
Design, Testing, and Evaluation Techniques for Software Reliability Engineering

Michael R. Lyu
Computer Science and Engineering Department

The Chinese University of Hong Kong
Shatin, Hong Kong

lyu@cse.cuhk.edu.hk

Abstract

Software reliability is closely influenced by the creation,
manifestation and impact of software faults. Consequently,
software reliability can be improved by treating software
faults properly, using techniques of fault tolerance, fault
removal, and fault prediction. Fault tolerance techniques
achieve the design for reliability, fault removal techniques
achieve the testing for reliability, and fault prediction
techniques achieve the evaluation for reliability. In this
paper we present best current practices in software
reliability engineering for the design, testing, and
evaluation purposes. We describe how fault tolerant
components can be applied in software applications, how
software testing can be conducted to show improvement of
software reliability, and how software reliability can be
modeled and measured for complex systems. We also
examine the associated tools for applying these techniques.

1. Introduction

While the advancement for computer hardware has made
excellent progress in the past 30 years, proper development
of software technology has failed to keep pace in all
measures, including quality, productivity, cost, and
performance. Software has become the bottleneck of system
development, and its delay and cost overrun have often put
modern complex projects in jeopardy. With the last decade
of the 20th century, computer software has already become
the major source of reported outages in many systems [1].

As an example, Figure 1 shows the causes of total outage
incidents of U.S. switching systems in 1992, in which we
can see that software accounts for 81% of network outages
(including Retrofits, Scheduled Events, Software Design,
Procedural). Hardware and other faults were only
responsible for less than 20% of the outage [2]. Moreover,
severe software failures have impaired several high-visibility
programs worldwide. These critical incidents either caused
enormous revenue losses to companies, or put human lives
in danger.

Figure 1. Switching system outage causal
classification.

To this end, many software companies see a major share
of project development costs identified with the design,
implementation, and assurance of reliable software, and they
recognize a tremendous need for systematic approaches to
assure software reliability within a system. Clearly,
developing the required techniques for software reliability
engineering is a major challenge to computer engineers,
software engineers, and engineers of various disciplines for
now and the decades to come.

2. Software Reliability Engineering Overview

Software reliability engineering is centered around a very
important software attribute: reliability. Software reliability
is defined as the probability of failure-free software
operation for a specified period of time in a specified
environment [3]. It is one of the attributes of software
quality, a multi-dimensional property including other factors
like functionality, usability, performance, serviceability,
capability, installability, maintainability, and documentation
[4]. Software reliability, however, is generally accepted as
the key factor in software quality, since it is aimed at
quantifying and predicting software failures, the unwanted
events which can make a powerful system inoperative or
even deadly. Thus reliability is an essential ingredient in
customer satisfaction for most commercial companies and

governmental organizations. In fact, ISO 9000-3 specifies
measurement of field failures as the only required quality
metric: "... at a minimum, some metrics should be used
which represent reported field failures and/or defects form
the customer's viewpoint. ... The supplier of software
products should collect and act on quantitative measures of
the quality of these software products." (See the Section
6.4.1 of [5]).

Reliability engineering is a daily practiced technique in
many engineering disciplines. Using a similar concept in
these disciplines, we define software reliability engineering
as the quantitative study of the operational behavior of
software-based systems with respect to user requirements
concerning reliability. Software reliability engineering
therefore includes [6]:
(1) software reliability measurement, which includes

estimation and prediction, with the help of software
reliability models established in the literature;

(2) the attributes and metrics of product design,
development process, system architecture, software
operational environment, and their implications on
reliability; and

(3) the application of this knowledge in specifying and
guiding system software architecture, development,
testing, acquisition, use, and maintenance.

In this paper we discuss software reliability engineering
techniques in three categories: (1) design for software
reliability, (2) testing for software reliability, and (3)
evaluation for software reliability. In the design category,
reliability of the software system is achieved by developing
reliable components for the system. The key is to provide
fault avoidance and fault tolerance. The available
techniques we emphasize include reusable software fault
tolerance routines, and software fault tolerance by design
diversity. In the testing category, reliability of the software
system is improved by testing techniques. The key topic is to
provide fault removal. The available techniques include
data flow testing, fault injection testing, and the associated
tools. In the evaluation category, reliability of software is
demonstrated by modeling techniques. The key topic is to
provide fault prediction. The available techniques include
software reliability measurement tasks and software
reliability tools. We discuss the details of these techniques in
the following three sections.

3. Design for Software Reliability

Design for reliability is aimed at achieving reliability of
the software system under development, using fault
avoidance and fault tolerance techniques. Fault avoidance is
addressed by many software engineering techniques and is
beyond the scope of this paper. Fault tolerance, on the other
hand, is the focus of our discussion. We examine fault
tolerance techniques used in single-version as well as

multiple-version environments.

3.1 Single-Version Software Fault Tolerance

Software fault tolerance in single-version software
environment is achieved by introducing special fault
detection and recovery features, including modularity,
system closure, atomic actions, decision verification, and
exception handling. One successful approach is
accomplished by reusable routines for software fault
tolerance [7].

Traditionally, reliability is provided through fault
tolerance technology in the hardware, operating system and
database layers of a computer system executing the
application software. Two trends are emerging in the
marketplace. First, standard commercial hardware and
operating systems are becoming more reliable, distributed,
and inexpensive. They are now off-the-shelf, commodity
items with open and evolving standards and interfaces.
Second, the proportion of failures due to faults in the
application software is increasing due to increased size and
complexity of software being deployed.

To implement application-level software fault tolerance,
we need a mechanism to detect and restart failed processes
at the minimum. The next higher level is to perform
checkpoint and recovery for the internal state of a process
when it fails. Additionally, logging and replaying messages
may also be employed. It may happen that some part of the
environment will change during recovery and replay in a
way that the process will not fail upon re-execution. Another
method is to reorder the messages during replay so that
errors due to unexpected event sequences are masked. The
next higher level is on-line replication of application files at
a remote site in addition to the previous tasks.

In addition to the reactive recovery procedures described
above, there is a complementary proactive approach, called
software rejuvenation, to handle transient software errors.
Software rejuvenation prevents failures from occurring by
periodically and gracefully terminating an application and
immediately restarting it at a clean internal state. Restarting
an application involves queuing the incoming messages, re-
spawning the application processes at an initial state,
reinitializing the in-memory volatile data structures, and
logging administrative records.

Figure 2 shows a middleware platform, Software
Implemented Fault Tolerance (SwIFT), which includes a set
of reusable software components (watchd, libft, REPL,
libckp, and addrejuv) to perform software fault tolerance
schemes. The hardware platform is a network of standard
computers where each computer provides a back-up facility
for another one on the network. The components provide
mechanisms to checkpoint data, log messages, watch and
detect errors, rollback and restart processes, recover from
failures, and rejuvenate to avoid failures.

Application
Server

Op. System

Hardware

SystemsSoftware

Application
backup

Op. System

Hardware

Systems Software

watchd
addrejuv

libckp libft

REPL

Figure 2. SwIFT platform and components.

Watchd is a watchdog daemon process that runs on a
single machine or on a network of machines, whose purpose
is to detect application process failures and machine crashes.
It determines whether a process is hung by either polling the
application or checking an “I-Am-Alive” heartbeat message
periodically sent from the application process to watchd.
When watchd detects that an application process crashed or
failed, it recovers that application at an initial internal state
or at the last checkpointed state. It is recovered on the
primary node if that node has not crashed, otherwise on the
backup node for the primary as specified in a configuration
file.

Libft is a user-level library that can be used in application
programs to specify and checkpoint critical data, recover the
checkpointed data, log events, locate and reconnect to a
backup server. It provides a set of functions to specify
critical volatile data (i.e., data in the memory) in an
application. These critical data items are allocated in a
reserved region of the virtual memory and are periodically
checkpointed on primary and backup nodes.

REPL is a file replication mechanism for on-line
replication of critical files of an application. The mechanism
uses dynamic-shared libraries to intercept file system calls
for data replication in a remote site. REPL is built on top of
standard file systems, requiring no change to the underlying
operating system. Speed, robustness and replication
transparency are the primary design goals of the REPL
replication mechanism.

Libckp is a user-transparent checkpointing library. It can
be linked with a user's program to periodically save the
program state on stable storage (e.g., disks) without
requiring any modification to the source code. When a
process rolls back, all the modifications it has made to
external files since the last checkpoint are undone so that the
states of the files are consistent with the checkpointed state.
Libckp also provides application-initiated checkpoint and
rollback facilities within a program. This facilitates
restoration of global/static variables, dynamically allocated
memory, and user files.

Addrejuv is an added feature of watchd to do software
rejuvenation by stopping and restarting a process at a certain
interval or when a particular event happens in the
application process. The interval or event for periodic
rejuvenation is determined through analysis and experience

with the application [8]. When the addrejuv feature is used,
watchd creates a rejuvenation shell script and registers the
starting time or the event for execution of that script with a
system daemon to rejuvenate the process. The shell script
takes systematic steps to stop the process. Once the process
is terminated, watchd takes a recovery action to re-spawn
the process in the same manner as it does when it detects a
failure.

3.2 Multiple-Version Software Fault Tolerance.

The evolution of using design diversity [9] techniques for
building fault-tolerant software out of simplex units has
taken two directions: N-version software (NVS) shown in
Figure 3 and recovery blocks (RB) shown in Figure 4.

Figure 3. The N-version software (NVS) model
with N = 3

Figure 4. The recovery block (RB) model.

The common property of both schemes is that two or
more diverse units (called versions in NVS, and alternates
and acceptance tests in RB) are employed to form a fault-
tolerant software unit. The most fundamental difference is
the method by which the decision is made that determines
the outputs from the fault-tolerant system. The NVS
approach employs a generic decision algorithm that is
provided by the execution environment (EE) and looks for a
consensus of two or more outputs among N member
versions. The RB model applies the acceptance test to the
output of an individual alternate; this acceptance test must
be specific for every distinct service, i.e., it is custom-

designed for a given application, and is a member of the RB
fault-tolerant software unit, but not a part of the EE.

Both RB and NVS have evolved procedures for error
recovery. In RB, backward recovery is achieved in a
hierarchical manner through a nesting of RBs, supported by
a recovery cache that is part of the EE. In NVS, forward
recovery is done by the use of the community error recovery
algorithm that is supported by the specification of recovery
points and by the decision algorithm of the EE. Both
recovery methods have limitations: in RB, errors that are not
detected by an acceptance test are passed along and do not
trigger recovery; in NVS, recovery will fail if a majority of
versions have the same erroneous state at the recovery point.

The procedure to develop diversified software units for
RB and NVS is formulated in an N-version programming
(NVP) design paradigm [10], as shown in Figure 5. The
purpose of the paradigm is to integrate the unique
requirements of NVP with the conventional steps of
software development methodology. The application of a
proven software development method is the foundation of
the NVP paradigm. This method is supplemented by
procedures that aim: (1) to attain suitable isolation and
independence (with respect to software faults) of the N
concurrent version development efforts, (2) to encourage
potential diversity among the N versions of an N-version
software unit, and (3) to elaborate efficient error detection
and recovery mechanisms.

Figure 5. A design paradigm for NVP.

4. Testing for Software Reliability

The goal for software testing is to improve software
reliability by removing faults before system operational
phase. We examine data flow testing for general systems,
and fault insertion testing for fault-tolerant systems.

4.1 Software Coverage Testing Scheme and Tool

There are many ways of testing software. The terms
functional, regression, integration, product, unit, coverage,
user-oriented, are only a few of the characterizations we
encounter. These terms are derived from the method of
software testing or the development phase during which the
software is tested. The testing methods “functional,”
“coverage,” and “user-oriented,” indicate, respectively, that
the functionality, the structure, and the user view of the
software are to be tested. Any of these methods might be
applied during the unit, integration, product, or regression
phases of the software's development.

White-box, or coverage, testing uses the structure of the
software to measure the quality of testing. This structural
coverage and its measurement is considered to be connected
with reliability estimation. These testing schemes include
statement coverage testing, decision coverage testing, and
data-flow coverage testing.

Statement coverage testing directs the tester to construct
test cases such that each statement or a basic block of code,
is executed at least once.

Decision coverage testing directs the tester to construct
test cases such that each decision in the program is covered
at least once.

Data flow coverage testing directs the tester to construct
test cases such that all the def-use pairs are covered.
Consider a statement S1:x=f() in program P, where f is an
arbitrary function. Let there be another statement
S2:p=g(x,*) in P where g is an arbitrary function of x and
any other program variables. We say that S1 is a definition
and S2 a use of the variable x. The two occurrences of x
constitute a def-use pair.

If the use of a variable appears in a computational
expression, then such a pair is termed as a c-use. If the use
appears inside a predicate then the pair is termed as a p-use.

Coverage measures from the above testing criteria are
obtainable from the ATAC tool. ATAC (Automatic Test
Analysis for C) is a software testing tool for the
measurement of data flow coverage for C programs during
their execution [11]. Using ATAC, we show the
relationship between testing and reliability using two real-
world applications. The first application is an automatic
(i.e., computerized) airplane landing system, or so-called
autopilot, developed and programmed by 15 programming
teams at the University of Iowa and the Rockwell/Collins
Avionics Division [12], using the NVP design paradigm

described in Figure 5. 12 versions of the autopilot program
were produced and accepted at the end of the project. The
coverage measures obtained from this project and the fault
detection history are depicted in Figure 6.

Figure 6. Relationship between coverage
improvement and fault detection during testing
phases.

Figure 6 shows the progress of software testing from unit
testing (1 complete flight simulation test case), integration
testing (960 test cases), to acceptance testing (21600 test
cases). The dash lines depict the accumulation of test
coverage, while the solid line depicts the increased
percentage of fault detection. The data points are taken from
the average of the resulting 12 programs. It can be seen from
Figure 6 that as the number of program executions increases,
the data flow coverage increases, and the number of detected
faults also increases. Both the coverage and the detected
faults, however, do not increase linearly with respect to the
number of program executions.

Figure 7. Relationship of unit coverage testing
to system test faults for one system

Figure 7 displays data from another experiment to
compare the statement coverage of unit tests for 28 modules
of a single system to the number of system test faults found
for each module [13]. From this figure, again, we can see a
clear relationship between high statement coverage in unit
testing and low number of faults detected in system test.

4.2 Software Fault Insertion Testing

The main objective of Software Fault Insertion Testing
(SFIT) is to test fault tolerance capability through injecting
faults into the system and analyze if the system can detect
and recover from various fault scenarios. With SFIT, several
network-wide system outages could be avoided.

SFIT is recommended for system testing or acceptance
testing during the testing life cycle. In this way, the system's
overall reaction to faults/errors/failures can be observed and
analyzed. However, in some cases, SFIT can also be
performed at the unit testing level where the fault manager
functionality resides in a local subsystem level.

Figure 8: Software Fault Insertion Testing
Methodology

Figure 8 shows the methodology used for SFIT [14]. This
methodology consists of the following steps:
1. Software Architecture Analysis. Before conducting SFIT,

a sufficient knowledge of the software (including functions
of some key software components, such as error recovery
software subsystem) and its architecture is needed. This

analysis is proactive and consists of three key parts:
application software analysis, fault manager analysis, and
interface analysis.

2. Root Cause Analysis. Internal testing results and external
field problems often can give a good indication of the
product's reliability. Therefore, root cause analysis on the
internal trouble reports and customer service reports can
help the testing organization to identify common problems
that need to be addressed in SFIT. Root cause analysis is
more reactive; nevertheless, it can help to identify the area
and type of faults/errors to be tested.

3. Test Set Selection. During the test set selection, the
following two aspects need to be identified: (a)
properties/predicates to be checked for assessing the
expected behavior of the system in the presence of the
injected faults, and (b) observations to be made to verify
the assertion of the corresponding actual system behavior.

4. Test Planning. After the test set has been selected, testing
needs to be planned. For example, test scripts need to be
prepared based on the selected test set. For code-based
injection, software patches need to be prepared in advance.
For state-based injection, appropriate tools need to be
allocated to change the state of the system.

5. Fault/Error Insertion. With all the test cases available,
this step involves the actual insertion of faults in the code
or errors in the state. The location of faults or errors
should be identified during this step.

6. Test Execution Trigger. A fault in the system may not be
activated when it is inserted into the system. Therefore,
the test trigger needs to be set during this step to activate
the inserted faults. Triggers could be input values from the
users, internal and external events, or messages.

7. Observe Behavior. This step observes the system reaction
to the inserted faults or errors within a specified time
frame.

8. Test Result Evaluation. The test result can reveal the
effectiveness of the test cases as well as weakness of the
system's fault tolerance capability. The test result
evaluation step can help to eliminate less effective test
cases and identify areas for improvements for the system's
fault tolerance mechanism.

9. Assess Test Coverage. Although complete testing
coverage with SFIT is not economically possible, a notion
of test coverage adequacy is essential to the confidence in
the fault tolerance of a system.

10. Update SFIT Test Case Library. A library of common
and generic faults, errors, and failures along with their
attributes (such as frequency of occurrence or severity)
should be collected and stored. This library can be used to
define test input for fault tolerance testing. In addition,
faults designed to test for the rare, unusual, and severe
fault tolerance conditions of the system will be added to
the repository. By this, an adequacy criterion for fault
insertion testing can be gradually established.

5. Evaluation for Software Reliability

Evaluation for reliability is focused on the modeling and
analysis techniques for fault prediction purpose. We discuss
a systematic software reliability measurement procedure,
and a software reliability estimation tool.

5.1 Software Reliability Measurement Procedure

Software reliability measurement is the application of
statistical inference procedures to failure data taken from
software testing and operation to determine software
reliability. We have established a framework for software
reliability measurement purpose, as described in Figure 9.

Figure 9. Software reliability measurement
procedure overview.

It can be seen from Figure 9 that there are four major
components in this software reliability measurement process,
namely,

(1) reliability objective,
(2) operational profile,
(3) reliability modeling and measurement, and
(4) reliability validation.
According to this framework, quality is first defined

quantitatively from the customer's viewpoint by defining
failures and failure severity, by determining a reliability
objective, and by specifying balance among key quality
objectives (e.g., reliability, delivery date, cost). Second,
customer usage is quantified by developing an operational

profile. Operational profile is a set of disjoint alternatives of
system operation and their associated probabilities of
occurrence (see Chapter 5 in [6]). The construction of an
operational profile encourages testers to select test cases
according to the system's operational usage, which
contributes to more accurate estimation of software
reliability in the field. In this procedure, quality objectives
and operational profile are employed to manage resources
and to guide design, implementation, and testing of
software. Moreover, reliability during testing is tracked to
determine product release, using appropriate software
reliability measurement models and tools. This activity may
be repeated until a certain reliability level has been
achieved. Finally, reliability can be analyzed in the field to
validate the reliability engineering effort and to provide
feedback for product and process improvements.

Reliability modeling is an essential element of the
reliability estimation process. It determines if a product
meets its reliability objective and is ready for release. It is
required to use a reliability model to calculate, from failure
data collected during system testing (such as failure report
data and test time), various estimates of a product's
reliability as a function of test time. These reliability
estimates can provide the following information useful for
product quality management:
(1) The reliability of the product at the end of system

testing.
(2) The amount of (additional) test time required to reach

the product's reliability objective.
(3) The reliability growth as a result of testing.
(4) The predicted reliability beyond the system testing

already performed.

5.2 Software Reliability Measurement Tool

There are as many as 40 software reliability models
proposed in the literature. Despite the existence a large
quantity (and variation) of these models, the problem of
model selection and application is manageable.

Using the statistical methods provide in [6] (Chapter 4),
"best" estimates of reliability can be obtained during testing.
These estimates are then used to project the reliability
during field operation in order to determine if the reliability
objective has been met. This procedure is an iterative
process since more testing will be needed if the objective is
not met.

Since the engagement and application of software
reliability models and the evaluation and interpretation of
model results involve tedious computation-intensive tasks,
we believe the only practical usage of reliability models is
through software tools. For this purpose, we designed and
implemented a software reliability modeling tool, called
Computer-Aided Software Reliability Estimation (CASRE)
system [15], for an automatic and systematic approach in

estimating software reliability.
CASRE is implemented as a software reliability modeling

tool that addresses the ease-of-use issue as well as other
issues. Figure 10 shows the high-level architecture for
CASRE.

Figure 10. High-level architecture for CASRE.

CASRE is designed for the Windows environment. A
Web-based version is also available [17]. The command
interface is menu driven; users are guided through the
selecting of a set of failure data and executing a model by
selectively enabling pull-down menu options. Modeling
results are also presented in a graphical manner. Users can
select multiple models from two categories depending on
failure data format: Time-Between-Failures models (for
inter-failure times) or Failure-Count models (for failure
intensities).

After one or more models have been executed, the
predicted failure intensities or inter-failure times are drawn
in a graphical display window. Users can manipulate this
window's controls to display the results in a variety of ways,
including cumulative number of failures and the reliability
growth curve. Users may also display the results in a tabular
fashion if they wish. The performance of each model is
evaluated using multiple criteria to assess model accuracy,
model bias, model bias trend, and model noise. Based on
these criteria, the best model or models can be selected for
reliable prediction of the software reliability. In addition,
CASRE is facilitated with a useful functionality where
results from different models can be combined in various
ways to yield reliability estimates whose predictive quality is
better than that of the individual models themselves [16].

CASRE has been used by major corporations including
AT&T, Lucent, Microsoft, NASA, IBM, Motorola, Nortel,
etc. It is available through NASA Cosmic software
distribution center, and a software diskette in [6].

6. Conclusions

Developing reliable software systems is a formidable
task, which involve the best of our knowledge in software
reliability techniques. This paper surveys the current
schemes in the design, testing, and evaluation of software
reliability. We describe the reliability techniques associated
with each of these three activities for fault tolerance, fault
removal, and fault prediction. We also discuss the available
software tools, and some project application results.

References

[1] J. Gray, “A Census of Tandem System Availability
Between 1985 and 1990,” IEEE Transactions on
Reliability 39(4):409-418, October 1990.

[2] National Reliability Council (NRC) Switch Focus Team
Report, June 1993.

[3] Institute of Electrical and Electronics Engineers,
ANSI/IEEE Standard Glossary of Software Engineering
Terminology, IEEE Std. 729-1991, 1991.

[4] R.B. Grady, Practical Software Metrics for Project
Management and Process Improvement, Prentice-Hall,
Englewood Cliffs, New Jersey, 1992.

[5] International Standard Organization, “Quality
Management and Quality Assurance Standards - Part 3:
Guidelines for the Application of ISO 9001 to the
Development, Supply and Maintenance of Software,”
ISO 9000-3, Switzerland, June 1991.

[6] M.R. Lyu (ed.), Handbook of Software Reliability
Engineering, McGraw-Hill and IEEE Computer Society
Press, New York, 1996.

 [7] Y. Huang, C.M.R. Kintala, L. Bernstein, and Y.-M.
Wang, “Components for Software Fault Tolerance and
Rejuvenation,” AT&T Technical Journal, 29-37,
March/Spril 1996.

[8] Y. Huang, C.M.R. Kintala, N. Kolettis, and N.D. Fulton,
“Software Rejuvenation: Analysis, Module and
Applications,” Proceedings of 25th International
Symposium on Fault-Tolerant Computing (FTCS-25),
381-390, Pasadena, California, June 1995.

[9] A. Avizienis, “The Methodology of N-Version
Programming,” Chapter 2 of Software Fault Tolerance,
M. R. Lyu (ed.), Wiley, 23-46, 1995.

[10] M.R. Lyu, “A Design Paradigm for Multi-Version
Software,” Ph.D. Dissertation, UCLA, Computer
Science Department, May 1988.

[11] M.R. Lyu, J.R. Horgan, and S. London, “A Coverage
Analysis Tool for the Effectiveness of Software
Testing,” IEEE Transactions on Reliability, 43(4):527-
535, December 1994.

[12] M.R. Lyu and Y. He, “Improving the N-Version
Programming Process Through the Evolution of a
Design Paradigm,” IEEE Transactions on Reliability,
42(2):179 - 189, June 1993.

[13] S.R. Dalal, J.R. Horgan, and J.R. Kettenring, “Reliable
 Software and Communication: Software Quality,

Reliability, and Safety,” Proceedings of the 15th
International Conference on Software Engineering,
Baltimore, MD, May 1993.

[14] M.Y. Lai and S.Y. Wang, "Software Fault Insertion
Testing for Fault Tolerance," Chapter 13 of Software
Fault Tolerance, M.R. Lyu (ed.), Wiley, 315-333, 1995.

[15] M.R. Lyu and A. Nikora, “CASRE - A Computer-
Aided Software Reliability Estimation Tool,”
Proceedings of Computer-Aided Software Engineering
Workshop, 264-275, Montreal, Canada, July 1992.

[16] M.R. Lyu and A. Nikora, “Using Software Reliability
Models More Effectively,” IEEE Software, 43-52, July
1992.

[17] M.R. Lyu and Juergen Schoenwaelder, “Web-CASRE:
A Web-Based Tool for Software Reliability
Measurement,” Proceedings of International
Symposium on Software Reliability Engineering,
Paderborn, Germany, November, 1998.

