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Abstract 

We describe a software testing and analysis tool, called 
ATAC (Automatic Test Analysis for C), which is 
developed as a research instrument at Bellcore to meas- 
ure the effectiveness of testing data. The design, func- 
tionality, and usage of ATAC are presented in this 
paper. Furthermore, to demonstrate the capability and 
appr'icability of ATAC, we obtain the 12 program ver- 
sions of a critical industrial application developed in a 
recent universityAndustry N-Version Software project, 
and use the ATAC tool to analyze and compare coverage 
of the testing conducted in the program versions. Prel- 
iminary results from this investigation show that ATAC 
coui'd be a powerful testing tool to provide testing 
metrics and quality control guidance for the certijication 
of high quality software components or systems. It can 
also assist software reliability researchers and practi- 
tioners in searching for the missing link between 
structure-based testing schemes and software reliability. 

1. Introduction 

This paper describes a software tool, ATAC 
(Automatic Test Analysis for C), which supports data 
flow coverage testing for C programs [Hor92]. Cover- 
age testing helps the tester create a thorough set of tests 
and gives a measure of test completeness. Each of the 
different coverage criteria proposed in the literature 
[How87,DeM87,Rap85] attempts to capture some 
important aspect of a program's behavior. Rapps and 
Weyuker [Rap851 define a family of data flow coverage 
criteria for an idealized programming language. Frank1 
and Weyuker [Fra87,Fra88] extend these definitions to a 
subset of PASCAL and describe a tool, ASSET, to 
check for test completeness based on the data flow cov- 
erage criteria. We have adapted these data flow cover- 
age definitions to define realistic data flow coverage 

measures for C programs. 
The concepts of coverage testing are well- 

described in the literature, but there are few tools that 
actually implement these concepts for standard program- 
ming languages [DeM88,Fra88]. Even less evidence 
could be found of the application of these concepts to 
realistic projects in obtaining meaningful results. ATAC 
is a data flow testing tool, which, to our best knowledge, 
incorporates the most complete set of coverage meas- 
ures for any standard language. To investigate ATAC in 
a realjstic project, we apply the tool to the 12 program 
versions developed by a recent universityhndustry joint 
project [Lyu93]. This project started as an N-Version 
Programming investigation on a critical automatic flight 
control application. We consider, however, the multiple 
program versions obtained from the project as an abun- 
dant resource for the study of testing coverage and qual- 
ity metrics. ATAC facilitates this study. Preliminary 
results have shown that, by using ATAC to analyze cov- 
erage of programs during testing, various program exe- 
cution aspects could be revealed easily. Not only is an 
indication of testing quality revealed, but the nature of 
program structure, or its testability (i.e., whether a pro- 
gram is easy to test or not), becomes visible through the 
resulting measures. As will be seen by the comparisons 
among the multiple program versions tested with the 
same set of data, the structure of different programs can 
have a major impact to the confidence of testing upon 
these programs. 

Section 2 presents ATAC in terms of its purpose, 
its implementation, and its uses. Section 3 describes an 
industrial project conducted recently to obtain 12 pro- 
gram versions for a critical flight software system. Sec- 
tion 4 discusses some experience and results obtained in 
applying ATAC to the final program versions obtained 
in the project. Some conclusions and future study plans 
are given in Section 5. 
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2. The ATAC Software Coverage Tool 

ATAC is a tool for evaluating test set complete- 
ness based on data flow coverage measures. ATAC 
allows the programmer to create new tests intended to 
improve coverage by examining code not covered. 

To use ATAC one prepares a program for testing 
with a preprocess-compile-link phase. This creates an 
instrumented object module and data flow tables used 
during run-time. Next, tests are run and trace and cover- 
age data are collected by ATAC’s run-time routine. 
Then the programmer executes an analysis phase which 
provides feedback on the tests that have been run. 
Finally, the programmer uses ATAC to browse the code 
not covered. This allows the programmer to understand 
the incompleteness of the tests and to design new tests 
that enhance coverage. 

The ATAC preprocessor analyses C source code 
and produces a file containing data flow information 
about the source program for use in the analysis phase. 
The preprocessor also creates a modified version of the 
source code instrumented with calls to the ATAC run- 
time routine. 

During testing, the ATAC run-time routine, 
invoked from the modified program, maintains a com- 
pact coverage trace for use in the analysis phase. In the 
analysis phase, the tester may request coverage values 
on the preceding test for any of the data flow coverage 
measures, and may display source code constructs not 
covered by the tests. Blocks not covered are displayed 
in a context of surrounding source code. Other con- 
structs are also displayed by highlighting the constructs 
not covered in the context of their surrounding code. 

Coverage analysis may be performed for each C 
function, for each test, or some combination of tests and 
C functions. Multiple source files may be tested 
together or one at a time. There are no explicit limits on 
the size of programs tested with ATAC. However, for 
very large programs, testing may be constrained by 
available memory and disk space, and test execution 
time. 

The program constructs measured by ATAC 
include blocks, decisions, c-uses, and p-uses. Block 
coverage counts the branch free executable code frag- 
ments that are exercised at least once. A block may be 
more than one C statement if there is no branching 
between statements. A statement may contain multiple 
blocks if there is branching inside the statement. An 
expression may also contain multiple blocks if there is 
branching implied in the expression (e.g. a conditional 
expression or logical-and or logical-or expression). If 
block coverage is less than loo%, there are statements 

that are not exercised by any test. 
Decision coverage counts the number of branches 

that have been followed at least once. If a decision is 
not covered during testing, an error in the decision 
predicate may not be revealed. Completely adequate 
decision coverage implies completely adequate block 
coverage except for functions with no branches. 

C-use, or computational variable use coverage 
count the number of combinations of an assignment to a 
variable and a use of a the variable in a computation that 
is not part of a conditional expression. Since functions 
and statements need not use or assign any variables, c- 
use coverage is not comparable to most of the other 
measures. 

P-use, or predicate variable use coverage count 
the number of combinations of an assignment to a vari- 
able, a use of the variable in a conditional expression, 
and all branches based on the value of the conditional 
expression. The idea behind c-use and p-use coverage is 
that when a variable may be assigned a value in more 
than one way, a good test set will insure that the uses of 
that variable are exercised for each possible assignment. 
Completely adequate p-use coverage implies completely 
adequate decision coverage except when there are predi- 
cates that do not contain any variables (e.g. “while 
(getchar0 !=  ‘\\n’);”). 

2.1 The Purposes of ATAC 

ATAC can achieve the following purposes in the 
software testing process: 

measuring test set or test session complete- 
ness, 
displaying non-covered code to aid in test 
creation, 
selecting effective randomly generated tests, 
and 
reducing regression test set size by eliminating 
redundant tests. 

The first purpose, measuring test completeness, 
gives an objective measure of how completely a pro- 
gram or routine has been tested. This measure is useful 
in evaluating the quality of the testing procedure being 
used, and in establishing a level of confidence in the 
quality of tested programs. A low coverage score indi- 
cates that the tests do not effectively exercise the pro- 
gram. A high coverage score establishes confidence that 
the program, in passing the tests, works correctly. 

The second purpose, displaying code not covered, 
is a programmer’s aid for unit testing. Since a 
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thoroughly-done unit testing job can vastly reduce the 
overall cost of testing a software system, a programmer 
can use the coverage displays to reveal particular code 
constructs that have not been covered by unit testing. 
By examining the code, the programmer can discover 
tests that will cause these, as yet not covered, constructs 
to be covered. After running these additional tests, the 
programmer can check which constructs are newly 
covered, and examine the remaining non-covered con- 
structs. 

The third purpose of ATAC is to select effective, 
randlomly generated tests. For many applications it is 
possible to automatically generate tests (e.g. 
[Mau90,Inc87,0ff88]). However, there must be a 
mechanism for determining an effective, small subset of 
the 'large number of automatically generated tests, if the 
generation process is to be most fully useful. ATAC 
coverage measures, or any coverage measures, provide a 
basis for such a mechanism. While the number and 
complexity of data flow objects associated with a pro- 
gram may pose a problem to the programmer trying to 
devise tests for the program, we see no similar problem 
in our use of automatic test selection oracles. 

The tests run over the life of a program are often 
collected together to form a regression test set. The 
regriession test set is re-run each time the program is 
modified to verify that the modifications have not 
advmely affected the behavior of the program. At 
some point a regression test set may grow large enough 
that it is not practical to run the whole set of tests after 
small program modifications. Hence, the fourth purpose 
of coverage testing uses the coverage measure to select a 
subset of the regression tests which together achieve a 
high1 level of coverage. This technique may identify 
tests, that add no coverage at all to the regression tests, 
and are therefore candidates for deletion. 

2.2 The Design and Implementation of ATAC 

ATAC is currently implemented as 5 C programs 
consisting of about 36K lines of source code, several 
shell scripts, and a run-time routine. ATAC is in its 
third incarnation. The first prototype analyzed C prop- 
erly but only did block coverage. The second version 
was rather complete but consisted of over 50,000 lines 
of poorly engineered code. The present version is well- 
engineered and designed to accommodate changes and 
extensions. ATAC is running in a variety of UNIX 
environments (Sun 3, Sun SPARC, Dec 3100, Vax 8650, 
Pyramid, and others) in several Bellcore divisions and at 
Purclue University. It is reasonably easy to port and 
install. ATAC has been run successfully on programs 
up to 100,000 lines. Disk space utilization is, in our 

experience, less than (3 + n)  times the space needed for 
a "debug" (-8) version of the test program, where n is 
the number of test runs. Execution time may increase 
significantly, in one case by a factor of 36, but usually 
less than a factor of 2 and commonly 20-30%. ATAC 
has never exceeded available memory on an 8 megabyte 
system.) 

0 ATA.C Preprocessor 

The ATAC preprocessor is the heart of ATAC. 
The preprocessor parses and analyses C source code and 
outputs an instrumented version of the source code and a 
file containing static data flow information. The C 
parser used in ATAC was originally part of a language- 
based editor for C [Hor84]. A parser generated by the 
YACC parser generator tool [Joh75] creates an abstract 
syntax tree in memory for each C function. A data flow 
graph is created for this syntax tree using well known 
techniques. A table of DEFKJSE information is gen- 
erated from the data flow graph to be included with the 
instrumented source code. In order to instrument the 
source: code, a mark is placed in the syntax tree for each 
node in the flow graph. The syntax tree is then de- 
parsed to create the instrumented source code. Marks in 
the syntax tree are translated to calls to the ATAC run- 
time routine. Each call to the ATAC run-time routine 
contains a block number and a pointer to the current 
context. The context contains pointers to the DEWUSE 
tables, information about constructs already covered and 
dynamic function call level. 

To create the static data flow information file, the 
data flow graph is searched for data flow coverage con- 
structs that might be covered during testing. These con- 
structs are saved in a file with their original source code 
positions. 

Source Code Positions 

In order to display non-covered constructs in the 
source. code, it is necessary to store original source code 
positions in the static data flow information file. This is 
complicated by the presence of C preprocessor macros 
and include files which are expanded before the ATAC 
preprocessor reads the code. The standard C preproces- 
sor inserts line directives in the preprocessed code to 
reveal the original source file name and line number of 
included code. However, this does not help with macros 
which expand within a given line. To handle this prob- 
lem we have modified a C preprocessor to insert an 
escape sequence into the code indicating which text is 
part of a macro expansion and the size of the original 
text. The ATAC preprocessor decodes these escape 
sequences and the line directives to get original source 
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code positions which are saved in the static data flow 
information file. 

0 ATAC Run-time Routine 

The ATAC run-time routine recognizes data flow 
constructs during execution of a test and notes the first 
occurrence of each construct in the trace file. The 
mechanism for this is simple. For deftuse constructs it 
proceeds as follows. Tables generated during source 
code instrumentation indicate which variables are 
defined and used in a given block. The run-time routine 
keeps track of each variable that has been defined and 
the block at which it was defined. When a block that 
uses a defined variable is encountered the definition and 
use are recorded in the trace file. Multiple occurrences 
of the same definitioduse pair are not recorded. 
Because a single procedure may be invoked recursively, 
the run-time routine maintains a separate list of defined 
variables for every active procedure being tested. When 
the final block of a procedure is executed, the list of 
defined variables for that procedure is freed. The 
methods for recording the other constructs (decisions, 
c-uses, p-uses) are similar. 

0 ATAC Analysis 

The ATAC analysis program reads the static data 
flow information for each source file being tested and 
reads the trace file from the execution of the tests. Con- 
structs in the trace file are matched with constructs in the 
data flow information file to determine, for each func- 
tion, the total nilmber of constructs in the function and 
the number of constructs executed by the tests. The 
analysis results could be either broken down by test 
files, or broken down by program modules. 

2.3 The Uses of ATAC 

ATAC is a coverage testing tool and does not 
directly aid in functional testing. Therefore, the first 
step in testing a program is for the tester to create tests 
which are intended to ascertain that the program meets 
the functional characteristics of the specifications. 
ATAC can then be used to measure the coverage of 
those functional tests. For example, for the 5,000 line 
Spiff program [Nac88], the functional tests presented the 
following coverage profile: 

covered by the tests which were deemed adequate to 
gauge that the program implemented the functions 
required in the specifications. If the tester is satisfied 
with this coverage ATAC is of no further use. If the tes- 
ter chooses to improve the coverage ATAC can aid in 
the selection of new tests. 

The tester who wishes to improve coverage by 
hand-crafting tests may request that ATAC display the 
code while highlighting non-covered objects. For 
instance, blocks not covered are displayed in situ (as in 
Figure 1). 

> s0rt.c: merge 6 blocks not covered <---------- - - - - - - - -_ 

while fi > 0) { . .  
cp = ibufli-11 -> I; 

This means that 62% of the blocks, 54% of the deci- 
sions, 46% of the c-uses, and 42% of p-uses were 

putt (*CP. os; i 
while (*cp++ != \n'); 

% blocks % decisions % c-uses % p-uses 
62(1009/1622) 54(471/869) 46(1023/2242) 42(691/1664) 

Figure 1: ATAC Highlighting of Non-covered Blocks 

The tester can use this display to attempt to under- 
stand why none of the tests touched the highlighted 
blocks. One can proceed through the code, analyzing 
the blocks not covered and constructing tests which are 
designed to increase coverage. This is, of course, an 
interactive process. Tests are created and run, the cov- 
erage is checked, and the blocks not covered are re- 
displayed until one is satisfied with the coverage or con- 
vinced that no tests can be added that will cover the 
remaining blocks. The value of this approach, particu- 
larly in unit testing, is that hand-crafted tests can be 
created by the programmer which are aimed precisely at 
constructs not covered. This can lead to a very high- 
quality test set. 

3. The U. of Iowa / Rockwell Joint Project 

The N-Version Programming (NVP) approach 
achieves fault-tolerant software systems, called N- 
Version SofhYare ( N V S )  systems, through the develop- 
ment and use of design diversity [Avi85]. This 
approach involves the independent generation of N 2 2 
functionally equivalent programs from the same initial 
specification. The NVP approach was motivated by the 
"fundamental conjecture that the independence of pro- 
gramming efforts will greatly reduce the probability of 
identical software faults occurring in two or more ver- 
sions of the program." 

28 

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 15:17:25 UTC from IEEE Xplore.  Restrictions apply. 



In Fall 1991, a real-world automatic (i.e., compu- 
terized) airplane landing system, or so-called autopilot, 
was developed and programmed by 15 programming 
teams at the University of Iowa and the 
RockwelYCollins Avionics Division [Lyu93]. A total of 
40 students (33 from ECE and CS departments at the 
University of Iowa, 7 from the Rockwell International) 
participated in this project to independently design, 
code, and test the computerized airplane landing system 
for the major requirement of a graduate-level software 
engineering course. 

3.1 The Application Problem 

The application used in this NVP project is part of 
a specification used by some aerospace companies for 
the automatic (computer-controlled) landing of commer- 
cial airliners. The specification can be used to develop 
the software of a flight control computer (FCC) for a 
real aircraft, given that it is adjusted to the performance 
parameters of a specific aircraft. All algorithms and 
control laws are specified by diagrams which have been 
certified by the Federal Aviation Administration (FAA). 
The pitch control part of the auto-landing problem, i.e., 
the control of the vertical motion of the aircraft, was 
selected for the project. 

Simulated flights begin with the initialization of 
the system in the Altitude Hold mode, at a point approx- 
imately ten miles from the airport. Initial altitude is 
about 1500 feet, initial speed 120 knots (200 feet per 
second). The Complementary Filters preprocess the raw 
data from the aircraft's sensors. Pitch mode entry and 
exit is determined by the Mode Logic equations, which 
use the filtered airplane sensor data to switch the con- 
trolling equations at the correct point in the trajectory. 

Pitch modes entered by the autopilotlairplane 
combination, during the landing process, are: Altitude 
Hold, Glide Slope Capture, Glide Slope Track, Flare, 
and Touchdown. The Control Law for each of them 
consists of two parts, the Outer Loop and the Inner 
Loop. The Altitude Hold Control Law is responsible for 
maintaining the reference altitude. As soon as the edge 
of ai glide slope beam is reached, the airplane enters the 
Glide Slope Capture and Track mode and begins a pitch- 
ing motion to acquire and hold the beam center. Con- 
trolled by the Glide Slope Capture and Track Control 
Law, the airplane maintains a constant speed along the 
glide slope beam. Flare logic equations determine the 
precise altitude (about 50 feet) at which the Flare mode 
is entered. In response to the Flare control law, the 
vehicle is forced along a path which targets a vertical 
speed of two feet per second at touchdown. 

Besides computing the flight control command 
according to the above sequence, each program checks 
its final result (the pitch control command) against the 
results of other programs. Any disagreement is indi- 
cated by the Command Monitor output, so that a super- 
visory program can take appropriate action. 

3.2 The Software Development Process 

The development of this software project was 
scheduled and conducted in six phases: 

(1) Initial design phase (4 weeks): 
The purpose of this phase was to allow the programmers 
to get familiar with the specified problem, so as to 
design a solution to the problem. At the end of this 
four-week phase, each team delivered a preliminary 
design document, which followed specific guidelines 
and formats for documentation. 

(2) Detailed design phase (2 weeks): 
The purpose of this phase was to let each team obtain 
some feedbacks from the coordinator to adjust, consoli- 
date, and complete their final design. Each team was 
also requested to conduct one or several design walk- 
throughs. At the end of this two-week phase, each team 
delivered a detailed design document and a design walk- 
through report. 

(3) Coding phase (3 weeks): 
By the end of this 3-week phase, programmers had 
finished coding, conducted a code walkthrough, and 
delivered the initial code which was compilable. Each 
team was required to use the RCS revision control tool 
for the configuration management of their program 
modules. 

(4) Unit testing phase (1  week): 
Each team was supplied with sample test data sets for 
each module to check the basic functionality of that 
module. They were also required to build their own test 
harness for this testing purpose. A total of 133 data files 
was provided to the programmers. 

(5) Integration testing phase (2  weeks): 
Four sets of partial flight simulation test data, together 
with an automatic testing routine, were provided to each 
programming team for integration testing. This testing 
phase was intended to guarantee that the software was 
suitable for a flight simulation environment in an 
integrated system. 

(6) Acceptance testing phase (2  weeks): 
Programmers formally submitted their programs for a 
two-step acceptance test. In the first step (ATl), each 
program was run in a test harness of four nominal flight 
simulation profiles. For the second step (AT2), one 
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extra simulation profile, representing an extremely 
difficult flight situation, was imposed. In total there 
were 23930 executions imposed on these programs 
before they were accepted and subjected to the final 
evaluation in the following stage. By the end of this two 
week phase, 12 of the 15 programs passed the accep- 
tance test and were subject to further evaluations. 

3.3 Program Metrics and Statistics 

Table 1 gives several comparisons of the 12 
accepted versions (identified by a Greek letter) with 
respect to some common software metrics. The objec- 
tive of software metrics is to evaluate the quality of the 
product in a quality assurance environment. For this 
project, however, it is interesting to compare these pro- 
gram versions and observe their differences. 

The following (static) metrics are considered in 
Table 1 : (1) the number of lines of code, including com- 
ments and blank lines (LINES); (2) the number of lines 
excluding comments and blank lines (LN-CM); (3) the 
number of executable statements, such as assignment, 
control, UO, or arithmetic statements (STMTS); (4) the 
number of programming modules (subroutines, func- 
tions, procedures, etc.) used (MODS); (5) the mean 
number of statements per module (STM/M); (6 )  the 
number of calls to programming modules (CALLS); (7) 
the number of global variables (GBVAR); and (8) the 
number of local variables (LCVAR). The last column, 
range, is the ratio of the highest value to the lowest 
value for each metric. 

A total of 96 faults was found and reported during 
the whole life cycle of the project. Classification of 
faults according to fault types is shown in Table 2. This 
category considers the following type of faults 
[Lyu92a]: (1) typographical (a cosmetic mistake made 
in typing the program); (2) error of omission (a piece of 
required code was missing); (3) incorrect algorithm (a 
deficient implementation of an algorithm); (4) 
specification misinterpretation (a misinterpretation of the 
specification); and (5) specification ambiguity (an 
unclear or inadequate specification which led to a 
deficient implementation). In this category, items (1) 
through (3) are implementation-related faults, while 
items (4) and (5) are specification-related faults. It is 
also noted that "incorrect algorithm" of item (3) is the 
most frequent fault type, which includes miscomputa- 
tion, logic fault, initialization fault, and boundary fault. 

Table 3 shows the test phases during which the 
faults were detected, and the fault density (as per 
thousand lines of uncommented code, abbreviated as 
F.D.) of the original version and the accepted version. 
"F.D. after AT1" represents the fault density of the pro- 

gram versions after passing the Acceptance Test Step 1. 

It is interesting to note that there was only two 
incidences of identical faults committed by two pro- 
grams during the whole life cycle. The first fault, com- 
mitted by 8 version and p version, was due to an 
incorrect initialization of a variable. Unit test data 
detected this fault very early when both programs were 
initially tested. The second fault, committed by y and 3L 
version, was an incorrect condition for a switch variable 
(a Boolean variable) for a late flight mode. This fault 
did not manifested itself until the Acceptance Test Step 
1 where a complete flight simulation was first exercised. 

Later in the operational testing phase, 1000 flight 
simulations, or over five million program executions, 
were conducted. Only one fault (in the p version) was 
found. This indicates that the program quality obtained 
from this project is very high. For the 12 accepted pro- 
grams, the average F.D. was 0.05 faults per KLOC 
(thousand lines of code). This number is close to the 
best current industrial software engineering practice. 
Detailed report on the U. of Iowa / Rockwell Project 
could be found in [Lyu93]. 

4. Program Analysis by ATAC 

Upon the completion of the U. of Iowa / Rockwell 
Project, its product, namely, the 12 accepted and fully 
operated program versions, is available for various 
investigations. Our particular interest here is the investi- 
gation of testing coverage metrics as a quality control 
mechanism to evaluate and analyze these programs. 
The ATAC tool facilitates the generation of some 
interesting results, which are summarized in the follow- 
ing tables. 

Table 4 shows some more static program metrics 
of the 12 programs which were missing in Table 1. 
These new metrics, including blocks, decisions, c-uses, 
p-uses, are program constructs related to the quality of 
testing. ATAC can automatically measure these pro- 
gram constructs which reveal the testing-related pro- 
gram complexity. The highest value to the lowest value 
for each metric is given in the last column (range). It is 
interesting to note that all the metrics in Table 4 have a 
tighter range than all those metrics in Table 1. We also 
note that there are no strong correlations among these 
four program constructs. For example, the p version has 
an average value of blocks and p-uses, the smallest 
number of decisions, but a very high value of c-uses. 

Tables 5-7 analyze the quality of different tests 
conducted on the 12 program versions. Table 5 shows 
the testing coverage of these programs upon a simple 
test case which includes only one program execution. 
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53 11 6 15 6 47 17 17 21 24 17 11 8.83 
179 64 101 439 201 406 38 80 36 35 67 78 12.5 
84 123 16 23 37 76 31 626 100 106 30 66 39.1 

GBVAR 0 55 101 180 86 406 7 0 354 423 421 26 

Table 1: Software Metrics for the 12 Accepted Programs 

t LCVAR .. 1326 179 86 309 553 

Table 2: Fault Classification by Fault Types 

532 376 402 294 258 328 329 15.4 

Test Phase s Y E 5 rl 8 K h  P V 5 
CodingKlnitTest 2 2 3 1 3 3 5 3 2 1  2 
Integration Test 4 3 4 4 1 0 3 2 2 2  3 1 29 
AcceptanceTest 1 1 2 3 4 1 2 1 2 3 2  5 3 29 
AcceDtanceTest 2 1 0 0 0 2 2 0 1 2 0  0 0  8 

o Total 
2 29 

Table 3: Fault Classification by Phases and Other Attributes 

This test case thus serves as a baseline to observe the 
testing quality improvement when more test cases are 
executed. For Table 5 we notice that a simple, common 
test 'case has a variety of effects on different program 
constructs of different program versions. It shows a 
fairly large range of coverage percentages of blocks 
(44% - 71%), decisions (27% - 43%), c-uses (44% - 
69%), and p-uses (22% - 38%). Moreover, the coverage 
of blocks and c-uses could be better achieved comparing 
with that of decisions and p-uses. 

Tables 6 and 7 give the testing coverage measures 
by the Integration Test data and the Acceptance Test 
data, respectively. The Integration Test data contains 
four test data files for a total of 960 program executions. 
The Acceptance Test data, a super set of the Integration 
Test data, also contains four test data files (each 
represent a complete flight simulation) for a total of 
about 21000 program executions. Both test data include 
the test data used in Table 5. 
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Metrics 
blocks 

P Y r 7 P 5 E e~ 3, V o range 
511 711 531 554 679 537 367 1132 542 473 457 483 3.08 

Table 4: Testing-related Program Metrics Measured By ATAC 

decisions 
c-uses 
p-uses 

216 250 320 297 520 284 286 357 264 237 231 262 2.41 
935 755 395 696 1027 636 710 965 727 537 803 665 2.60 
413 340 349 520 611 463 459 419 355 310 279 392 2.19 

Table 5: Single Execution Testing Coverage Measured By ATAC 

Metrics E e ~ h  V o 
blocks 332 417 329 389 302 341 205 675 370 321 325 277 

% 65 59 62 70 44 64 56 60 68 68 71 57 
decisions 77 92 119 127 138 80 95 103 110 97 97 84 

% 36 37 37 43 27 28 33 29 42 41 42 32 
c-uses 557 431 220 347 460 364 310 670 405 295 446 368 

% 60 57 56 50 45 57 44 69 56 55 56 55 
p-uses 124 117 134 168 159 101 105 153 149 111 105 114 

30 34 38 32 26 22 23 37 42 36 38 29 % 

P Y cl 7 c1 5 

~ ~~ ~ 

average range 
356.9 3.29 
62.0 1.61 
101.6 1.79 
35.6 1.59 

406.1 3.05 
55.0 1.57 
128.3 1.66 
32.3 1.91 

Table 6: Integration Testing Coverage Measured By ATAC 

Metrics P Y E r T e K h  P V 5 o 
blocks 433 506 408 462 503 464 290 859 434 417 394 385 

% 85 71 77 83 74 86 79 76 80 88 86 80 
decisions 153 183 200 198 313 205 197 220 167 185 167 172 

% 71 73 63 67 60 72 69 62 63 78 72 66 
c-uses 778 573 315 468 716 515 508 811 538 435 625 544 

% 83 76 80 67 70 81 72 84 74 81 78 82 
p-uses 274 205 221 244 353 271 223 254 210 212 179 239 

% 66 60 63 47 58 59 49 61 59 68 64 61 

average range 
462.9 2.96 
80.4 1.24 
196.7 2.05 
68.0 1.3 

568.8 2.57 
77.3 1.25 

240.4 1.97 
59.6 1.45 

Table 7: Acceptance Testing Coverage Measured By ATAC 

Metrics 
blocks 

% 
decisions 

% 

c-uses 
% 

p-uses 
% 

32 

P Y E cl 7 0 K h P V 5 o average range 
488 553 469 529 598 524 335 1033 487 461 443 453 531.1 3.08 
95 78 88 95 88 98 91 91 90 97 97 94 91.8 1.24 
191 217 249 245 399 255 234 280 208 218 206 223 243.8 2.09 
88 87 78 82 77 90 82 78 79 92 89 85 83.9 1.19 
893 676 378 585 898 603 618 928 624 513 744 625 673.8 2.46 
96 90 96 84 87 95 87 96 86 96 93 94 91.7 1.14 
345 245 271 300 454 334 263 297 256 262 223 311 296.8 2.04 
84 72 78 58 74 72 57 71 72 85 80 79 73.5 1.49 
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From Tables 6 and 7 we clearly see that the pro- 
gram have been tested with fairly high quality. In par- 
ticular, the Acceptance Test achieves coverages as high 
as 98% of blocks, 92% of decisions, 96% of c-uses, and 
85%) of p-uses in some programs. Notice that even 
though some programs have consistent scores in these 
measures (e.g., v version has very high values in all the 
measures; 5 version has both the lowest % c-uses and % 
p-uses), some programs do not (e.g., 0 version has 
highest % blocks, very high % decisions and % c-uses, 
but relatively low % p-uses). 

It is also noted from Tables 5 through 7 that as 
numlber of program execution increases, the quality of 
test increases, and the range of coverage percentages 
reduces. Nevertheless, considering that these coverage 
results are obtained from the program versions of the 
sam,e application tested through the same data, the 
differences in these measures are still considered 
significant (e.g., the 0 version obtained 98% of block 
coverage while the y version only obtained 78%). On 
the other hand, we also noticed that there was a dimin- 
ishirig return on the coverage after the acceptance test, 
and the operational test data (five million program exe- 
cutions) did not increase this coverage significantly. 
This means that the 22% uncovered code in the y ver- 
sion was probably not even executed during the opera- 
tional phase. 

One may suspect that there could be a correlation 
between the number of faults detected in a version and 
the coverage of the program constructs of the version, 
since it is hypothesized that the better a program is 
covered during testing, the more faults will be detected. 
However, we did not see strong correlations between the 
total faults detected in the program versions (Table 3) 
and their coverage measures during various testing con- 
ditions (Tables 5, 6 and 7). This may be due to the fact 
that each version has a different fault distribution to 
begin with, and therefore, the coverage measures would 
not be a good predictor for the absolute number of faults 
in the program. Besides, the number of faults detected 
in each version is not very large, which may reduce the 
statistical significance in the analysis. 

Finally, in using ATAC's capability in highlight- 
ing non-covered code in the program, we can reveal the 
programming style and the testability of a program 
easily by examining the coverage of program constructs 
in detail. In the y version, for example, we noticed that 
the am untested error handling function accounts for 10% 
of the total blocks while the same function accounts for 
only 1-2% of block coverage in most other versions. It 
was observed that y version used a large amount of func- 
tion calls to pass each parameter in the calling routine of 

the error handling function, and each of the function call 
was counted as an uncovered block. This clearly indi- 
cates the need for an extra test case to test this function, 
which can increase the block coverage of the y version 
significantly. 

5. Conclusions and Future Directions 

In using ATAC to derive high quality test data, it 
is implicitly assumed that a good test has a high data 
flow coverage score. This hypothesis requires that we 
show that good data flow testing implies good software, 
namely, software with higher reliability. One would 
hope, for example, that code tested to 85% c-uses cover- 
age would exhibit a lower field failure rate than similar 
code tested to 20% c-uses coverage. The establishment 
of a correlation between good data flow testing and a 
low rate of field faults (or that there is none) is the ulti- 
mate and critical test of the usefulness of data flow cov- 
erage testing. In fact, we demonstrated by ATAC that 
the 12 program versions obtained from the U. of Iowa / 
Rockwell N V S  project, a project that has been subjected 
to a stringent design, implementation, and testing pro- 
cedure, achieved very high testing coverage scores of 
blocks, decisions, c-uses and p-uses. Results from the 
field testing (in which only one fault was found) 
confirmed this confidence. 

ATAC is currently being used by several major 
projects at Bellcore for software testing. It is also 
recommended as a tool to facilitate the design and 
evaluation of test cases during software development. 
The ultimate question that we hope ATAC can help us 
to answer is a typical question to all software reliability 
engineers: "When is a program considered acceptable?" 
This question presents a tremendous challenge to every 
researcher in the software engineering field. Software 
reliability modeling people have proposed several 
models to answer this question [Mus87, Da183, 
Lyu92bI. However, none of these models address the 
issues of program constructs, data flow testing, and test- 
ing coverages, which are deemed important to testing 
people. We intend to investigate the relationship 
between the quality of data flow testing and the subse- 
quent detection of field faults, and hopefully, a unified 
technique combining testing methodology and reliability 
theory could emerge to address the program acceptance 
problem. We believe that ATAC can facilitate software 
reliability researchers and practitioners to establish the 
relationship in between structure-based testing schemes 
and software reliability measurement techniques. 
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