
ARMOR: Analyzer for Reducing Module Operational Risk

Michael R. Lyu
Jinsong S. Yu

Elaine Keramidas
Siddhurtha R. Dalal

Bell Communications Research
Morristown, New Jersey 07960

Abstract or modules. To model software risk the quality indica-

ARMOR (Analyzer for Reducing Module Operational
Risk) is a software risk analysis tool which automati-
cally identi$es the operational risb of software program
modules. ARMOR rakes data directly from project data-
base, failure database, and program development data-
base, establishes risk models according to several risk
analysis schemes, determines the r i s h of software pro-
grams, and display various statistical quantities for pro-
ject management and engineering decisions. Its
enhanced user interface greatly simplijies the risk
modeling procedures and the usage reaming time. The
tool can perform the following tasks during project
development, testing, and operation: (1) to establish
promising risk models for the project under evaluation
(2) to measure the risks of software programs within the
project, (3) to identi& the source of risks and indicates
how to improve software programs to reduce their risk
levels, and (4) to determine the validity of risk models
from field data.

1: Introduction

Risks and problems are strongly related. The rela-
tionship between risks and problems is similar to the
relationship between faults and failures. A risk is a
potential problem and a problem is a risk that has mani-
fested. As the system gets more complex, the software
failure behavior becomes more intricate, and the critical-
ity of software component and its internal modules
raises. In order to reduce the risk of software opera-
tions, the software modules which have the potentials to
cause system problems have to be identified early[11.

Software risk is expressed by the potential number
of failures that may be caused by a module, as well as
the severity and intensity of these failures. Before
software failures happen, there is a need to model and
predict the level of risks contained in software systems

0731-3071195 $4.00 Q 1995 IEEE

tors of software modules, usually in the form of metrics,
are required. The key elements in software risk
analysis, therefore, are the implementation of software
metrics, the application of software measurement, and
the validation of the measurement results to establish
pertinent metrics [2], [3]. The validated software
metrics could be applied to form various models for the
early detection of software risk and risky modules.
Based on these approaches, much research work has
been performed in identifying error-prone software and
managing risk early in software development [4], [5].

To date there is a lack of validated software risk
models and systematic approaches to identifying and
reducing the operational risk of software modules. As a
result, it is urgent to acquire appropriate software tools
which can automate the procedure for the collection of
software metrics, the selection of risk models, and the
validation of established models. For this purpose, we
are prototyping a software risk analysis tool, called
Analyzer for Reducing Module Operational Risk
(ARMOR), for an automatic and systematic approach to
software risk management.

2: Objective and Overview of ARMOR

Many commercial tools are currently available for
the measurement of software metrics and establishment
of quality index of software programs. However, few
tool can both perform sophisticated risk modeling and
validate risk models against software failure data by
various statistical techniques. ARMOR is designed to
provide the missing link.

The objectives of ARMOR are summarized as fol-
lows:

(1) To access and compute software data deemed per-
tinent to software characteristics. ARMOR accesses

137

x

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 14:49:10 UTC from IEEE Xplore. Restrictions apply.

three major databases: project source code directory
(for product-related metrics), program development
history (for process-related metrics), and the
Modification Request (MR) database (a failure
report system at Bellcore).

(2) To compute product metrics automatically whenever
possible. By measuring the project source files,
ARMOR directly computes software code metrics
related to the software product.

(3) To evaluate software metrics systematically. A prel-
iminary analysis of the effectiveness of the com-
puted and collected metrics is obtained by studying
the correlation of these metrics to the software
failure data in the MR database. This study provides
information about the candidate metrics for the
establishment of risk models.

(4) To perj4orm risk modeling in a user-jriendly and
user-jlexible fashion. Metrics are selected with
appropriate weighting to establish risk models,
which can compute quantitative risk measures (i.e.9
risk scores) of each software module. Several
modeling schemes are provided in ARMOR. Risk
models could be defined, removed, and executed
easily at the user's discretion.

(5) To display risks of software modules. Once com-
puted, risk scores computed the risk models could be
used to highlight each software module by different
colors. Risk distribution can be demonstrated in
various forms.

(6) To validate risk models against actual failure data
and compare model per jomnce . Using several
validation criteria, the risk models are compared
with actual failure data to determine their predictive
accuracy. Model validation results are provided in a
summary table. Validated models could be saved
for a later reusage.

(7) To identify risky modules and to indicate ways for
reducing sofrware risks. Once a valid model is esta-
blished, the risk score computed for each module
can be compared with the risk score contributed by
the individual metric components. This process is
iterated to identify the dominanting metrics which
need to be addressed for the reduction of module
operational risk.

ARMOR is designed as a software risk modeling
and analysis tool that addresses the ease-of-use issue as
well as other issues. ARMOR is currently implemented
in a UNIX X-windows environment, using Extended

TcWk as its interface builder. By enabling pull-down
menu options, ARMOR allows users to apply the
software metrics deemed important to software risks, to
establish various risk models, and to compute module
risks. After the risk models have been established and
executed, the predicted risk of each module is displayed
with a color to represent the risk of the module. Users
can also display various statistics on the distribution of
software risks. Finally users can apply regression
analysis and other statistical techniques to determine the
validity of the risk models. The validated risk models in
turn can be saved in a model repository for their applica-
tions to another project release or a completely different
project.

Figure 1 shows the high-level architecture for
ARMOR.

3: ARMOR Context

ARMOR is composed of seven major functional

("File" menu)

areas:

1 ~ File Operations
2. Selecting Scope ("Scope" menu)
3. Computing and Selecting Metrics
4. Model Definition and Execution
5. Risk Evaluation ("Evaluation" menu)
6. Model Validation ("Validation" menu)
7. Help System ("Help" menu)

("Metrics" menu)
("Models" menu)

Although the complete functionality of ARMOR
is not yet implemented, the major portion of ARMOR is
available to demonstrate its capability.

3.1: File operations

There are four operations that can be performed
by selecting items from the File pull-down menu. These
are: "Project Open", "Load Process History", "Load
Failure Data", and "Exit". "Project Open" navigates
through the directories of projects to select the project
for risk analysis. Upon selecting a particular project
directory, ARMOR automatically computes the structure
diagram of the project and displays the calling graph
(dependency graph) relationships among program
modules within the project directory. Module develop-
ment history, including program module names, build
date, inspection status, application function area,
number of extensions, etc., is brought up by clicking
"Load Process History" button. The MR failure data-
base is displayed by the selection of "Load Failure
Data". Finally "Exit" provides the normal exit to the
risk analysis procedure.

138

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 14:49:10 UTC from IEEE Xplore. Restrictions apply.

Figure 1 : High-level architecture for ARMOR

3.2: Selecting Scope

Users have available to them four Scope opera-
tions which allow them to determine the scope to which
risk analysis is performed. These are:

1. Project - the risk analysis is performed to all the
modules within the project.

2. Subsystem - the risk analysis is performed to a partic-
ular subsystem of the project. A subsystem is typi-
cally identified as a subdirectory within the project
directory.

3. File - the risk analysis is performed to the modules
within a file.

4. Module - this risk analysis is only performed to a par-

Selection of "Project" and "Subsystem" scope
involves global application of risk analysis to a large
number of modules, where statistical validation of risk
models could be achieved. Selection of "File" and
"Module" level scope, on the other hand, is usually
made when users want to focus the validated risk
models on some particular modules (e.g., newly patched
modules) in their mind.

ticular module.

3.3: Computing and Selecting Metrics

There are two types of operations in the Metrics
pull-down menu: The first type of operations, including
"Metrics Computation" and "Metrics Selection",
involves metrics calculation alone. These operations
allow users to compute product-related metrics, and
select available product and process metrics for prelim-
inary validation. The second type of operations, includ-
ing "MR Selection", "Regression Schemes", "Correla-
tion Computation", and "Summary", involves correlation
study between metrics and failure data (if available), or
among the metrics themselves. These operations allow
users to compute the correlation between the selected
metrics and a chosen subset of the software failure data,
under certain regression scheme and evaluation criteria.
They also allow users to apply statistical discriminant
analyses to detect redundant metrics (i.e., metrics that
are strongly correlated among themselves). The com-
parisons between different metrics in their predictive
capability are summarized.

3.4: Model Definition and Execution

The Models operation allows users to choose
metrics with appropriate weighting schemes, to con-
struct various forms of risk models, to select and apply
the established models to the project modules, and to

139

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 14:49:10 UTC from IEEE Xplore. Restrictions apply.

display the risk analysis results.

1. Selection and Weighting - allows users to select and
weight one or more candidate metrics as the basis to
form risk models.

2. Model Definition- allows users to define risk models
and save the models in an inventory, which might
have contained previously validated models. These
historical or user-defined models remain available
during the current and subsequent sessions. Three
modeling schemes are available for users to construct
risk models: (1) "Summation Form" establish a risk
model by using the sum of the selected metrics; (2)
"Product Form" constructs a risk model by using the
product of the selected metrics; and (3) "Tree Form"
uses a classification tree to classify the risk of a
software module according to the value range of the
metxics.

3. Model EditMOdel Removal - allows users to change
or remove descriptions of risk models that were previ-
ously created using the "Model Definition" capability.

4. Model Execution - allows users to select risk models
from the model inventory to compute risk scores of
the modules.

5. Display - allows users to display computation results
from various risk models.

6. Automation - allows users to automatically search for
the best risk models under a particular modeling
scheme. This operation contains iterative and inten-
sive computations involving the following two main
menu items, Models and Validation.

3.5: Risk Evaluation

Four operations are available for displaying the
risk evaluation results in the Evaluation menu. "Rank-
ing" displays the risk scores and the order of risks
among the software modules within the selected scope
for analysis. "Highlight Risky Module" paints colors to
each module to show its associated risk level. "Data
Table" lists all the computed metrics values and risk
scores among the modules under selected risk models.
"Distribution Plot" plots various distributions of the risk
scores for an overall project risk analysis.

3.6: Model Validation

Similar to the Metrics menu, the Validation
menu include two types operations. The first type of
operation is "Model Selection", which allows user to

select computed risk models for overall validation. The
second type of operations, including "MR selection",
"Regression Schemes", "Correlation Computation",
"Validation Criteria", and "Summary", involves correla-
tion study between risk models and failure data (if avail-
able). These operations allow users to compute the
correlation between the selected models and a chosen
subset of the software failure data, under certain regres-
sion scheme and evaluation criteria. The comparisons
between different models in their predictive capability
are summarized in a summary table. Model Validation
operations are available only when the software failure
data are accessible.

3.7: Help System

The Help system provides context-sensitive on-
line assistance to users by allowing them to search for
and read descriptions of the major ARMOR functional
areas.

4: ARMOR On-Screen Appearances

Figures 2-7 show a series of screen dumps for the
described ARMOR tool. It can be seen that the applica-
tion of risk modeling and analysis to software modules
is a straightforward process. Users are also given a con-
siderable amount of choices in constructing and apply-
ing risk models. This combination of simple operations
and variety in risk models makes it easy for users to
identify an appropriate risk model for a particular
development effort.

4.1: Open Databases

This screen is shown in Figure 2. To choose any
of the three available databases, users select the "File"
menu with the mouse, upon whch a dialogue box for
selecting a project directory appears on the screen (not
shown here). After selecting the project, the structure
chart of the project is computed and displayed in the
main window as shown. Similarly, "Load Process His-
tory" and "Load Failure Data" options display failure
data (shown at the bottom window) and process history
data (shown in the middle window), respectively. The
main window can be zoomed in or zoomed out to view
different part of a large project structure.

4.2: Select and Compute Metrics

The screen is shown in Figure 3.
the scope of risk application from the
users can select metrics to form risk
clicking "Metrics Computation" option,

After selecting
"Scope" menu,
models. Upon
a dialogue box

140

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 14:49:10 UTC from IEEE Xplore. Restrictions apply.

~~

Figure 2: Open Project, Process, and Failure Databases

.-

Figure 3: Select and Compute Metrics

Figure 4: Select Metrics and Weighting Criteria for Models

Figure 5: Construct Risk Models by a Classification Tree

Figure 6: Highlight Risky Modules and Risk Distribution

Figure 7: Display Regression Analysis and Model Validation

141

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 14:49:10 UTC from IEEE Xplore. Restrictions apply.

appears for the users to choose product-related metrics
for computation (shown in the middle). These metrics
are later combined with the process-related metrics
(extract from the project history database) to form a list
under "Metrics Selection" menu for the users to use in
risk modeling. These metrics are subject to statistical
discriminant analyses to detect redundant metrics.

4.3: Select Metrics and Criteria

The screen in Figure 4 shows the selection of
metrics and weighting criteria before constructing risk
models. Users then can click on "Selection and Weight-
ing" option from the "Models" menu to select metrics
and their weighting criteria. A dialogue box appears for
the users to choose the percentage of each metric when
they are used to form risk models. The selections of
weighting criteria are easily controlled by scale buttons.

4.4: Construct Risk Models

The screen is shown in Figure 5 . Now the users
can construct risk models according to different
schemes. Shown in the figure is the selection of "Tree
Form" from the "Models" menu, upon which a separate
window appears on the lower left-hand comer. In this
case the users have constructed a classification tree to
determine risk modeling criteria which will be applied to
the software modules. The risk modeling could lead to a
binary decision ("positive" for no risk, "negative" for
risk as shown here), a multiple-level decision ("very
high risk" to "no risk'), or a risk score index value.
Since the classification tree could be large and compli-
cated, zoom-in and zoom-out facilities are provided for
better viewing of the model.

4.5: Evaluate Models

The screen is shown in Figure 6. In thls figure the
users have clicked on "Highlight Risky Module" to
display the risk level associated with each module by
coloring it. The users also have selected "Distribution
Plot" option to plot the distribution of the number of
modules with respect to various risk categories, which
could be either risk levels or risk scores (shown here).

4.6: Validate Models

The screen is shown in Figure 7. Finally users can
select the risk models for validation against actual data
recorded in the MR failure database. After selecting
appropriate "Regression Scheme" and "Validation Cri-
teria", the users then click on "Correlation Computation"
to compare the predictive risk models and the actual

number of MRs (or MR density) in each module. It is
assumed that a good risk model should produce a
module risk score which is strongly correlated with the
number of MRs in that module. After the correlation is
computed, the regression plot can be displayed for each
model, as shown in the middle right-hand side of the
figure. Users can also select the "Summary" option to
display the overall comparisons among the selected
models for validation, as seen in the model validation
result window.

5: Conclusions and Extensions

The Tree Model component of ARMOR has been
applied to a telecommunications system for risk analysis
of its 1254 program modules, with 4.6 million lines of
code in total. Upon its full implementation, ARMOR
will provide extensive support to software risk modeling
and measurement in a flexible and friendly user inter-
face. ARMOR is designed as a tool that is easy to learn
and to use. In addition, ARMOR can also be linked with
reliability modeling tools to measure module-level relia-
bility and construct system-level reliability. In contrast
to these black-box reliability tools, however, ARMOR is
perceived as a gray-box modeling tool which can per-
form reliability and risk analyses according to the struc-
ture of software systems.

References

1.

2.

3.

4.

5.

R. Chillarege and S. Biyani, " Identifying Risk
Using ODC Based Growth Models," Proceedings of
1994 International Symposium on Software Reliabil-
i 9 Engineering , Monterey, California, November
1994.
S.L. Meeger, "Lessons Learned in Building A Cor-
porate Metrics Program," IEEE Software, May

N. Fenton, "Software Measurement: A Necessary
Scientific Basis," IEEE Transactions on Software
Engineering, Vol. 20, No. 3, March 1994, pp. 199-
206.
R.W. Selby and V.R. Basili, "Analyzing Error-
Prone System Structure," IEEE Transactions on
Software Engineering, Vol. 17, No. 2, February

J.C. Munson and T.M. Khoshgoftaar, "The Detec-
tion of Fault-Prone Programs," IEEE Transactions
on Software Engineering, Vol. 18, No. 5, May 1992,

1993, pp. 67-74.

1991, pp. 141-152.

pp. 423-433.

142

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 14:49:10 UTC from IEEE Xplore. Restrictions apply.

