
R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 505–521, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Survey of Fault Tolerant CORBA Systems

Muhammad Fahad1, Aamer Nadeem1, and Michael R. Lyu2

1 Department of Computer Science
Mohammad Ali Jinnah University, Islamabad, Pakistan
mhd.fahad@gmail.com, aamern@acm.org
2 Department of Computer Science and Engineering

Chinese University of Hong Kong, Hong Kong S.A.R., China
lyu@cse.cuhk.edu.hk

Abstract. CORBA is an OMG standard for distributed object computing; but
despite being a standard and wide scale acceptance in the industry it lacks the
ability to meet high demands of quality of service (QoS) required for building a
reliable fault tolerant distributed system. To tackle these issues, in 2001, OMG
incorporated fault tolerance mechanisms, QoS policies and services in its
standard interfaces as mentioned in its Fault Tolerant CORBA (FT-CORBA)
specification. FT-CORBA Architecture used the notion of object replication to
provide reliable and fault tolerant services. In this paper, we surveyed the dif-
ferent approaches for building FT-CORBA based distributed systems with their
merits and limitations. We gave an overview of FT-CORBA specification; its
requirements and limitations, and FT-CORBA Architecture. We have also re-
vised the existing categorization of FT-CORBA systems by incorporating a
fourth approach, i.e., Reflective Approach, in the categorization taxonomy. A
comparison between different types of replication and FT-CORBA based
systems is conducted to achieve quick insight on their features.

Keywords: CORBA Middleware, Object Replication Styles, Fault Tolerant
CORBA Specification, Fault Tolerant CORBA systems.

1 Introduction

Distributed systems are used in a variety of application domains in which services are
provided by independent components working together as a single transparent system.
In distributed systems, CORBA is accepted as a standard because of its inherent loca-
tion transparency, portability, interoperability and language independence [1]. With
these features, CORBA was made a standard for distributed object computing by the
Object Management Group (OMG) [2]. In CORBA, Interface Definition Language
(IDL) defines interfaces to objects. Clients have to implement IDL interfaces to ac-
cess server functionality and this makes CORBA language independent. By location
transparency, clients can invoke server objects without worrying about the location of
the server objects. Portability makes CORBA independent of specific ORB and the
system can be implemented and used on top of any CORBA-compliant ORB. This is
achieved by the Portable Object Adaptor (POA), a component of CORBA, which is
responsible for making server-side functionality appear as CORBA object to clients.

506 M. Fahad, A. Nadeem, and M.R. Lyu

Interoperability of CORBA ensures the system to be used by the clients and servers,
running on ORBs from different vendors. Despite these benefits, CORBA does not
address partial failures and does not provide totally ordered multicast of messages
while building distributed systems [2], which are the key factors of fault tolerance.

To provide fault tolerance in distributed CORBA based systems, Fault Tolerant
(FT) CORBA specification defines interfaces, QoS policies, associated fault tolerance
mechanisms and services to enhance the reliability of CORBA applications [3]. Exist-
ing fault tolerant CORBA systems provide fault tolerance through replication of
CORBA objects. By replicated objects, fault tolerant services are provided even if one
of individual entities fails. A replicated object is implemented by a set of distinct
CORBA objects called an object group, i.e., an abstraction to provide replication
transparency and failure transparency [4]. These systems differ mostly at the level at
which the replication mechanism support is introduced. Felber and Narasimhan cate-
gorize the FT CORBA systems on this basis into three categorizes: integration, inter-
ception and service [1] and discuss the experiences and lessons learnt in building their
two distinct FT CORBA systems.

This paper presents the overview of Fault Tolerant CORBA Specification; its ar-
chitecture, requirements and limitations. We surveyed the FT-CORBA systems based
on their FT properties and highlighted their prominent features and limitations. We
analyzed the several different approaches that implement FT-CORBA and revised the
existing categorization of FT-CORBA systems by incorporating a fourth approach
called Reflective Approach in the existing categorization taxonomy. Moreover we
compared the working of individual systems on different criteria and provide analysis
matrix to achieve quick insight on their infrastructures.

The rest of this paper is organized as follows: Section 2 covers the approaches of
building the fault tolerant CORBA system with their merits and limitations. Section 3
throws light on replication styles and comparison of these styles. Section 4 gives the
overview of Fault Tolerant CORBA Specification; its requirement, architecture and
limitations. Section 5 covers the Fault Tolerant CORBA systems with a critical look
on their features. Section 6 shows our analysis about the FT-CORBA systems. Sec-
tion 7 concludes the paper.

2 Fault Tolerant Approaches

According to the built-in support of replication logic, various fault tolerant systems
are categorized into four approaches, which are termed as Integration approach, Inter-
ception approach, Service approach and Reflective approach. Taxonomies of the first
three approaches can be found in [5,6,7]. With the passage of time new FT-CORBA
Systems were built introducing fourth approach, i.e., Reflective approach. So here we
incorporate the fourth approach in the existing (old) categorization taxonomy. Sum-
marized features of these approaches are represented in Table 1.

2.1 Integration Approach

In this approach, support for replication is integrated transparently into the ORB. It
integrates necessary fault tolerant replication by proprietary mechanisms in the ORB.

 A Survey of Fault Tolerant CORBA Systems 507

This is the most efficient approach but modification in the ORB makes this approach
non-compliant with the CORBA standard, i.e., does not enable off-the-shelf ORBs to
be used. In this approach, modified ORB gets a message from application objects,
passes it to the adapter object that multicasts it by using underlying toolkit. Fault
tolerance mechanisms and replication strategies are transparent to the client as these
are integrated into the ORBs. Portability is not achieved but interoperability can be
achieved depending on the support for IIOP invocations (Internet Inter-ORB Protocol,
a CORBA Standard for invocations).

2.2 Interception Approach

In this approach, support for replication is provided underneath the ORB, which
makes the replication logic transparent to the users. Messages from client and server
are intercepted transparently, externally to the ORB by using low level (OS-level)
interceptor and then multicast by the group communication toolkit. The use of low-
level interceptor makes this approach non-portable. Moreover as there is no need of
modification in ORB, thus systems built using this approach are ORB compliant.
Interoperability can be achieved by writing an interception layer of each distinct OS.

2.3 Service Approach

In this approach, support for replication is provided through a collection of CORBA
objects that reside above the ORB. As there is no need to modify the ORB, the sys-
tems built exploiting this approach are CORBA compliant, interoperable and portable.
To use service objects that provide the policies and mechanisms for achieving fault
tolerance, application objects require knowledge of these service objects and hence
application code needs modifications to use their functionality. Each request from
application objects to service objects passes through the underlying ORB, which in-
creases performance overheads. Service objects are defined as IDL interfaces so they
are independent of language constructs. Service objects can be made distributed by
locating them on different hosts on the network.

Table 1. Comparison between Fault tolerant Approaches

System Features Integration Interception Service Reflective
ORB Compliance No Yes Yes Yes
Transparency Yes Yes Depends on service

implementation
Yes

OS dependence No Yes No No
Portability No Can

be achieved
Yes Yes

Interoperability Depends on
IIOP invocation

Yes

Yes

yes

Performance Most efficient Efficient Good Good

System Example Electra, PPF,
Orbix+Isis

Eternal,
CARRIGE

OGS, DOORS,
AQuA, Newtop,
FTS, IRL, Aquarius

FRIENDS,
FT-MOP

508 M. Fahad, A. Nadeem, and M.R. Lyu

2.4 Reflective Approach

Reflection approach separates the concerns between the application and the fault
tolerance mechanisms and enables off-the-shelf ORBs to be used. It employs
metalevel architecture to integrate fault tolerance in CORBA systems and provides a
means to develop transparent fault tolerance software as any CORBA software with
different object-oriented languages. In this approach the replication necessarily in-
volves creating a single point of failure outside the client’s failure domain, thus par-
tially defeating the purpose of the replication (no single failure is visible to the client).
The use of Metaobjects Protocol (MOP) and restricted reflective features of some
object-oriented languages makes this approach different from other approaches. Using
this approach MOP can be implement as compile time or runtime. But the integration
of runtime and compile-time MOPs enables more efficient functionality for fault
tolerance. This MOP is CORBA compliant which enables the execution and the state
evolution of CORBA objects to be controlled. Metaobjects are not only used for the
purpose of fault tolerance but can also be used for security purposes. Interoperability
can be achieved with the engagement of Metaobjects protocol.

All these approaches support different types of object replication styles in which
they replicate their constituent objects. The need for object replication is to increase
the reliability and performance of the system. Failure of a replica does not affect the
services provided, as other replicas are there to give the required services. Perform-
ance issues arise when distributed systems need to scale in number and geographical
area [4]. Fault tolerance benefits can be achieved only when object replication main-
tains strong replica consistency. Strong replica consistency means that all the repli-
cated objects should have the same state and they perform the same behavior. There
are many issues which should be analyzed while maintaining strong replica consis-
tency [7,8]. First, all the replicas perform the same sequence of operations in the same
order. Second, to perform a single invocation multi-replicated client objects initiate a
request to replicated server objects, thus each of server objects receive multiple re-
quests made by each of the client object. Therefore, the system should be capable
enough to detect duplicate requests. Third, systems which support multithreading
should carefully analyze different threads and the functions they perform. Fourth, in
case of failure of replicated objects, recovery mechanisms should be transparently
managed to provide the reliable fault tolerant services.

3 Replication Styles

The replication logic is a set of protocols, mechanisms and services that allow a
CORBA system to handle object replication [9]. There are many styles of object rep-
lication but the main ones are Active replication and Passive replication [5,6,7]. Un-
derlying mechanisms for both are the same but their role to provide strong replica
consistency is different. Some of the FT-CORBA systems rely on proprietary group
toolkit for replication logic implementation but others provide either centralized repli-
cation logic in its core or completely distributed above the ORBs [9]. A comparison
between replication styles is represented in Table 2.

 A Survey of Fault Tolerant CORBA Systems 509

3.1 Active Replication

In Active Replication, all replicated objects are active and independently handle client
requests and return the responses to the client. Duplicate responses should be detected
and suppressed to provide client transparency. One of these active replica objects is
called primary, while others act as backup. The crash failure of single primary is
masked by the presence of other active replica by providing fault tolerant services;
thus this style provides better fail-over time, and state transfer and recovery mecha-
nisms are provided to regain the use of the crashed node. To ensure replica consis-
tency, it consumes a lot of computational resources and totally ordered multicast of
messages is needed to maintain the same state and to achieve same behavior by active
replicas, i.e., it needs operations on the replicated objects to be deterministic. It
shields fastest recovery from faults.

3.2 Passive Replication

In Passive Replication only one operational replica is active, termed as primary, to
fulfill client request. It requires less memory and processing costs, and shields slower
recovery from faults. On the basis of recovery mechanisms it has two variations:

Warm Passive. Only one server replica (primary) is active in each object group and
remaining replicas are preloaded into the memory and are synchronized periodically
to handle state transfer while crash faults. To achieve this state synchronization,
totally ordered multicast as well as deterministic operations are needed. Only active
replica is operational to fulfill client request, while backups are running for the sake
of state storage and state transfer in case of primary failure. When primary fails, new
primary is selected from the backup replicas.

Table 2. Comparison between Replication Styles

Analysis Parameters Active Warm Passive Cold Passive
Number of operational replica All Only primaries One
Fail-over time Very low Medium Very high
Computational resources High Medium Low
Duplicate message detection and
suppression required

Yes Yes No

Totally ordered multicast required Yes Yes No
Operations on replicated objects Deterministic Deterministic Non-

deterministic
Recovery from faults Fastest,

very Rapid
Rapid Slower

Cold Passive. Only one server replica is active and the remaining replicas are not
even preloaded into the memory. State of the primary is logged into the storage for
recovery mechanisms. If the primary fails, new primary is created and state is
transferred from logged storage to the new primary, which increases the fail-overtime.
This approach uses less resources and non-deterministic operations, as only one
replica is operational at a time.

510 M. Fahad, A. Nadeem, and M.R. Lyu

4 Overview of FT-CORBA

In 1998, Object Management Group (OMG) felt the need of making fault tolerant
standard properties for CORBA Architecture for adding availability and reliability in
CORBA applications. Hence issued a Request For Proposal (RFP) that results the
Fault Tolerant CORBA specifications in early 2000 [3]. FT-CORBA specification
addressed the issues of entity redundancy, fault detection, and fault recovery. This
section throws a light on FT-CORBA Specification.

4.1 FT-CORBA Architecture

The Fault Tolerant CORBA Architecture [3] is achieved by handling issues of object
replication transparently, fault detection and recovery mechanisms in CORBA Archi-
tecture as shown in the Fig. 1. Major components with their functionality are:

Replication Manager. Replication Manager has three components; Property Man-
ager, Generic Factory, and Object Group Manager. Property Manager allows ap-
plication developer to choose and set object group properties i.e. replication style,
consistency style, membership style etc according to requirements. Generic Factory
creates objects and makes object groups. Object Group Manager adds or deletes
members.

Fig. 1. The Architecture of Fault Tolerant CORBA [7]

 A Survey of Fault Tolerant CORBA Systems 511

Fault Detector and Fault Notifier. Fault Detector supports Pull Model and Push
Model based fault monitoring [3]. In Pull Monitoring, crash faults are detected by
invoking an isAlive() method of monitored object asking about its aliveness. If
monitored object does not reply within some time interval then it is assumed that
object has crashed. By this approach, application checks the status of objects when it
is needed [10]. In Push Monitoring, crash faults are detected on the basis of
I_am_Alive() messages sent by monitored object who tells about its aliveness. Crash
fault of monitored object is assumed when it does not send message telling about its
aliveness. By this approach fast detection of the crash failure is achieved [10].
Whenever a fault is detected, Fault Detector reports the fault to Fault Notifier, which
diverts it to Replication Manager to take necessary actions. There should be separate
Fault Detector and Fault Notifier components according to standard Fault tolerant
CORBA specification.

Logging and Recovery. FT-CORBA defines a logging and recovery mechanisms by
two IDL interfaces (Checkpointable and Updateable). The logging mechanism peri-
odically stores object related information on the log, and recovery mechanism
retrieves log information to restore valid state to the crashed replica.

4.2 Requirements of FT-CORBA Specification

According to FT-CORBA specification [3], system build on CORBA middleware
should preserve CORBA object model for the infrastructure-controlled consistency
style, and extended format of Interoperable Object Reference (IOR) should be used
for the individual replicas so that legacy ORBs that does not support fault tolerance
can invoked methods on ORBs that support fault tolerance and vice versa. Each com-
ponent should be replicated to avoid single point of failure; moreover creation and
deletion of objects, fault detection, and recovery mechanisms should be invisible to
client to achieve transparency. In case of failure of replica, client’s request should be
transparently redirected to other available replica and client ORB systematically
re-initiate the request until the request fulfills.

4.3 Limitations of FT-CORBA Specification

FT-CORBA specification [3] has many limitations that are: i) Clients running on non-
FT-CORBA can invoke methods/operations on an object group, supported by the
fault tolerant infrastructure without taking the benefits of its fault tolerant properties.
ii) To achieve interoperability and full fault tolerance, the hosts with in a domain
should use fault tolerant infrastructure and ORBs from the same vendor. iii) To
achieve strong replica consistency, specification addressed that application objects
should have deterministic behavior. iv) There is no support for partitioned systems,
and Network-Partitioning faults, Commission faults (wrong results generated by the
objects), and Correlated faults (Design Faults, and Programming Logic Errors) are
not addressed in the specification.

512 M. Fahad, A. Nadeem, and M.R. Lyu

5 Existing Fault Tolerant CORBA Systems

Many FT-CORBA systems were developed to address the issues of secure group
based communication for embedding fault tolerance by the notion of object replica-
tion. The evolution of FT-CORBA systems starts with the integration of fault tolerant
properties in the ORB, but later on different approaches were introduced to build
replication for ease of use and customization purpose to provide fault tolerance in
CORBA based distributed systems. The following sub-sections present the brief
introduction to various Fault Tolerant Systems.

5.1 Electra

The Electra [4] is one of the earliest implementation of fault tolerant CORBA sys-
tems, developed at the University of Zurich which exploits the integration approach.
It was the first time using the strengths of CORBA model and improving the weak-
nesses of CORBA model with group communication for consistent ordering of
distributed events and transactions, handling of partial failures and support of asyn-
chronous communication.

The first research based CORBA object request broker, Electra, combines the
benefits of CORBA object model and virtual synchrony with reliable group commu-
nication as part of an ORB to achieve fault tolerance. As the replication logic is em-
bedded into the ORB, it neither is ORB compliant nor maintains interoperability of
CORBA architecture. Also we cannot achieve interoperability using Electra. The key
focus of Electra is to enable ORB with build-in fault tolerant capabilities. All the
special features of adding fault tolerance are enhanced by two C++ interfaces Basic
Adaptor Object (BOA) Interface and Environment Interface, so C++ is the only target
language for building fault tolerant CORBA based application using Electra proto-
type. Underlying toolkit, which is built on the model of virtual synchrony, provides
reliable multicast. BOA provides active replication and Environment Interface is
responsible for synchronous, asynchronous and deferred-synchronous communica-
tion. Adaptor object has the code specific to the toolkit so application developer can
use another toolkit by simply relinking the application with the appropriate Adaptor
Object. Basic Adaptor Object, which is hooked into the ORB, is responsible for repli-
cation services and mechanisms like creation and deletion of objects and object
groups, and state transfer when primary replica fails. It also allows application devel-
opers to select the ordering protocol given by the toolkit according to requirements.
Group communication is achieved by the subsystems (Horus, Isis) that are built on the
model of virtual synchrony to maintain replica consistency.

5.2 Orbix+Isis

First commercially available Fault Tolerant CORBA system [11] developed by the
IONA Technologies was Orbix+Isis, which exploits the integration approach. Isis
developed by the Isis Distributed Systems was the first commercial toolkit built upon
the model of virtual synchrony to provide high performance, totally ordered multicast
and fault monitoring. Orbix is the C++ development environment to work on distrib-
uted CORBA objects.

 A Survey of Fault Tolerant CORBA Systems 513

It modifies ORB to use Isis toolkit which provides totally ordered multicast reliable
communication, object groups and failure monitoring, whereas Orbix provides the
object oriented environment to work on distributed objects and supports point-to-
point communication. Fault tolerant replication mechanisms are implemented by
using two base classes ActiveReplica and Stream Event. ActiveReplica provides trans-
parent Active and hot-passive replication, and Event Stream (supports asynchronous
requests using publish/subscribe paradigm) makes object groups and used for load
balancing. Orbix+Isis allows application developers to select the object replication
execution style. Transparent replications of server objects and filter mechanisms are
provided by the Orbix specific smart proxies. Active replica execution style also gives
an option to select the replication style. In Event Stream style, Event Streams are
replicated which keep event history and Event Log. Servers registered to specific
events are invoked by Event Stream when it receives the event from the client. Fault
monitoring is based on two functions _newMember() and _memberLeft(). The former
is called when an object joins group and latter one is called when the object leaves.

5.3 Eternal

Eternal [1,7], a FT CORBA standard, was developed at the University of California,
Santa Barbara, which exploits the interception approach to provide transparent fault
tolerance to ORB and application as well. It employs Totem toolkit for totally ordered
multicast.

Eternal has an ORB compliant architecture but does not maintain interoperability
of CORBA because when request came, it is captured by OS-level interceptor and
then propagated to ORB, thus making Eternal OS dependant. Interoperability can still
be achieved by writing a separate interception layer for every different ORB. It sup-
ports active and different types of passive replication (e.g. cold passive, warm pas-
sive) and logging-recovery mechanisms to provide reliable consistent replication.
Active replication allows the Eternal to work, when single replica fails as this is
masked by the presence of other active replicas and during recovery phase. For pro-
viding consistent replication it maintains three types of states; application level state,
ORB/POA level state and Infrastructure state, and this distinguishes Eternal from
other fault tolerant CORBA systems. It provides fault detection service based on
user-defined timeouts to identify crash faults. It allows developers to select configura-
tion management properties of fault tolerance, and employs mechanisms to overcome
the non-determinism inherent in multithreaded CORBA applications.

5.4 DOORS

The Distributed Object Oriented Reliable Service (DOORS) [6] is an application-level
framework developed at Lucent Technologies as an experimental middleware so that
lessons learned during its implementation are integrated into the FT-CORBA standard.
DOORS exploits the service approach to provide fault tolerance and follows an ORB
compliant architecture which maintains interoperability of CORBA. The proposed
architecture supports active and passive replication, but prototype implementation
only provides passive replication. Both pull and push methods of fault monitoring are
supported to provide fault detection and employs libraries for the transparent

514 M. Fahad, A. Nadeem, and M.R. Lyu

checkpointing of applications. Fault detection and fault notification are merged into
fault detector component. It provides transparently fault detection and fail-over to the
client. The prototype does not support recovery and logging mechanisms, and dupli-
cate detection and suppression of messages for reliable fault tolerance. Replication
Manager is responsible for configuration management and replication mechanisms by
allowing application developer to choose and set object group properties i.e. replication
style and consistency style, according to requirements. Fault Detector detects the faults
and reports them to super fault detector that diverts them to replication manager to take
necessary actions. There is no separate Fault Notifier component thus it violates the
standard fault tolerant CORBA specification. All these component services act as
CORBA objects above the ORB.

5.5 AQuA

The BBN Technologies and University of Illinois, developed the AQuA’s gateway
architecture to provide adaptive fault tolerance to CORBA systems [12]. Its architec-
ture consists of Quality Objects, Proteus, Maestro/Ensemble and gateways. It replaces
the ORB IIOP implementation with proprietary gateway which propagates IIOP calls
to other CORBA objects by using Maestro/Ensemble toolkit. The gateway and the
group toolkit employ the replication logic. Due to replacement of only IIOP module
of ORB with gateway, it is regarded to exploit integration approach [9]. But as the
gateway captures the initial request by client object which acts as an OS-level inter-
ceptor, it is regarded to exploit interception approach [6]. We classified AQuA
exploiting service approach, as it provides replication via a collection of CORBA
objects above the ORB [1]. Nevertheless, interoperability is achieved by implement-
ing gateway for each different OS and ORB. The configuration management regard-
ing fault tolerance properties can be set during runtime. Push-based or heartbeat fault
monitoring is supported for fault detection. Different types of active and passive rep-
lication schemes are supported to tolerate crash and value faults. The application
developer can set the level of dependability by Quality Objects according to desired
application requirements and state of the distributed system during execution of the
system. Proteus, a flexible infrastructure, has replicated dependability manager, gate-
way handler and object factory. The replication dependability manager makes deci-
sions on reported faults, manages configuration properties, and replicas are created
and deleted by the object factories.

5.6 FTS

FTS [13] as a lightweight CORBA fault tolerance service was developed at Israel
Institute of Technology that maintains the portability and interoperability of CORBA
ORBs. It aims to support transparent client-side replication and embeds fault toler-
ance in CORBA by utilizing the standard CORBA’s Portable Object Adaptor (POA).

It provides fail-over transparency and reliable transparent fault tolerance by redirect-
ing a client’s requests during processing. It supports two types of fault detection; proc-
ess-based which is monitoring of Group Object Adaptor (GOA) and object-based in
which all the objects are monitored which are connected with GOA by push
fault monitoring model. Active replication of server objects is supported. A set of

 A Survey of Fault Tolerant CORBA Systems 515

components, which provide reliable functionality for fault tolerance, are merged into
group object adaptor, which is built on the top of POA. FTS Interceptors detect faults
during client-server replica communication and redirects a client’s request to other
replicas when they receive an indication of faults during request processing, thus add-
ing reliable transparent fault tolerance to client applications. It partially supports
network partitioning by imposing a primary component model.

5.7 IRL

IRL was developed by the University La Sapienza, Roma, Italy, which exploits the
service approach [9]. It maintained the CORBA’s interoperability and was built with
supports of passive centralized replication logic. Later on, a distributed design was
proposed to give more reliable fault tolerant properties [14].

With its replication logic implemented as CORBA objects above the ORB, IRL
offers interoperable ORB compliant architecture in which all the components are
deployed distributedly to avoid single point of failure, thus adding more reliable fault
tolerant ways to handle client’s request in a more transparent manner. Adding support
of the client-side replication and the server-side replication to system makes IRL
more reliable while achieving good performance. Object Replicas are distributed in
different host domains for balancing loads and achieving high fault tolerance. To
handle object creation and deletion, replication style and its management, Object
Group Handler (OGH) and Object Group (OGs) Components were designed. Fault
detector and fault notifier detect faults and provide fail-over transparency to clients.
Host-specific IRL components as well as domain-specific IRL components handle
failure management activities. Local failure detectors monitor crash faults by pull
fault tolerant technique. Recovery mechanisms are carried out by Object Group com-
ponent, which ensures strong replica consistency in a group.

5.8 OGS

Object Group Service (OGS) [5] developed at the Swiss Federal Institute of Technology,
Lausanne, exploits the service approach as the first time in the history to provide fault
tolerance in a CORBA system. It maintains interoperability and provides distributed
replication support in building more reliable fault tolerance.

OGS supports a set of independent generic IDL specified interfaces, which pro-
vides transparent group invocations. It preserves portability of CORBA ORBs, and
provides both reliable (for read-only client requests) and unreliable multicast of mes-
sages, and mechanisms for duplicate detection and suppression. Furthermore, it sup-
ports active and warm passive replication techniques, as well as fault monitoring by
push and pull methods. Group Service component manages work related to objects
and group membership and provides client transparency. The consensus service en-
sures the total ordered multicast and replica consistency, crash fault detection is done
by monitoring service, and messaging service transmits client server invocations onto
the transport layer. Replication service employs the user to select replication style and
other fault tolerant properties. Clients implement IDL interfaces to use a set of ser-
vices of known replicated server so it does not maintain replication transparency.

516 M. Fahad, A. Nadeem, and M.R. Lyu

Furthermore, recovery services are used incase of failures of object replicas and for
the transfer of application-level state.

5.9 Newtop

 Newtop [15] was developed by the University of Newcastle, which exploits the ser-
vice approach. It follows the similar approach as being implemented by OGS but it
provides more group management facilities. It embeds the support for objects belong-
ing to multiple groups and handling the failures due to partitioning. Newtop Service
Object (NOS), provides the distributed mechanisms and handles client requests in a
fault tolerant way. It achieves its functionality by three services implemented as an
object, i.e., Group management service object, Invocation/multicast service object and
Membership service object. Group management service is responsible for creation
and deletion of objects from groups. Invocation/multicast service provides synchro-
nous and asynchronous communication facilities and information about the object is
kept by the Membership service. However it does not employ consistent remerging of
the subgroups once communication is reestablished. Membership service is also held
responsible for checking crash faults on the bases of a timeout protocol.

5.10 Aquarius

Aquarius was developed at the Hebrew University of Jerusalem, Israel [16]. It ex-
ploits the service approach and is based on Quorum Object Adaptor Architecture [17].
It provides the data-centric approach to build fault tolerance in CORBA.

Aquarius embeds server-side replication support by using the object adaptor ap-
proach like FTS. But it modifies the adaptor by adding an ordering protocol’s algo-
rithm. It employs proxies (stateless servers), which act as middle tier between client
and server. These proxies propagate client requests to server and help to achieve effi-
cient client-server invocation and transparency. It consists of two parallel threads of
execution, one is responsible for propagating client requests to all replica servers and
other is responsible for creating a total order of all client requests. Its architecture is
similar to that of IRL but the middle tier of Aquarius uses independent entities that are
not aware of each other and do not run any kind of distributed protocols among them.
It applies the ordering protocol to maintain strong replica consistency. It utilizes RPC
mechanisms that support asynchronous invocations for delivery of client requests to
all replicas.

5.11 Pluggable Protocol Framework (PPF)

PPF was developed at the University of California, Santa Barbara, which utilizes the
pluggable protocols framework to provide fault tolerance in CORBA [18]. It is an FT
standard CORBA compliant infrastructure and achieves performance to maintain
strong replica consistency, similar to DOORS or Eternal.

There is no need for any modification in CORBA ORB but PPF requires minimal
modification in the application to run. It engages totem toolkit for totally ordered
multicast of messages, fault detection and fault notification. FT protocol plug-in pro-
vides the fault tolerance on the server-side and client-side failover mechanisms. The
Fault Detector, a component of FT protocol plug-in, detects the faults. Interoperability

 A Survey of Fault Tolerant CORBA Systems 517

is achieved by passively replicated gateways, which provide access of un-replicated
clients to replicated servers. Active and semi-active replication styles are supported
for strong replica consistency. Smart duplicate mechanisms are provided for duplicate
message detection and suppression. This scheme is similar to the interception ap-
proach as it employs an underlying toolkit for message delivery but in fact it is closer
to the integration as fault tolerant mechanisms are embedded inside the ORB. But it
differs from the integration-based systems as no need modification in ORB is required
and it can be ported from one ORB to another.

5.12 CARRIAGE

CARRIAGE [19] is a fault tolerant CORBA system developed at the Southeast Uni-
versity of China, which employs portable interceptors to integrate ORBUS and EDEN
to achieve fault tolerant services in CORBA. ORBUS is a CORBA implementation,
and EDEN is a fault tolerant framework provided by IRISA/INRIA, France. Both of
these were combined together on the basis of standardized Portable Interceptor
mechanisms.

EDEN uses active replication style to enhance fault tolerance services. It consists
Replication Manager, which handles all activities related to object replication, and
Total Order Component, which is responsible for totally ordered multicast of mes-
sages. ORBUS, an OMG CORBA specification implementation that supports C++
and JAVA programming environments to work with distributed CORBA objects.
ORBUS supports ClientRequestInterceptor for client-side and ServerRequest- Inter-
ceptor for server-side request processing. The approach followed is similar to the
integration approach, as interceptors are hooked into the ORB; but differs from it as
CARRIGE maintains inherent features of CORBA (i.e., language transparency, loca-
tion transparency, portability and interoperability), which plays a vital role in its suc-
cess. Moreover, it fully follows the standard specification and application programs
do not require any modification to use this framework.

5.13 Lightweight Fault Tolerance (LW-FT)

Felber introduced a lightweight approach of embedding fault tolerance in existing
CORBA system [20]. It employs replicated gateways for client-server interactions and
uses semantic repository for achieving fault tolerance in CORBA. Use of gateways
enables two fault tolerant CORBA frameworks to bridge that are supported by different
mechanisms and QoS.

The proposed architecture uses client-side FT mechanisms and keeps semantic re-
pository about server objects for fault tolerant request processing. The client request is
propagated through replicated Gateway, which uses semantic repository for request
processing. Semantic repository helps to choose optimal protocols for component
interactions, replica management, automatic request redirection in case of failure,
cache management to avoid unnecessary invocations to the servers, and load balanc-
ing of client requests. However, this approach cannot be applied to passively repli-
cated or non-deterministic servers, and does not address the issues of maintaining
strong replica consistency.

518 M. Fahad, A. Nadeem, and M.R. Lyu

5.14 FRIENDS

FRIENDS stand for Flexible and Reusable Implementation Environment for your
Next Dependable System [21]. FRIENDS, a meta-object protocol developed at
LAAS-CNRS, Toulouse, provides libraries of meta-objects for fault tolerance, secure
communication and group-based distributed applications. It exploits the reflective
approach as the first time to build fault tolerance in CORBA systems. It aims to pro-
vide flexibility through object-oriented libraries of meta-objects and enhance
non-functional requirements such as security by using the meta-objects.

FRIENDS system engages separate meta-objects for providing fault tolerance in
CORBA. The system is composed of three layers, Kernel layer, System layer and
User layer. System layer is responsible for providing fault tolerance by detecting
crash faults, stable storage, secure communication, and replication management. User
layer is responsible for controlling application objects and remote object interactions.
System layer is built on the top of the Kernel layer, which is either a UNIX kernel or a
micro kernel. Due to being kernel specific, it does not maintain portability. It uses
time-outs to detect crash faults and both replication styles (active and passive) to
maintain strong replica consistency. By applying FRIENDS, non-fault tolerant appli-
cations do not invoke functions on fault tolerant applications. The drawback of
FRIENDS is that it is not CORBA compliant and fault tolerance properties cannot be
configured dynamically as the link between objects and meta-objects cannot be
changed at runtime.

5.15 FT-MOP

A Reflective fault tolerant CORBA system was developed at LAAS-CNRS, which
uses a Fault Tolerant Meta-Object Protocol (FT-MOP) to build fault tolerance in
CORBA [22]. By FT-MOP, desirable fault tolerance properties can be attached to
CORBA objects as CORBA Meta Objects and enables off-the-shelf ORBs to be used.
Its architecture is an extension of FRIENDS with the elimination of its drawbacks,
which is based on a general-purpose runtime meta-object protocol. FT-MOP provides
more efficient functionality by using a general-purpose compile-time MOP to imple-
ment a runtime MOP, than by using only a runtime MOP as in the FRIENDS system.

FT-MOP controls the behavior and the state of application level CORBA objects.
FT-MOP handles the creation, deletion and invocation of CORBA objects. The client
sends a request to the server by using the stub to invoke the server’s services, which
are implemented as IDL interfaces. The request is propagated to Metaobjects through
the Metastub. Metaobjects controls the behavior and state of the server. FT-MOP is
ORB compliant and it maintains interoperability of ORBs. FT-MOP is C++ language
dependant, but the reuse ability of this system in many application domains with
different object-oriented languages distinguishes it from other systems.

6 Comparative Analysis

Table 3 shows a comparative analysis of the existing FT-CORBA systems, which
provides a quick insight on the features of these systems. Analysis parameters are:
Approach, Interoperability, ORB compliance, OS dependence, Fault detection and

 A Survey of Fault Tolerant CORBA Systems 519

notification, Replication transparency, Replication style, Replication implementation,
Portability, Transparency to application, and FT-CORBA standard compliance. Val-
ues and meanings of these parameters are discussed above along with the systems.

Most of the FT-CORBA such as OGS, Eternal, DOORS, etc. provide fault moni-
toring based on non adaptive fault detectors [10], but their performance can be im-
proved by using adaptive fault monitoring approaches, i.e., Discard Past Consider
Present (DPCP) [23], or ADAPTATION [10] algorithms.

Table 3. Comparison among FT-CORBA Systems

Eternal Isis+Orbix Electra CARRIGE PPF Friends FT-MOP
interception integration integration interception integration reflective reflective
no no no yes yes no yes
yes no no yes yes yes yes
yes yes yes no no yes no
separate combined combined separate separate separate separate
yes yes yes yes yes yes Yes

both both passive active
active,
semi-active

metaobject
protocol

metaobject
protocol

by totem by Isis
by Isis,
Horus EDEN Totem

Open to
programmer

open to
programmer

no no no yes yes no yes
yes yes yes yes yes yes yes
yes no no yes yes no no

Analysis Parameter DOORS FTS IRL OGS Newtop AQuA Aquarius
Approach service service service service service service service
Interoperability yes yes yes yes yes no yes
ORB Compliance yes yes yes yes yes yes yes
OS dependence no no no no no yes no
Fault detection and
notification combined separate separate combined combined separate separate
Replication transparency yes yes yes no no yes yes

ordering protocol Replication style passive both passive both both both

Replication implementation centralized centralized both distributed distributed
By Maestro
/Ensemble data-centric

Portability yes yes yes yes yes no yes
Transparency to application not always not always yes no no not always yes
FT-CORBA standard
compliance yes No no no no no no

7 Conclusion

Traditional CORBA-based middleware cannot meet the demanding quality of service
(QoS) for dependable systems, thus OMG fault tolerant CORBA specification
addressed many of the QoS and fault tolerant mechanisms while maintaining
CORBA’s transparency, interoperability and simplicity of application programming.
FT CORBA is not a replacement of fault tolerant infrastructure that were deployed
before this specification, FT CORBA complements fault tolerant infrastructures by
defining QoS policies, associated fault tolerance mechanisms and services to enhance
the reliability of CORBA applications. This paper presents an overview of FT-
CORBA specification; its architecture, requirements and limitations. We discussed
the existing approaches for building CORBA based distributed systems, and evaluated
the various fault tolerant CORBA systems by analyzing their prominent features and

520 M. Fahad, A. Nadeem, and M.R. Lyu

limitations. We have discussed the various styles of replicating the objects of the
application that provides fault tolerance for CORBA applications.

Acknowledgement. The work described in this paper was partially supported by a
grant from the Research Grants Council of the Hong Kong Special Administrative
Region, China (Project No. CUHK4150/07E).

References

1. Felber, P., Narasimhan, P.: Experiences, Strategies, and Challenges in Building Fault-
Tolerant CORBA Systems. IEEE Transactions on Computers 53(5) (May 2004)

2. Object Management Group: The Common Object Request Broker: Architecture and Speci-
fication, 2.6(edn.) OMG Technical Committee Document, formal/02-01-02 (January 2002)

3. Object Management Group: Fault Tolerant CORBA (Final Adopted Specification), OMG
Technical Committee Document, formal/01-12-29 (December 2001)

4. Maffeis, S.: Run-Time Support for Object-Oriented Distributed Programming, PhD thesis,
Univ. of Zurich (February 1995)

5. Felber, P.: The CORBA Object Group Service: A Service Approach to Object Groups in
CORBA, PhD thesis, Swiss Federal Inst. of Technology, Lausanne (1998)

6. Natarajan, B., Gokhale, A., Yajnik, S., Schmidt, D.C.: Doors: Towards High-Performance
Fault Tolerant CORBA. In: DOA 2000. Proceedings of the Second International Sympo-
sium on Distributed Objects and Applications, pp. 39–48 (February 2000)

7. Narasimhan, P.: Transparent Fault Tolerance for CORBA, PhD thesis, Dept. of Electrical
and Computer Engineering, University of California, Santa Barbara (December 1999)

8. Narasimhan, P., Moser, L.E., Smith, P.M.: State Synchronization and Recovery for
Strongly Consistent Replicated CORBA Objects. In: Proceedings of the 2001 International
Conference on Dependable Systems and Networks, Goteborg, Sweden, pp. 261–270
(2001)

9. Marchetti, C., Mecella, M., Virgillito, A., Baldoni, R.: An Interoperable Replication Logic
for CORBA Systems. In: DOA. Proceedings of the Second International Symposium on
Distributed Objects and Applications, Belgium, pp. 21–23 (September 2000)

10. Sotoma, I.: ADAPTATION - Algorithms to ADAPTive fAulT monItOriNg and Their Im-
plementation on CORBA. In: DOA. Proceedings of the Third International Symposium on
Distributed Object and Applications, pp. 219–228. IEEE, Los Alamitos (2001)

11. IONA and Isis: An Introduction to Orbix+Isis, IONA Technologies Ltd. and Isis Distrib-
uted Systems, Inc. (1994)

12. Cukier, M., Ren, J., Sabnis, C., Sanders, W.H., Bakken, D.E., Berman, M.E., Karr, D.A.,
Schantz, R.: AQuA: An Adaptive Architecture that Provides Dependable Distributed Ob-
jects. In: Proceedings of the 17th IEEE International Symposium on Reliable Distributed
Systems, pp. 245–253 (October 1998)

13. Friedman, R., Hadad, E.: FTS: A high performance CORBA fault tolerance service. In:
Proceedings of the IEEE Workshop on Object-Oriented Real-Time Dependable Systems,
pp. 61–68. IEEE Computer Society Press, Los Alamitos (2002)

14. Marchetti, C., Virgillito, A., Baldoni, R.: Design of an Interoperable FT-CORBA Compli-
ant Infrastructure. In: ERSADS 2001. Proceedings of the 4th European Research Seminar
on Advances in Distributed Systems Dependable Systems, Bertinoro, Italy, pp. 14–18
(May 2001)

 A Survey of Fault Tolerant CORBA Systems 521

15. Morgan, G., Shrivastava, S., Ezhilchelvan, P., Little, M.: Design and Implementation of a
CORBA Fault-Tolerant Object Group Service In:Proceedings of the Second IFIP WG 6.1
International Working Conference on Distributed Applications and Interoperable Systems
(June 1999)

16. Chockler, G., Malkhi, D., Merimovich, B., Rabinowitz, D.: Aquarius: A Data-Centric ap-
proach to CORBA Fault-Tolerance. In: DOA. The workshop on Reliable and Secure Mid-
dleware, in the 2003 International Conference on Distributed Objects and Applications,
Sicily, Italy (November 2003)

17. Chockler, G., Malkhi, D., Dolev, D.: Quorum Based Approach to CORBA Fault-
Tolerance. In: ERSADS 2001. University Residential Center of University of Bologna,
Bertinoro (Forlì), Italy, pp. 14–18 (May 2001)

18. Zhao, W., Moser, L.E., Melliar-Smith, P.M.: Design and implementation of a pluggable
fault tolerant CORBA infrastructure. In: Proceedings of the International Parallel and Dis-
tributed Processing Symposium, Fort Lauderdale, pp. 35–44 (April 2002)

19. Goncalves, F., Greve, P., Hurfin, M., Narzul, J.-P.L.: OPEN EDEN: a Portable Fault Tol-
erant CORBA Architecture. In: Proceedings of the Second International Symposium on
Parallel and Distributed Computing, p. 88. IEEE Computer Society Press, Los Alamitos
(2003)

20. Felber, P.: Lightweight Fault Tolerance in CORBA. In: DOA 2001. Proceedings of the In-
ternational Symposium on Distributed Objects and Applications, pp. 239–247 (September
2001)

21. Fabre, J.C., Pérennou, T.: A Metaobject Architecture for Fault Tolerant Distributed Sys-
tems: The FRIENDS Approach. IEEE Transactions on Computers, Special Issue on De-
pendability of Computing Systems 47(1), 78–95 (1998)

22. Killijian, M.O., Fabre, J.C., Ruiz-García, J.-C., Chiba, S.: A Metaobject Protocol for Fault-
Tolerant CORBA Applications. In: 17th IEEE Symp. on Reliable Distributed Systems,
West Lafayette, Indiana, USA, pp. 127–134 (1998)

23. Sotoma, I.: DPCP (Discard Past Consider Present) - A Novel Approach to Adaptive fault
Detection in Distributed Systems. In: FTDCS 2001. Proceedings of the Eight IEEE Work-
shop on Future Trends of Distributed Computing Systems, IEEE C.S, Los Alamitos (2001)

	A Survey of Fault Tolerant CORBA Systems
	Introduction
	Fault Tolerant Approaches
	Integration Approach
	Interception Approach
	Service Approach
	Reflective Approach

	Replication Styles
	Active Replication
	Passive Replication

	Overview of FT-CORBA
	FT-CORBA Architecture
	Requirements of FT-CORBA Specification
	Limitations of FT-CORBA Specification

	Existing Fault Tolerant CORBA Systems
	Electra
	Orbix+Isis
	Eternal
	DOORS
	AQuA
	FTS
	IRL
	OGS
	Newtop
	Aquarius
	Pluggable Protocol Framework (PPF)
	CARRIAGE
	Lightweight Fault Tolerance (LW-FT)
	FRIENDS
	FT-MOP

	Comparative Analysis
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

