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Abstract

Software testing and software fault tolerance are two 
major techniques for developing reliable software 
systems, yet limited empirical data are available in the 
literature to evaluate their effectiveness.  We conducted a 
major experiment to engage 34 programming teams to 
independently develop multiple software versions for an 
industry-scale critical flight application, and collected 
faults detected in these program versions.   To evaluate 
the effectiveness of software testing and software fault 
tolerance, mutants were created by injecting real faults 
occurred in the development stage.  The nature, 
manifestation, detection, and correlation of these faults 
were carefully investigated.  The results show that 
coverage testing is generally an effective mean to 
detecting software faults, but the effectiveness of testing 
coverage is not equivalent to that of mutation coverage, 
which is a more truthful indicator of testing quality. We 
also found that exact faults found among versions are 
very limited. This result supports software fault tolerance 
by design diversity as a creditable approach for software 
reliability engineering.  Finally we conducted domain 
analysis approach for test case generation, and 
concluded that it is a promising technique for software 
testing purpose. 

Keywords: mutation testing, data flow coverage testing, 
software fault tolerance, empirical study. 

1. Introduction 

Fault removal and fault tolerance are two major 
approaches in software reliability engineering [1].  Fault 
removal techniques detect and remove software faults 
during software development so that they will not be 
present in the final product, while fault tolerance 
techniques detect and tolerate software faults during 
software operation so that they will not interrupt the 
service delivery. 

The main fault removal technique is software testing.  
The key issue in software testing is the selection of test 
cases and the evaluation of testing effectiveness.  Two 
major schemes in test case selection and evaluation are 
data flow coverage testing [2] and mutation testing [3]. 
Data flow coverage is a technique to provide measure of 
test sets and test completeness by executing the test cases 
and measuring how program codes are exercised. Some 
studies show the high data flow coverage brings high 
software reliability [4]. The observation of a correlation 
between good data flow testing and a low field fault rate 
is reported for the usefulness of data flow coverage 
testing [5, 6].  Impact of test coverage to fault detection is 
also performed [7].  Furthermore, research efforts have 
been conducted to establish relationship between test 
coverage and software reliability [8, 9].  As most 
experimental investigations are “once-only” efforts, 
however, conclusive evidence about the effectiveness of 
coverage is still lacking. 

The approach to mutation testing, on the other hand, 
begins by creating many versions of a program. Each of 
these versions is "mutated" to introduce a single fault. 
These "mutant" programs are then run against test cases 
with the goal of causing each faulty version to fail. Each 
time a test case causes a faulty version to fail, that mutant 
is considered "killed.”  Empirical studies on mutation 
testing are widely performed [10, 11, 12, 13]. Mutation 
testing is also applied for integration testing [14] and 
program analysis [15].  However, in most previous 
investigations, mutants are artificially generated with 
hypothetical faults.  The testing process produces an 
enormous number of mutants, and each mutant must be 
recompiled and tested.  These mutants are either too 
trivial (too easily killed) or too unrealistic (too hard to be 
activated).

On the fault tolerance side, the main technique is 
software design diversity, including recovery blocks [16], 
N-version programming [17], and N self-checking 
programming [18].  Design diversity approach achieves 
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fault-tolerant software systems through the independent
development of program versions from a common
specification. It is a software reliability engineering
technique subject to continuous investigations by many
researchers regarding its experimentation [19, 20, 21],
modeling [22, 23, 24], and evaluation [25, 26, 27]. The
effectiveness of design diversity, however, heavily
depends on the failure correlation among the developed
multiple program versions [28, 29, 30], which remains a
debatable research issue.

Our research is motivated by the lack of real world
project data for investigation on software testing and fault
tolerance techniques together, with comprehensive
analysis and evaluation.  Subsequently we conducted a
real-world project and engaged multiple programming
teams to independently develop program versions based
on an industry-scale avionics application. We conducted
detailed experimentation to study the nature, source, type,
detectability, and effect of faults uncovered in the
program versions, and to learn the relationship among
these faults and the correlation of their resulting failures. 
We applied the mutation testing techniques to reproduce
mutants with real faults, and investigated the
effectiveness of data flow coverage, mutation coverage,
and design diversity for fault coverage. From the results,
we examined different hypotheses on software testing
and fault tolerance schemes, and drew a number of
interesting observations.  Finally, we performed a new
software test case generation technique [31] based on
domain analysis approach [32] and evaluated its
effectiveness.

2. Project Descriptions and the Experimental
Procedure

In the spring of 2002 we formed 34 independent
programming teams at the Chinese University of Hong
Kong to design, code, test, evaluate, and document a 
critical application taken from industry.  Each team was 
composed of 4 senior-level undergraduate Computer
Science students for a 12-week long project in a software
engineering course. We portray the project details, the
software development procedure and the creation of
mutants with the faults uncovered during software testing 
phase. Setup for the evaluation test environment and the
initial metrics are also described.

2.1 RSDIMU Project

The specifications of a critical avionics instrument,
Redundant Strapped-Down Inertial Measurement Unit
(RSDIMU), were used in our project investigation.
RSDIMU was first engaged in [33] for a NASA-
sponsored 4-university multi-version software experiment.

It is part of the navigation system in an aircraft or
spacecraft.  In this application, developers are required to
estimate the vehicle acceleration using the eight
accelerometers mounted on the four triangular faces of a
semi-octahedron in the vehicle. As the system itself is
fault tolerant, it allows the calculation of the acceleration 
when some of the accelerometers fail. Figure 1 show the
system data flow diagram.

Figure 1 RSDIMU System Data Flow Diagram

The accelerometer measures specific force along its
associated measurement axis where specific force is the
difference between the RSDIMU’s inertial linear 
acceleration and the acceleration due to gravity.  There
are two kinds of input processing. The first type is the
information describing the system geometry (“Geometry
Information”). The second type is the accelerometer
readings from the accelerometers, which need to be pre-
processed through calibration (“Calibrate”) and scaling 
(“Scale”).

The program should perform two major functions. First is
to conduct a consistency check to detect and isolate failed
accelerometers (“Failure Detection”). The second is to
use the accelerometers found to be good by the first
check to provide estimates of the vehicle’s linear 
acceleration expressed as components along different
alignments (“Alignment” and “Estimate Vehicle State”). 

For output processing, the primary outputs are the
accelerometer status vector specifying either a failed or 
an operational mode (“Failure Detection”), and a set of
estimates for the vehicle’s linear acceleration based on
various subsets of the operational accelerometers
(“Estimate Vehicle State”). The secondary output is the
information which drives a display panel and provides
system status (“Display Processor”).
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2.2 Software Development Procedure 

The waterfall model was applied in this software 
development project.  Six phases were conducted in the 
development process: 

Phase 1: Initial design document (duration: 3 weeks) 
The purpose was to allow the programmers to get 
familiar with the specifications, so as to design a solution 
to the problem. At the end of this phase, each team 
delivered a preliminary design document, which followed 
specific guidelines and formats for documentation. 

Phase 2: Final design document (duration: 3 weeks) 
The purpose was to let each team obtain some feedback 
from the coordinator to adjust, consolidate, and complete 
their final design. Each team was also requested to 
conduct at least one design walkthrough. At the end of 
this phase, each team delivered (1) a detailed design 
document, and (2) a design walkthrough report. 

Phase 3: Initial code (duration: 1.5 weeks) 
By the end of this phase, programmers finished coding, 
conducted a code walkthrough, and delivered the initial, 
compliable code in the C language. Each team was 
required to use the RCS revision control tool for 
configuration management of the program modules. 

Phase 4: Code passing unit test (duration: 2 weeks) 
Each team was supplied with sample test data sets for 
each module to check the basic functionalities of the 
module. They were also required to build their own test 
harness for the testing purpose.  

Phase 5: Code passing integration test (duration: 1 week) 
Several sets of test data were provided to each 
programming team for integration testing. This testing 
phase was aimed to guarantee that the software was 
suitable for testing as an integration system. 

Phase 6: Code passing acceptance test (duration: 1.5 
weeks) 
Programmers formally submitted their programs for a 
stringent acceptance test, where 1200 test cases were 
used to validate the final code.  At the end of this phase 
all 34 teams passed the acceptance test.  It is noted, that 
the requirement for this acceptance test was the same as 
the operational test conducted in [33], which was much 
tougher than the original acceptance test in [33]. 

2.3 Mutant creation 

RCS was required for source control for each team. Every 
code change of each program file at each check-in can 
therefore be identified. Software faults found during each 
stage are also identified. These faults were then injected 
into the final program versions to create mutants, each 

contain one programming fault. We selected 21 program 
versions for detailed investigation, and created 426 
mutants.  We disqualified the other 13 versions as their 
developers did not follow the development and coding 
standards which were necessary for generating 
meaningful mutants from their projects. 
The following rules are applied in the mutant creation 
process: 

1. Low-grade errors, for example compilation error and 
core dump exception, are not created. 

2. Some changes were only available in middle versions. 
For example, the changes between 1.1 and 1.2 may not 
be completely identified in the final version. These 
changes are then ignored. 

3. Code changes for debugging purposes are not included. 

4. Modifications of the function prototypes are excluded. 

5. As the specification does not mention about memory 
leaks, mutants are not created for any faults leading to 
memory leaks. 

6. The same programming error may span in many 
blocks of code. For example: a vector missed the 
division by 1000.0 may occur everywhere in a source 
file.  It is counted as a single fault. 

2.4 Setup of Evaluation Test 

In order to evaluate the effectiveness of data flow testing 
schemes, we set up an evaluation test environment. We 
employed the ATAC (Automatic Test Analysis for C) [6, 
34] tool to analyze and compare coverage of testing 
conducted in the 21 program versions, together with their 
426 mutants.  For each round of evaluation test, all 1200 
acceptance test cases were exercised on these mutants.  
This was a very intensive testing procedure, as all the 
resulting failures from each mutant were analyzed, their 
coverage measured, and cross-mutant failure results 
compared. 

60 Sun machines running Solaris were involved in the 
evaluation test. The evaluation test script run on a master 
host, and distributed each mutant as a running task to 
another machine. The execution results were collected in 
network file systems (NFS). One cycle of evaluation test 
took 30 hours, and the test results generated around 20GB 
of a total of 1.6 million files 

2.5 Program Metrics 

Table 1 shows the program metrics for the 21 versions 
engaged in the evaluation test, and the mutants each of 
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Id Lines Modules Functions Blocks Decisions C-Use P-Use Mutants 
01 1628 9 70 1327 606 1012 1384 25
02 2361 11 37 1592 809 2022 1714 21
03 2331 8 51 1081 548 899 1070 17
04 1749 7 39 1183 647 646 1339 24
05 2623 7 40 2460 960 2434 1853 26
07 2918 11 35 2686 917 2815 1792 19
08 2154 9 57 1429 585 1470 1293 17
09 2161 9 56 1663 666 2022 1979 20
12 2559 8 46 1308 551 1204 1201 31
15 1849 8 47 1736 732 1645 1448 29
17 1768 9 58 1310 655 1014 1328 17
18 2177 6 69 1635 686 1138 1251 10
20 1807 9 60 1531 782 1512 1735 18
22 3253 7 68 2403 1076 2907 2335 23
24 2131 8 90 1890 706 1586 1805 9
26 4512 20 45 2144 1238 2404 4461 22
27 1455 9 21 1327 622 1114 1364 15
29 1627 8 43 1710 506 1539 833 24
31 1914 12 24 1601 827 1075 1617 23
32 1919 8 41 1807 974 1649 2132 20
33 2022 7 27 1880 1009 2574 2887 16

Average 2234.2 9.0 48.8 1700.1 766.8 1651.5 1753.4 Total: 426

Table 1  Program metrics for 21 versions

them generated.  It can be noted that the size of these 
programs varies from 1455 to 4512 source lines of code. 
Each version produced a number of mutants ranging from 
9 to 31.  The data flow metrics are also listed in Table 1. 

3. Static Analysis of Mutants: Fault 
Classification and Distribution 

Judging from the number of programming teams involved 
and the quantify of mutants generated, this investigation is 
probably the largest scale experiment in the literature 
regarding injecting actual programming faults in real-
world software application for multiple program versions.  
We first perform static analysis of the mutants regarding 
their defect type, qualifier, severity, development stage 
occurrence and effect code lines.  Note we use “defect” 
and “fault” interchangeably. 

3.1 Mutant Defect Type Distribution 

Each mutant is assigned with a defect type according to 
[35].  The statistics is show in Table 2. 

3.2 Mutant Qualifier Distribution 

Each mutant is assigned with a qualifier. The statistics is 
show in Table 3, with the following definitions: 

Incorrect – The defect was a mistake in computing. 
For example: typo, wrong algorithm, etc. 
Missing – Something was missing to cause the defect. 
Extraneous – Useless addition caused the error. 

Defect types Number Percent
Assign/Init: 136 31%
Function/Class/Object: 144 33%
Algorithm/Method: 81 19%
Checking: 60 14%
Interface/OO
Messages

5 1%

Table 2  Defect Type Distribution 

Qualifier Number Percent
Incorrect: 267 63%
Missing: 141 33%
Extraneous: 18 4%

Table 3  Qualifier Distribution 

3.3 Mutant Severity Distribution 

The severity distribution according to the following 
definitions is listed in Table 4. 
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A Level (Critical): If the mutant could not generate final 
result (in this project, it’s the acceleration value) due to the 
fault. 

B Level (High): If the mutant generated wrong final result 
due to the fault. 

C Level (Low): If the mutant generated the correct final 
result but produced some other incorrect output (for 
example, the display results were erroneous.) 

D Level (Zero): If the mutant passed all test cases but 
failed for some special minor reason (for example, 
incorrect voting sequence without affecting out values.) 

Highest Severity First Failure Severity
Severity

Level 
Number Percentage Number Percentage

A Level 
(Critical): 

12 2.8% 3 0.7%

B Level 
(High): 

276 64.8% 317 74.4%

C Level 
(Low): 

95 22.3% 99 23.2%

D Level 
(Zero): 

43 10.1% 7 1.6%

Table 4  Severity Distribution 

Note that in Table 4, “Highest Severity” records the 
highest level of severity among all failed test cases for a 
mutant, while “First Failure Severity” records the failure 
severity at the first time when a failure occurred to the 
mutant. 

3.4 Fault Distribution over Development Stage  

The sources of faults came from different stages of the 
development. This distribution is shown in Table 5. 

Stage Number Percentage
Init Code 237 55.6%
Unit Test 120 28.2%
Integration Test 31 7.3%
Acceptance Test 38 8.9%

Table 5  Development Stage Distribution 

3.5 Mutant Effect Code Lines 

The number of code lines span affected by each mutant 
was measured by manual inspection. Table 6 lists the 
details.  In previous research efforts on mutation testing, 
usually the faults were artificially injected which simple 
code changes such as the replacement of a logic operator 
in a conditional statement or the modification of a operand 
value, and the code line span was limited to one or a few 
lines.  It can be seen from Table 6 that in our experiment, 

an average 11.39 code lines were affected by a fault, 
truthfully reflecting the reality. 

Lines Number Percent 
1 line: 116 27.23%
2-5 lines: 130 30.52%
6-10 lines: 61 14.32%
11-20 lines: 43 10.09%
21-50 lines: 53 12.44%
>51 lines: 23 5.40%
Average 11.39 

Table 6  Fault Effect Code Lines 

4. Dynamic Analysis of Mutants: Effects on 
Software Testing and Fault Tolerance 

The test cases conducted in the evaluation test is described 
in Table 7.  Based on execution of these test cases over the 
mutants, we analyzed fault and failure relationship. We 
examined the effectiveness of the test cases by their test 
coverage measures, and their ability to kill the mutants.  
We also studied the fault detecting capability of each test 
case, and obtained the non-redundant set of test cases 
which can cover all mutants. 

4.1 Effectiveness of Code Coverage 

In order to answer the question whether testing coverage is 
an effective means for fault detection, we executed the 
426 mutants over all test cases and observed whether 
additional   coverage of the code was achieved when the 
mutants were killed by a new test case. In the experiment, 
we excluded the mutants which failed upon the first test 
case, as we wanted to take a more conservative view in 
evaluating test coverage by analyzing only those mutants 
which passed at least the first test case and then failed in 
later cases.  There were a total of 252 mutants included in 
this analysis. 

Effectiveness of testing coverage in revealing faults is 
shown in Table 8. Here we use the common test coverage 
measures: block coverage, decision coverage, C-use 
coverage and P-use coverage [2, 36]. The second to fifth 
column identify the number of faults in relation to changes 
of blocks, decision, c-uses and p-uses, respectively. For 
example, “6/11” for version ID “1” under the “Blocks” 
column means during the evaluation test stage, six out of 
eleven faults in program version 1 showed the property 
that when these faults were detected by a test case, block 
coverage of the code increased. On the other hand, five 
faults of program version 1 were detected by test cases 
without increasing the block coverage. The last column 
“Any” counts the total number of mutants whose coverage 
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increased in any of the four coverage measures when the
mutants were killed.

Case
ID

Description of the test cases. 

1 A fundamental test case to test basic
functions.

2-7 Test cases checking vote control in different
order.

8 General test case based on test case 1 with
different display mode.

9-19 Test varying valid and boundary display
mode.

20-27 Test cases for lower order bits.
28-52 Test cases for display and sensor failure.
53-85 Test random display mode and noise in

calibration.
87-110 Test correct use of variable and sensitivity of

the calibration procedure.
86,
111-
149

Test on input, noise and edge vector failures.

150-
151

Test various and large angle value.

152-
392

Test cases checking for the minimal sensor
noise levels for failure declaration.

393-
800

Test cases with various combinations of
sensors failed on input and up to one
additional sensor failed in the edge vector
test.

801-
1000

Random test cases. Initial random seed for
1st 100 cases is: 777, for 2nd 100 cases is:
1234567890

1001-
1200

Random test cases. Initial random seed is:
987654321 for 200 cases. 

Table 7  Test Case Description

The result clearly shows the increase in coverage is 
closely related to more fault detections. Out of 252
mutants under analysis, 155 of them show some kinds of
coverage increase when they were killed.  This represents
a high ratio of 61.5%.  The range, however, is very wide
(from 22.2% to 94.7%) among different versions.  This
indicates programmer’s individual capability accounted 
for a large variety in the faults they created and the
detectability of these faults.

One may hypothesize that when there are more (or less)
faults in a program version, it may be easier (or more
difficult) to detect these faults with coverage-based testing
schemes. A plot of the number of mutants against
effective percentage of coverage is therefore obtained in
Figure 2.  It can be seen in Figure 2 that the number of
mutants in each version (i.e., the number of faults in the 
program) can not indicate one way or the other the 

effectiveness of test coverage in exploring the faults (by
killing the mutants).

Version
ID

Blocks Decisions C-Use P-Use Any

1 6/11 6/11 6/11 7/11 7/11(63.6%)
2 9/14 9/14 9/14 10/14 10/14(71.4%)
3 4/8 4/8 3/8 4/8 4/8(50.0%)
4  7/13 8/13 8/13 8/13 8/13(61.5%)
5 7/12 7/12 5/12 7/12 7/12(58.3%)
7 5/11 5/11 5/11 5/11 5/11(45.5%)
8 1/9 2/9 2/9 2/9 2/9(22.2%)
9 7/12 7/12 7/12 7/12 7/12(58.3%)

12 10/19 17/19 11/19 17/19 18/19(94.7%)
15 6/18 6/18 6/18 6/18 6/18(33.3%)
17 5/11 5/11 5/11 5/11 5/11(45.5%)
18 5/6 5/6 5/6 5/6 5/6(83.3%)
20 9/11 10/11 8/11 10/11 10/11(90.9%)
22 12/14 12/14 12/14 12/14 12/14(85.7%)
24 5/6 5/6 5/6 5/6 5/6(83.3%)
26 2/11 4/11 4/11 4/11 4/11(36.4%)
27 4/9 5/9 4/9 5/9 5/9(55.6%)
29 10/15 10/15 11/15 10/15 12/15(80.0%)
31 7/15 7/15 7/15 7/15 8/15(53.3%)
32 3/16 4/16 5/16 5/16 5/16(31.3%)
33 7/11 7/11 9/11 10/11 10/11(90.9%)

Overal
l

131/252
(60.0%)

145/252
(57.5%)

137/252
(53.4%)

152/252
(60.3%)

155/252
(61.5%)

Table 8  Fault Detection Related to Changes of Test
Coverage

Figure 2 Relations between Numbers of Mutants 
against Effective Percentage of Coverage

4.2 Test Case Contribution: Test Coverage vs. Mutant
Coverage

The contribution of each test case in block coverage of the
total 426 mutants, measured across all executed mutants,
is recorded and depicted in Figure 3. The vertical axis
indicates the average percent of block coverage by each
test case. Lines A, B, C, D, E represent the border for test
cases 111, 152, 393, 801 and 1001, respectively. They
mark the distinct boundaries of different test cases 
described and tabulated in Table 7.  Figure 3 shows
various fault detection capabilities of different kinds of
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test cases, as separated by the lines. The total average
block coverage is 45.86%, with a range from 32.42% to
52.25%.

The decision, C-use and P-use coverage measures expose
exactly the same pattern except for their absolute values,
and thus omitted here.  The overall average value of these
measures is shown in Table 9.

Figure 3  Test Case Contribution on Program
Coverage

Percentage
of

Coverage
Blocks Decision C-Use P-Use

Average 45.86% 29.63% 35.86% 25.61%
Maximum 52.25% 35.15% 41.65% 30.45%
Minimum 32.42% 18.90% 23.43% 16.77%

Table 9  Percentage of Test Case Coverage

The contribution of each test case in covering (killing) the
mutant population is shown in Figure 4. The vertical axis
represents the number of mutants that can be killed by
each test case. Lines A, B, C, D, E represent again the
distinct boundaries of different test cases. Similar to
Figure 3, Figure 4 also clearly portrays the fault detection
profiles of each kind of test case. The average number of
faults detected by a test case is 248, with 163 as minimum
and 334 as maximum.

The comparison between Figure 3 and Figure 4 offers
profound implications: they reveal similarity and
difference between code coverage and fault coverage.  On
the one hand, test coverage and mutant coverage show
similar capability in revealing patterns in the test cases, 
giving credit to code coverage as a good indicator for test
variety. On the other hand, the code coverage value alone
is not a good indicator for test quality in terms of fault
coverage. Higher and more stable code coverage, e.g.,
that achieved by test cases 1001-1200, may result in lower
and unstable fault coverage.

   Figure 4  Test Case Contributions on Mutant 
Coverage

We note that this kind of quantitative analysis on test case 
efficiency with the injection of actual faults in real-world
project has seldom been reported in the literature.

4.3 Finding Non-redundant Set of Test Cases

One important issue in software testing is the removal of 
redundant test cases. If two test cases kill exactly the same
mutants, one of them can be regarded as redundant. By
eliminating all such redundant cases, the remaining test 
cases constitute a non-redundant test set. 

Figure 5 shows the non-redundant test set from the 1200
test cases. The gray lines indicate redundant cases, while
the black blocks indicate the set of non-redundant test
cases. The size of this test set is 698 test cases. 

Figure 5 Non-redundant Set of Test Cases

We observe that redundant test case is rare after test case
800. In examining Table 7, we note that test cases after 
800 are random test cases.  They do not focus on any
particular aspect of the program, thus avoiding
redundancy.

4.4 Relationship between Mutants

In the interest of software fault tolerance, we also
investigated fault similarity and failure correlation based
on the mutant population. The test result of every
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success/failure test result can be collected to form a binary 
string of 1200 bits. Based on comparisons of the binary 
strings from all 426 mutants, three mutant relations can be 
defined: 

Related mutants: Two mutants have the same 
success/failure result on the 1200-bit binary string. 

Similar mutants: Two mutants have the same binary 
string and with the same erroneous output variables. 

Exact mutants: Two mutants have the same binary 
string with the same erroneous output variables, and 
erroneous output values are exactly the same.  

Table 10 shows distribution of these mutant relations, and 
their percentages out of total combinations (90525). 

Relationship Number of pairs Percentage 
Related mutants 1067 1.18%
Similar mutants 38 0.042%
Exact mutants 13 0.014%

Table 10  Mutants Relationship 

4.5 Relationship between the Programs with Mutants 

During the evaluation test, we also determined the 
correlation among the program version based on mutant 
executions.   We defined two types of relationships: 
program versions with similar mutants, and program 
versions with   exact mutants.  The former includes 
program versions  which  generate  similar  mutants, while 
the  latter  includes  those  generating  exact  mutants.  The 

results are shown, respectively, in Table 11 and Table 12. 
Each axis in these tables shows the program ID, and the 
values in the content, if any, indicate the number of similar 
or exact mutants between two corresponding program 
versions.  Note these tables are symmetric. 

Table 13 summarizes total program version pairs with 
similar and exact mutants. The pairs with exact mutants 
are interesting and valuable for analysis in detail.  There 
are seven pairs of exact mutants.  All these pairs were due 
to five exact faults, in which four exact fault occurs in two 
versions while one exact fault span three versions. Table 
14 (a)-(e) provide a summary of these faults. 

Here are the descriptions on the causes of these faults: 

Pair 1 – Versions 4 and 8 
The display mode is incorrectly calculated for a missing 
operation. 

Pair 2 – Versions 12 and 31 
Wrong calibration was made due to incorrect alignment 
access of array elements. 

Pair 3 – Versions 15 and 33 
Version 15 missed code to perform mod 4096 in 
calculating the average value in calibration. Version 33 
missed code to ignore redundant data for calibration. 

Pairs 4, 5, and 6 – Versions 4, 15, and 17 
In estimation, all versions missed code to multiply a factor 
in calculation. 

ID 01 02 03 04 05 07 08 09 12 15 17 18 20 22 24 26 27 29 31 32 33
01 
02 02 02
03 
04 02 01 02 01 01 01
05 
07 02 02 01 01
08 01 02 04 02 01
09 
12 01 01 
15 02 02 02 04 03 01
17 01 01 02 01 03
18 01 01 
20 
22 
24 
26 
27 01 01 
29 
31 01 01
32 01 
33 01

Table 11  Program Versions with Similar Mutants 
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ID 01 02 03 04 05 07 08 09 12 15 17 18 20 22 24 26 27 29 31 32 33
01 
02 
03 
04 01 01 01
05 
07 
08 01 
09 
12 01 
15 01 01 01
17 01 01
18 
20 
22 
24 
26 
27 
29 
31 01 01
32 01 
33 01

Table 12  Program Versions with Exact Mutants 

Relationship Number of pairs Percentage 
Programs with 
Similar Mutants 

19 9.05%

Programs with 
Exact Mutants 

7 3.33%

Table 13  Summary of Program Relationship 

Pair 7 – Versions 31 and 32 
Version 31 contained an error in checking when checkout 
the sensors with excessive noise. Version 32 committed 
the same error in marking sensor status.  These exact 
faults, however, were detected in different testing stages 

Version 4 Version 8 
Module Display Processor Display Processor 
Stage Initcode Initcode
Defect Type Assign/Init Assign/Init 
Severity C C
Qualifier Missing Missing

Table 14 (a)  Exact Pair 1: Versions 4 and 8 

Version 12 Version 31 
Module Calibrate Calibrate 
Stage Initcode Initcode
Defect Type Algorithm/Method Algorithm/Method 
Severity B B
Qualifier Incorrect Incorrect

Table 14 (b)  Exact Fault Pair 2: Versions 12 and 31 

Version 15 Version 33 
Module Calibrate Calibrate 
Stage Initcode Initcode
Defect Type Algorithm/Method Algorithm/Method 
Severity B B
Qualifier Missing Missing

Table 14 (c)  Exact Fault Pair 3: Versions 15 and 33 

Version 4 Version 15 Version 17 
Module Estimate 

Vehicle State 
Estimate 
Vehicle State 

Estimate 
Vehicle State 

Stage Initcode Initcode Initcode
Defect 
Type 

Assign/Init Assign/Init Algorithm/Met
hod

Severity B B B
Qualifier Incorrect Incorrect Incorrect

Table 14 (d)  Exact Fault Pairs 4, 5, and 6: 
Versions 4, 15 and 17 

Version 31 Version 32 
Module Calibrate Calibrate 
Stage Unit Test Acceptance Test 
Defect Type Checking Checking
Severity B B
Qualifier Incorrect Incorrect

Table 14  (e) Exact Fault Pair 7: Versions 31 and 32 

We note that the amount of exact faults among program 
versions is very limited.  This implies that design 
diversity involving multiple program versions can be an 
effective mechanism for software reliability engineering.  
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4.6 Major Findings in Dynamic Analysis

The major findings in the evaluation test are regarding the
effectiveness of test coverage criteria and software design
diversity.  The coverage experiments show in average
61.5% faults can be detected with an increase of coverage.
Therefore, looking for coverage increase is an effective
means to detecting more faults. However, coverage
measure itself does not guarantee such an indicator.  High
coverage of a test case does not necessarily lead to more
fault detection.

The number of programs with exact mutants is very small,
indicating the potential benefit of software fault tolerance.
On the other hand, the number of related mutants is not
negligible.  Thus effective error detection and recovery
schemes play a crucial role in distinguishing faults failing 
on the same data but with different results.

5. Software Testing using Domain Analysis 

Zhao [31] proposed a new approach to generate test cases
based on domain analysis of specifications and programs.
In her technique, the differences of the functional domain
and the operational domain are examined by analyzing
the set of boundary conditions. Test cases are then
designed by verifying the overlaps of operational domain
and functional domain to locate the faults resulting from
the discrepancies between these two domains.

Based on the new domain analysis approach we 
developed 90 new test cases, which are listed in Table 15.
The major design principle of these test cases is to allow 
for exercising different legitimate boundaries of the
operational domain not clearly identified in the
specifications.

Case ID Description
1-6 Modify linStd to short int boundary
7-16 Set LinFailIn array to short int 

boundary
17-25, 27-
41, 42-65

Set RawLin to boundary

26,66,
67-73,
86

Modify offRaw array to boundary

74-79 Set DisplayMode in [ –1..100]
boundaries

80-85 Set nsigTolerance to various values
87-90 Set base=0, 99.999999, 999999,

1.000000, respectively
Note: Italic names in the table represent input variables

Table 15  Test Cases Generated by Domain Analysis

We executed these 90 test cases on the mutants we 
created.  All 426 mutants can be killed by this test set. 
The diagram for individual test case contribution is 
depicted in Figure 6.

Figure 6 Contribution of Test Cases Generated by
Domain Analysis

The average number of fault detected by each new test
case, illustrated in Figure 6, is 183, ranging from 139 to 
223.  After redundant test cases are eliminated, a non-
redundant set of 42 test cases is obtained, as shown in  the
black lines in Figure 7.

Figure 7  Non-redundant Test Set for Test Cases
Generated by the Domain Analysis.

The newly designed test cases based on domain analysis
display a completely different nature from that of the
original test cases.  In comparison with the non-redundant
set of 698 test cases obtained from the original test set, 
this non-redundant set of only 42 test cases generated by
the domain analysis approach is surprisingly effective.
Both test sets kill all the 426 mutants, but the new set
requires much less test cases. It is noted, however, that
although both data sets (including 698 and 42 test cases,
respectively) are non-redundant, they are not necessarily
minimal test sets in killing all the 426 mutants
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Furthermore, within the original 1200 test cases, each 
case in average can kill 248 mutants.  For the newly 
generated 90 test cases, on the other hand, each test case 
can only kill an average of 183 mutants.  When collected 
together in a test set, however, the new test cases can kill 
the same number of mutants more effectively. This 
implies that the capability of individual test case in killing 
mutants does not represent its capability in forming a 
minimal test set for an overall mutant coverage.  A more 
critical factor is whether different test cases can explore 
different features of the program versions, thus killing 
different types of mutants. 

Domain analysis helps generate test cases satisfying this 
critical factor. From our result, test cases generated based 
on boundary conditions via domain analysis are more 
effective in covering different aspects of the code in 
dealing with various border line cases within the 
operational domain. As this avoids producing test cases 
with similar capacities, the total number of test cases 
needed to detect the entire known fault set would tend to 
be smaller. 

6. Conclusions

In this research effort we performed an empirical 
investigation on evaluating fault removal and fault 
tolerance issues as software reliability engineering 
techniques. We conducted a major experiment engaging 
multiple programming teams to develop a critical 
application whose specifications and test cases were 
obtained from the avionics industry.  We applied mutation 
testing techniques with actual faults committed by 
programmers, and studied various aspects of the faults, 
including their nature, their manifestation process, their 
detectability, and their correlation.  The evaluation results 
provided very positive support to current fault removal 
and fault tolerance techniques, with quantitative 
evidences.   

Regarding the fault removal techniques, our experiment 
indicated that faults could be detected and removed with 
increase of testing coverage. We also observed some 
caveats about testing and fault tolerance: coverage 
measures and mutation scores cannot be evaluated in 
isolation, and an effective mechanism to distinguish 
related faults is critical.  

We also conceived that a good test case should be 
characterized not only by its ability to detect more faults, 
but also by its ability to detect faults which are not 
detected by other test cases in the same test set.  Our 
empirical data provided numerical supports to confirm 
this intuition.  In our experiment, domain analysis was 
shown to be an effective approach to generating test cases. 

The newly generated test cases by this approach further 
revealed additional evidences that the individual fault 
detection capability of each test case in a test set does not 
represent the overall capability of the test set to cover 
more faults.  Diversity natures of the test cases are more 
important. 

Furthermore, our results implied that design diversity 
involving multiple program versions can be an effective 
solution for software reliability engineering, since the 
portion of program versions with exact faults is very 
small.  The quantitative tradeoff between these two 
approaches, however, remains a research issue.  Currently 
we can only generally perceive that software fault 
removal and software fault tolerance are complementary 
rather than competitive.  As our future work, we will 
apply software reliability models on the program versions 
with similar and exact mutants to investigate their 
reliability, fault detection, and fault tolerance features.  
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