2):

sk(n) = Ak(n)cos
[
Θk(n)

]
, (2)

with the EEG rhythm being characterized by two sequences:

• Ak(n) – Amplitude of rhythm;
• Θk(n) – Phase of rhythm.

Teagers proposed to employ a multicomponent AM-FM
model in exploring amplitude-frequency modulation patterns
in speech resonances [22]. Likewise, considering the multiple
characteristic bands of EEG, we can also interpret it as a
multicomponent AM-FM signal. An EEG signal can thus be
written as a linear combination of amplitude and frequency
modulated components which we call the primary compo-
nents,

s(n) =
K∑

k=1

Ak(n)cos[Θk(n)] + η(n) (3)

=
K∑

k=1

Ak(n)cos

{[
Ωc(k)n+

n∑
r=1

qk(r)

]}
+ η(n),

where Ak(n) denotes the instantaneous amplitude of the
kth primary component and Θk(n) denotes its instantaneous
phase. With the backward difference between Θk(n) and
Θk(n − 1), the instantaneous frequency sequence is defined
as Ωk(n) = Ωc(k) + qk(n) =

2π
fs
fc(k) + qk(n), where fs is

the sampling frequency, qk(n) is the frequency modulation
component. Note η(n) takes into account additive noise
and errors of modeling, especially those errors due to finite
summation. The dominant rhythms in an EEG signal are
therefore captured by the primary AM-FM components in the
corresponding frequency bands. Depending on applications,
the number of primary components required for processing
may vary. For the epileptic seizure prediction purpose in
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Figure 3. Detection of the present rhythms in a 5-second
long EEG epoch.
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our case study shown later, the necessary components are
identified as the existing constituent brain waves.

Figure 3 gives an example of a 5-second long EEG signal and
the present rhythms detected through band-pass filtering. In
Figure 4, instantaneous frequencies of these subbands have
been shown. From Figure 4, it is obvious that a primary com-
ponent dominates the frequency variation in each subband,
and this principal value differs from one subband to another.
Similar observations could be found for the instantaneous
amplitude quantities. An effective feature extraction process
can therefore be considered as to identify and estimate these
constituent primary components from the AM-FM EEG rep-
resentation.

Feature Extraction

A common approach of getting those inclusive components
in EEG signals is through nonlinear signal decomposition.
Consequently, we employ the multi-band AM-FM model on
the EEG signal to extract the averaged instantaneous envelope
(AIE) and averaged instantaneous frequency (AIF) feature
vectors. The process of computing the AIE and AIF features
is summarized as follows:

1. Signal segmentation: The EEG signal in each channel is
segmented into 5 second epochs with no overlap.
2. Signal decomposition: Each epoch is divided into 5 sub-
bands: delta (0-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta
(13-30 Hz), and gamma (>30 Hz) through a bank of 48th
ordered finite impulse response (FIR) filters, where a 48-point
Hanning window is applied before the filtering process.

3. Multi-band demodulation: Teager’s energy separation al-
gorithm [21] is employed to obtain the instantaneous en-
velope (IE) sequence |A(n)| and the instantaneous angular
frequency (IF) Ω(n) one epoch after another for each subband
signal.
4. Sequence smoothing: A 21-point median filter is applied
to remove the abrupt impulses in the epochs of IE and IF
sequences, where the order 21 is empirically determined.
5. Spatio-temporal averaging: This process is conducted on
each subband epoch by following a two-step calculation:
• Temporal averaging: The averaging operation is under-

taken on the smoothed IE and IF sequences first to remove
the fluctuations over time.
• Spatial averaging: These temporal IE, IF mean values

are then averaged across different channels to compensate for
possible channel variability.

The short-term parameter sets AIE and AIF are generated
from the characteristic bands of EEG signals on an epoch-
by-epoch basis as described. They capture the dominant am-
plitude and frequency components in the concerned temporal
span and spatial range of these bands. The dimension of AIE
and AIF feature vectors depend on the number of subbands
that are included, which is set to be five for both AIE and AIF
vectors in this paper. The number of data samples extracted
from a fixed set of EEG data depends also on the epoch
length, which is empirically set to be 5 second. In order to
enrich the information contained in the feature vectors, we
have concatenated AIE and AIF vectors one after the other to
constitute a new vector AIEF, which has a dimension of ten.
Moreover, it is revealed through a pilot study on small amount
of data that all three sets of feature vectors can achieve higher
discriminative performance when they are with a duration of
5 minute.

4. DISEASE PREDICTION WITH MACHINE
LEARNING APPROACH

This section focuses on our machine learning based disease
prediction methodology. Main approaches in this application
domain and the evaluation metrics are described. Finally, a
working framework which includes signal processing, data
mining, and statistical classification modules are proposed
and shown in detail.

Machine learning based approaches

Over the past few years, there has been growing interest in
the use of analytical methods to deal with disease diagnosis
and prediction problems. One of such method is machine
learning. Machine learning is a branch of artificial intelli-
gence in which the computers ”learn” from past data samples
with statistical, probabilistic and optimization techniques to
identify the underlying patterns existing in large, noisy and
complex data sets, and to automatically extract useful in-
formation from the data [23]. The major focus of machine
learning research is to make intelligent decisions on unseen
data, which makes it a suitable tool for medical diagnosis and
disease prediction in the growing trend towards personalized,
predictive medicine.

Within machine learning, there are two main approaches that
one can take: supervised and unsupervised learning. In su-
pervised learning, the training data includes examples of the
input vectors along with their corresponding target vectors.
Existing or new algorithms can be employed to assign new,
previously unseen data to one of the predefined categories
with a given accuracy. On the other hand, in unsupervised
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learning, the goal can be three-fold: (1) clustering: to dis-
cover groups of similar examples within the data, (2) density
estimation: to determine the distribution of data within the
input space, and (3) visualization: to project the data from
a high-dimensional space down to two or three dimensions
[24]. One specific form of supervised pattern recognition is
classification, which concerns with the automatic discovery
of regularities in the data that can be used to classify the data
into different predefined categories. In disease prediction for
subjects, for example, the health indicators extracted from the
physiological data of the particular individual are referred as
”data samples”, while the categories to which they may be
assigned to are noted as ”labels”. A decision function for
”classifier” is then built, which can capture the relationship
between each data sample and its corresponding label with
the possible highest accuracy [25].

Supervised machine learning techniques that have been em-
ployed in disease prediction task include, but are not limited
to, artificial neural network [26], [27], [28], decision trees
[29], mixture Gaussian models [30] and support vector ma-
chine (SVM) [31], [32].

SVM is a specific type of supervised machine learning
method, aiming to classify data points by maximizing the
margin between classes in a high-dimensional space [33],
[34]. SVM in its basic form is a non-probabilistic binary
linear classifier. Suppose there is a set of training data with
each data point labeled as belonging to one of two different
classes, an SVM will learn from these data a separation
boundary to assign unseen data in the test stage into one
category or the other with the possible highest accuracy.
Namely, an SVM model is a representation of data points
in some space, where the data of different categories can be
divided by a clear gap with a margin as wide as possible.
For prediction purpose, new data points are mapped into
the same space first, the SVM classification algorithm will
then determine the category for each point in virtue of the
side of gap it falls into in the concerned space. SVM can
also efficiently perform non-linear classification by way of
what is called the kernel trick: mapping of input data points
into high-dimensional spaces by some methods. The popular
software packages to implement an SVM include Libsvm
[35], SVMlight [36], and SVMTorch [37], etc.

Evaluation methodology

In general, disease prediction is a binary classification task.
The output data is to be classified either as abnormal, which
indicates an upcoming disease onset, or as normal, when
the subject’s health condition is fine. The performance of
prediction is usually measured in terms of sensitivity and
specificity. Sensitivity, which is known as recall rate as well,
is a measurement of the proportion of actual positives which
are correctly identified as such. Specificity measures the
proportion of negatives which are correctly identified.

In a disease detection test that screens people for a disease,
each subject taking the test either has or does not have the dis-
ease. The test outcome could be positive or negative, which
indicates that the subject is sick or not sick respectively. The
test results for each subject in this setting might be as follows:

• True positive (TP): Sick people correctly diagnosed as sick
• False positive/alarm (FP/FA): Healthy people incorrectly
identified as sick
• True negative (TN): Healthy people correctly identified as
healthy
• False negative (FN): Sick people incorrectly identified as

healthy

The sensitivity, specificity, and the overall accuracy are cal-
culated in the following manner:

Sensitivity =

∑
TP∑

TP +
∑

FN

Specificity =

∑
TN∑

FA+
∑

TN
(4)

Accuracy =

∑
TP +

∑
TN∑

TP +
∑

FA+
∑

FN +
∑

TN

On the other hand, the specificity in disease prediction tasks is
by usage referred to as 1− Specificity, namely, the smaller
the better, while sensitivity indicates the same meaning as
defined in (4). In general, for this type of task, the data falling
into the two classes are typically unbalanced in number. The
overall accuracy in this scenario sometimes cannot make
good trade-off with the loss due to missing detection and false
alarm errors; consequently, the Fβ measure turns out to be
a standard choice. Fβ is a performance metric for binary
classification functions that is weighted on the harmonic
mean for the classifier’s TP, FN, and FA, whose definition
is denoted by Equation (5):

Fβ =
(1 + β2) · TP

(1 + β2) · TP + β2 · FN + FA
, (5)

where β is a weighting factor.

Working framework

PHM is a research methodology for system health manage-
ment during a space mission, which focuses on predicting the
time at which a system component will encounter failures to
avoid detrimental consequences on operation safety. Another
crucial issue associated with the security of space mission is
the health conditions of people involved therein, including
aviators, astronauts, etc. Aerospace medicine predictive di-
agnostics which aims to forecast the potential disease onsets
a person might experience in the context of space scenarios,
such as heart attack, convulsion, muscular fatigue, etc, makes
efforts to develop self-diagnosis and self-directed medical
management for crew members. Nowadays, the computer-
based data analytics techniques have been employed in this
field. Data mining and machine learning approach, as a new
branch of data processing method, is thereby involved in
predictive diagnostics for aerospace medicine. The machine
learning based methods in the science of predictive diagnos-
tics can be taken to determine whether a subject is in a healthy
status or an impending disease, for example, cardiovascular
disease or epileptic seizure, is foreseen. As an initial effort,
we propose a machine learning based framework making use
of physiological measurements to provide automatical health
monitoring and disease prediction for crew members on a
subject-by-subject basis. In this framework, the amplitude-
frequency feature extraction is employed in the front end
to offer discernible health-related characteristics. The SVM
classifier is applied to distinguish between the abnormal and
normal health status. Standard cross-validation training and
classification are systematically carried out.

The physical monitoring of the proposed predictive diagnos-
tics system under aeromedical scenario is conducted through
observing physiological data continuously. For each targeted
subject, two models will be built: One is for the normal state,
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Figure 5. A paradigm of machine learning based disease prediction system in aerospace medicine scenario.

and the other is for the pre-seizure state where there is an
upcoming disease. A subject-specific binary classification is
conducted continuously to classify the input feature vectors
into normal or pre-disease groups [17], [32]. Once pre-
seizure observations for acute diseases are found to last for
a certain period, alarms are to be raised to clinical caregivers
immediately. For diseases characterized by chronic symp-
toms due to fatigue, such as muscular fatigue and stiffness,
if detected, awareness should also be raised. In our previous
work on epileptic seizure prediction with EEG data, a binary
classification scheme is implemented with SVM, where non-
linear decision boundaries are generated to separate the data
by using radial basis function (RBF) kernel [38]. Similar
approaches can be applied to other physiological data, e.g.,
ECG and EMG, for disease prediction and potential pattern
classification purposes.

Figure 5 gives an overall illustration of the described
paradigm for the machine learning based disease predic-
tion system in a typical aerospace medicine scenario. The
paradigm mainly contains three modules: aerospace medical
data acquisition, feature extraction, and SVM-based clas-
sification. The input data are physiological measurements
from the crew members on a continuous-time basis, where
the medical recordings could be provided by the EEG, ECG,
EMG, etc. These time-varying sequences are then processed
by a series of signal processing steps, producing respective
health profiles of the concerned subject, which are named fea-
ture vectors in pattern recognition terminology. Through im-
plementing these sequentially connected procedures, which
include temporal segmentation, spectral decomposition, and
multi-band demodulation, on the physiological signal s(n),
its instantaneous amplitude and frequency sequences, A(n)
and Ω(n) respectively, are picked out. The most dominant
amplitude and frequency components present in s(n) are
then extracted as the physiological cues. To provide subject-
centric medical management, SVM classifiers are trained
separately for each subject. A separation boundary is learned
from past data sets of the subject regarding whether the
concerned disease is present or not. Once a set of unseen
data samples come, the categories they should fall into will
be decided accordingly. In case an impending disease is fore-
casted, alarms will be raised to notify the concerned parties;
otherwise, the system keeps monitoring health condition of
the respective subject.

This infrastructure built for predictive diagnostics in
aerospace medicine applications provides necessary signal
processing steps to handle various physiological signals. The
SVM-based pattern recognition module, on the other hand, is
also replaceable with other machine learning tools when nec-
essary. As a result, this integrated and portable structure will
make the proposed framework extendable to new application
scenarios.

5. CASE STUDY: EPILEPTIC SEIZURE
PREDICTION

In this section, our machine learning based disease prediction
framework is evaluated on 19 out of 21 patients in the
Freiburg EEG data set. The remaining two patients are
discarded due to lack of observed seizures. The SPH is set
to be 50 minutes in this case study.

Like most pattern classification problems, the two essential
components in the machine learning based disease prediction
system demonstrated by Figure 5 are feature extraction and
binary classification. In this case study, the physiological data
under the aerospace medicine scenario refer to EEG signals
from the Freiburg database. During the feature extraction
process, where there are four successive procedures including
signal division and demodulation, the dominant amplitude
and frequency components existing in an EEG signal are
extracted as feature vectors along the time line. These feature
vectors are then taken as physiological cues to detect potential
negative health trend for disease prediction purpose. More
details about the indicated feature extraction process could be
found in Section 3. In the remaining paragraphs of this sec-
tion, we will focus on the evaluation metrics and performance
analysis of the studied epileptic seizure predictor.

Database

The investigated Freiburg EEG database [39], is a popular
epileptic seizure data set. It is a publicly available intracra-
nial EEG data set, which contains invasive EEG recordings
of 21 patients suffering from medically intractable focal
epilepsy. The data were recorded during an invasive pre-
surgical epilepsy monitoring at the Epilepsy Center of the
University Hospital of Freiburg, Germany. The epileptic fo-
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cus was located in neocortical brain structures for 11 patients,
in the hippocampus for eight patients, and in both structures
for two patients. In order to obtain a high signal-to-noise ratio
with fewer artifacts, and to record directly from focal areas,
intracranial grid-, strip-, and depth-electrodes were utilized.
The EEG data were acquired using a Neurofile NT digital
video EEG system with 128 channels, a 256 Hz sampling
rate, and a 16-bit analogue-to-digital converter.

For each of the patients, there are two sets of data that contain
EEG signals from ictal and interictal stages, respectively.
For prediction purposes, at least 50 minutes preictal data
were retained prior to each epileptic seizure. As for the
interictal states, approximately 24 hours of EEG recordings
without seizure activity were provided. At least 24 hours
of continuous interictal recordings were available for 13
patients. For the remaining patients, interictal invasive EEG
data consisting of less than 24 hours were joined together, so
as to end up with at least 24 hours of interictal recordings per
patient. For each patient, the recordings of three focal and
three extra-focal electrode contacts were available.

Performance metrics

In machine learning, one of the most common tasks is data
classification. Suppose there are data points belonging to two
different classes, the goal is to determine which one of the
two classes a new data point will be in. A classifier is said
to assign a feature vector x ∈ Rd to class wi if gi(x) >
gj(x) for all j ̸= i. In binary classification task, suppose
g(x) ≡ g1(x)−g2(x), we assign the point to w1 if g(x) > 0,
otherwise, assign it to w2. In linear discriminant study, g(x)
is a linear function g(x) = wT ·x+ b, where w indicates the
normal vector to the hyperplane, · denotes the dot product.
A hyperplane is a set of points that satisfy w · x + b = 0.
The parameter b/∥w∥ determines the offset of the hyperplane
from the origin along the normal vector w [40].

For a linear SVM classifier, a data point is viewed as a
d-dimensional vector, a hyperplane to separate such points
is of (d − 1)-dimension. There are many choices for the
separation hyperplane, the best one is that can divide the
two classes with the possible largest margin. Given a set
of training data which contains N points {(xi, yi)|xi ∈
Rd, yi ∈ {−1, 1}}Ni=1, where each xi is a d-dimensional real
vector. After scaling on both w and b, for yi = 1, there
is wT · xi + b ≥ 1, for yi = −1, wT · xi + b ≤ −1
holds. The maximum-margin hyperplane which can divide
the points with yi = 1 from those with yi = −1 is to
be searched for. To perform nonlinear classification, kernel
trick is always applied to maximum-margin hyperplanes by
replacing every dot product in the linear function g(x) with
a nonlinear kernel function. The resulting decision function
becomes g(x) = wTϕ(x) + b, where a kernel function is
defined as a function that corresponds to a dot product of two
feature vectors in some expanded feature space k(xi,xj) ≡
ϕ(xi)

Tϕ(xj). The algorithm in other respects is similar with
that for linear classifiers. As a result, the original input space
is mapped to some higher-dimensional feature space where
the training set is separable. If the kernel used is a Gaussian
radial basis function k(xi,xj) = exp(−γ∥xi − xj∥2), with
γ > 0, the respective feature space is a Hilbert space of
infinite dimensions [41]. To deal with noisy data set where
mislabeled points might exist, there is a call for a trade off
between a large margin and a small error penalty. The soft
margin method which can split the examples as cleanly as
possible while at the meantime maximize the separation gap

is thereby introduced. Generally speaking, the effectiveness
of an SVM depends on the following three factors: choice
of kernel function, the kernel’s parameters, and the soft
margin parameter C. A common choice for kernel function
is Gaussian kernel, where there is only one parameter γ to be
tuned. The optimal [C, γ] set is often found via grid search,
in which each combination of C and γ parameters is typically
checked by cross validation, and the parameters with best
cross validation accuracy among the rounds are picked out
in the end. These fine-tuned parameters are then employed in
the final model for classifying new data.

We measure the performance of our machine learning based
disease prediction framework in terms of sensitivity and
specificity. Sensitivity refers to the number of seizures that
have been predicted correctly. Once an alarm of seizure has
been raised in the preictal stage, and there is seizure occurring
in the subsequent SPH, it is regarded as a correct prediction.
Specificity in the seizure prediction task is related with the
number of false alarms generated during the interictal period
per hour. We set the weighting factor β in Equation (5) to
be 2 in this case study. In each cross-validation training
round, the target function is optimized by choosing SVM cost
parameter C and RBF kernel parameter γ through a 21 × 21
grid search, where log2C and log2γ range from -10 to 10,
respectively. The parameter set [C, γ] chosen in the training
stage is subsequently adopted in the respective evaluation
round.

Experiments and results

In this case study, the patient-specific binary classification
of feature vectors is implemented with SVM through em-
ploying the Libsvm software package [35]. Nonlinear de-
cision boundaries are generated to separate the preictal and
interictal data by applying RBF kernel. In order to estimate
the prediction performance in an in-sample optimization and
out-of-sample evaluation manner, 5-fold cross validation is
applied to obtain the optimal parameters during the training
stage. Suppose NS 50-minute preictal records and NNS 1-
hour interictal records are included in a patient’s data. In
measuring the prediction sensitivity, one classifier is trained
from NS − 1 preictal records, and another classifier is trained
from all NNS interictal records. The predictor is then tasked
with determining the class of samples in the withheld preictal
record. This process is repeated NS times until all preictal
records are tested. True positive and false negative measure-
ments are counted in the process. To estimate the predictor’s
specificity, the classifiers are trained from the NS preictal
records and NNS − 1 interictal records, respectively. The
withheld interictal record is used as testing data, and this
process is repeated NNS times such that all interictal records
are tested. The false alarms which have occurred are noted as
well.

Two sets of parallel experiments have been conducted. One
set is to maximize the overall accuracy, noted as ExpAcc,
while the other one that optimizes the F2 measurement is
noted as ExpF2. In Table 2, the epileptic seizure prediction
performance on a patient-specific basis in ExpAcc is indicated
in detail. The results recorded here are from the best per-
forming feature sets among AIE, AIF and AIEF parameter
sets. To achieve accurate prediction, for each subject, these
selected feature sets are immediately re-evaluated in ExpF2
tests, whose results are recorded in Table 3. For the final
results given in Table 3, the overall sensitivity obtained across
all patients is 95.2%, where 18.0% relative improvement over
the ExpAcc result has been achieved. In specific, 79 out
of 83 seizures in the evaluation set have been successfully
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Table 2. Sensitivity and specificity results in ExpAcc
experiments.

Patient Seizure Interictal Sen. (%) FA/hr
Id. No. Hr. (ExpAcc) (ExpAcc)
01 4 24 100 0.000
02 3 24 33.3 0.042
03 5 24 100 0.042
04 5 24 100 0.000
05 5 24 80.0 0.792
06 3 24 100 0.083
07 3 25 100 0.000
09 5 24 100 0.042
10 5 25 100 0.287
11 4 24 25.0 0.000
12 4 25 100 0.000
14 4 24 25.0 0.084
15 4 25 50.0 0.280
16 5 24 80.0 0.083
17 5 24 100 0.125
18 5 26 100 0.463
19 4 24 100 0.369
20 5 25 40.0 0.608
21 5 25 80.0 0.722

Total Mean
19 83 461 80.7 0.212

predicted, and for 16 out of the 19 patients, all seizures
are correctly forecasted in advance. The specificity of the
epileptic seizure prediction algorithm is inspected through
measuring the average false alarms occurring per hour. Con-
sidering the observation that a majority of isolated positive
detections happen to be falsely generated alarms, we employ
a simple one-step post-processing scheme to filter out these
single positives. The FA/hr results before taking this two-in-
a-row filtering step for individual patients are 0.342, which is
worse than that for ExpAcc. As a consequence of the post-
processing, 0.144 FAs per hour specificity result has been
finally achieved.

The data set we used for this case study contains only invasive
EEG recordings, however, the proposed working framework
under aerospace medicine scenarios can also work on scalp
EEG and other physiological information sources, such as
ECG and EMG.

6. FURTHER DISCUSSION
It is known that the ECG signal has been widely used to mea-
sure and monitor the activity of heartbeat. In this section, we
would rather focus on another physiological measurement,
electromyogram (EMG) signal, which can reflect electrical
activity produced by skeletal muscles, and has been viewed
as an important means to indicate human’s physical status.
The long-duration spaceflight and absence of gravity greatly
impacts astronauts’ neuralmuscular system. As recently re-
ported in [42], the subtle neuromotor control system would
be compromised and neuromuscular activation characteristics
would be disrupted as a result of long-term spaceflight. Due
to the inherent coherence with EEG signals, the machine
learning based disease prediction framework developed in

Table 3. Sensitivity and specificity results before and after
post-processing in ExpF2 re-evaluation experiments.

Patient Sen. FP/hr FA/hr
Id. (%) (before filtering) (after filtering)
01 100 0.000 0.000
02 66.7 0.042 0.000
03 100 0.042 0.000
04 100 0.000 0.000
05 100 0.917 0.708
06 100 0.083 0.042
07 100 0.000 0.000
09 100 0.042 0.000
10 100 0.287 0.082
11 75.0 0.332 0.166
12 100 0.000 0.000
14 100 0.797 0.294
15 100 0.440 0.200
16 100 0.708 0.208
17 100 0.125 0.083
18 100 0.463 0.232
19 100 0.369 0.041
20 60.0 0.892 0.284
21 100 0.963 0.401

Total Mean
19 95.2 0.342 0.144

this paper could also be extended to EMG signals, in ap-
plications such as neuromuscular abnormality diagnosis and
muscular fatigue prediction.

It is noted that the disrupted neuralmuscular activation is
typically associated with abnormal forces, while muscle force
is closely related to the amplitude of EMG signals. Therefore,
the extracted forces of particular joints such as knees and
elbows during a specific astronaut’s operation task can also
be taken as physiological cues in the outlined framework. In
our previous work [43], the combined techniques of Kalman
filter and nonlinear normalization have been successfully
employed to estimate human joint forces. For this propose,
the EMG signal is first band-pass and notch filtered to remove
most of the power energy in the low frequency range (caused
by fatigue, tissue filtering properties and the differential
amplification process), and then nonlinear normalized as
described in Equation (6),

EMGN = 100
e(EMGLξ) − 1

e−100ξ − 1
, (6)

where EMGL = EMG is linearly normalized to 100% of
the maximum, EMGN = EMG is non-linearly normalized
to 100% of the maximum. ξ is a user-specific parameter.
Then, by passing EMGN through a Kalman filter, we can get
a rough estimate of the joint force; this is because in larger
muscles where the firing rate has a lower dynamic range,
the relationship between force and the amplitude of EMG
signal can be described by the above nonlinear equation [44].
When applying the proposed framework on EMG signals to
detect abnormal neuromuscular characteristics and to predict
muscular fatigue, the force estimate parameters could also be
incorporated to enhance the amplitude-frequency feature set.
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7. CONCLUSION
In order to improve the medical operation autonomy of
aerospace medicine, a machine learning based framework
for predictive diagnostics with physiological signal has been
proposed in this work. One important issue in aerospace
medicine is to develop diagnostic programs that can au-
tonomously predict, prevent, and manage potential health
problems of individual crew members timely. Predictive
diagnostics science is therefore aimed to identify negative
trends of specific subject by forecasting upcoming onset of
concerned disease in order to provide sufficient time for
urgent action. Due to the broad use of EEG in health
monitoring, disease detection and diagnosis, it has been taken
as an essential physical indicator for people working in space
missions. We therefore focus on EEG in this initial research
effort on bringing machine learning based disease prediction
technology as predictive diagnostics applications under the
field of aerospace medicine. By means of the powerful
data processing capability of machine learning, the hard-to-
discern trends underlying each person’s real-time physiolog-
ical measurements are dig out, and then by comparing with
predefined normal status from respective profile, timely diag-
nostic decisions can be achieved. In the proposed framework,
distinctive amplitude-frequency attributes in physiological
signals are first explored and parameterized into compact
yet comprehensive form. Up-to-date support vector machine
approach is then applied on both normal and abnormal health
data to determine a separation boundary, enabling an ef-
fective classifier for future data. Disease prediction on a
subject-by-subject basis is thus achieved automatically. The
effectiveness of the suggested paradigm has been demon-
strated through experimental results on a real-world EEG
data set for epileptic seizure prediction. We further discuss
the application of proposed framework on processing other
physiological data such as EMG signal as an extension of the
case study. In consequence, we expect the herein introduced
framework will provide new perspective in promoting the
predictive diagnostics in aerospace medicine.
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