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Abstract. CORBA is an OMG standard for distributed object computing; but 
despite being a standard and wide scale acceptance in the industry it lacks the 
ability to meet high demands of quality of service (QoS) required for building a 
reliable fault tolerant distributed system. To tackle these issues, in 2001, OMG 
incorporated fault tolerance mechanisms, QoS policies and services in its  
standard interfaces as mentioned in its Fault Tolerant CORBA (FT-CORBA) 
specification. FT-CORBA Architecture used the notion of object replication to 
provide reliable and fault tolerant services. In this paper, we surveyed the dif-
ferent approaches for building FT-CORBA based distributed systems with their 
merits and limitations. We gave an overview of FT-CORBA specification; its 
requirements and limitations, and FT-CORBA Architecture. We have also re-
vised the existing categorization of FT-CORBA systems by incorporating a 
fourth approach, i.e., Reflective Approach, in the categorization taxonomy. A 
comparison between different types of replication and FT-CORBA based  
systems is conducted to achieve quick insight on their features.  

Keywords: CORBA Middleware, Object Replication Styles, Fault Tolerant 
CORBA Specification, Fault Tolerant CORBA systems. 

1   Introduction 

Distributed systems are used in a variety of application domains in which services are 
provided by independent components working together as a single transparent system. 
In distributed systems, CORBA is accepted as a standard because of its inherent loca-
tion transparency, portability, interoperability and language independence [1]. With 
these features, CORBA was made a standard for distributed object computing by the 
Object Management Group (OMG) [2]. In CORBA, Interface Definition Language 
(IDL) defines interfaces to objects. Clients have to implement IDL interfaces to ac-
cess server functionality and this makes CORBA language independent. By location 
transparency, clients can invoke server objects without worrying about the location of 
the server objects. Portability makes CORBA independent of specific ORB and the 
system can be implemented and used on top of any CORBA-compliant ORB. This is 
achieved by the Portable Object Adaptor (POA), a component of CORBA, which is 
responsible for making server-side functionality appear as CORBA object to clients. 
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Interoperability of CORBA ensures the system to be used by the clients and servers, 
running on ORBs from different vendors. Despite these benefits, CORBA does not 
address partial failures and does not provide totally ordered multicast of messages 
while building distributed systems [2], which are the key factors of fault tolerance. 

To provide fault tolerance in distributed CORBA based systems, Fault Tolerant 
(FT) CORBA specification defines interfaces, QoS policies, associated fault tolerance 
mechanisms and services to enhance the reliability of CORBA applications [3]. Exist-
ing fault tolerant CORBA systems provide fault tolerance through replication of 
CORBA objects. By replicated objects, fault tolerant services are provided even if one 
of individual entities fails. A replicated object is implemented by a set of distinct 
CORBA objects called an object group, i.e., an abstraction to provide replication 
transparency and failure transparency [4]. These systems differ mostly at the level at 
which the replication mechanism support is introduced. Felber and Narasimhan cate-
gorize the FT CORBA systems on this basis into three categorizes: integration, inter-
ception and service [1] and discuss the experiences and lessons learnt in building their 
two distinct FT CORBA systems.  

This paper presents the overview of Fault Tolerant CORBA Specification; its ar-
chitecture, requirements and limitations. We surveyed the FT-CORBA systems based 
on their FT properties and highlighted their prominent features and limitations. We 
analyzed the several different approaches that implement FT-CORBA and revised the 
existing categorization of FT-CORBA systems by incorporating a fourth approach 
called Reflective Approach in the existing categorization taxonomy. Moreover we 
compared the working of individual systems on different criteria and provide analysis 
matrix to achieve quick insight on their infrastructures.  

The rest of this paper is organized as follows: Section 2 covers the approaches of 
building the fault tolerant CORBA system with their merits and limitations. Section 3 
throws light on replication styles and comparison of these styles. Section 4 gives the 
overview of Fault Tolerant CORBA Specification; its requirement, architecture and 
limitations. Section 5 covers the Fault Tolerant CORBA systems with a critical look 
on their features. Section 6 shows our analysis about the FT-CORBA systems. Sec-
tion 7 concludes the paper. 

2   Fault Tolerant Approaches 

According to the built-in support of replication logic, various fault tolerant systems 
are categorized into four approaches, which are termed as Integration approach, Inter-
ception approach, Service approach and Reflective approach. Taxonomies of the first 
three approaches can be found in [5,6,7]. With the passage of time new FT-CORBA 
Systems were built introducing fourth approach, i.e., Reflective approach. So here we 
incorporate the fourth approach in the existing (old) categorization taxonomy. Sum-
marized features of these approaches are represented in Table 1. 

2.1   Integration Approach 

In this approach, support for replication is integrated transparently into the ORB. It 
integrates necessary fault tolerant replication by proprietary mechanisms in the ORB. 
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This is the most efficient approach but modification in the ORB makes this approach 
non-compliant with the CORBA standard, i.e., does not enable off-the-shelf ORBs to 
be used. In this approach, modified ORB gets a message from application objects, 
passes it to the adapter object that multicasts it by using underlying toolkit. Fault 
tolerance mechanisms and replication strategies are transparent to the client as these 
are integrated into the ORBs. Portability is not achieved but interoperability can be 
achieved depending on the support for IIOP invocations (Internet Inter-ORB Protocol, 
a CORBA Standard for invocations). 

2.2   Interception Approach 

In this approach, support for replication is provided underneath the ORB, which 
makes the replication logic transparent to the users.   Messages from client and server 
are intercepted transparently, externally to the ORB by using low level (OS-level) 
interceptor and then multicast by the group communication toolkit. The use of low-
level interceptor makes this approach non-portable. Moreover as there is no need of 
modification in ORB, thus systems built using this approach are ORB compliant. 
Interoperability can be achieved by writing an interception layer of each distinct OS.  

2.3   Service Approach 

In this approach, support for replication is provided through a collection of CORBA 
objects that reside above the ORB. As there is no need to modify the ORB, the sys-
tems built exploiting this approach are CORBA compliant, interoperable and portable. 
To use service objects that provide the policies and mechanisms for achieving fault 
tolerance, application objects require knowledge of these service objects and hence 
application code needs modifications to use their functionality. Each request from 
application objects to service objects passes through the underlying ORB, which in-
creases performance overheads. Service objects are defined as IDL interfaces so they 
are independent of language constructs. Service objects can be made distributed by 
locating them on different hosts on the network. 

Table 1. Comparison between Fault tolerant Approaches 

System Features Integration Interception Service Reflective 
ORB Compliance No Yes Yes Yes 
Transparency Yes Yes Depends on service 

implementation 
Yes 

OS dependence No Yes No No 
Portability No Can 

be achieved 
Yes Yes 

Interoperability Depends on  
IIOP invocation 

 
Yes 

 
Yes 

yes 

Performance Most efficient Efficient Good Good 

System Example Electra, PPF, 
Orbix+Isis 
 

Eternal, 
CARRIGE 

OGS, DOORS, 
AQuA, Newtop, 
FTS, IRL, Aquarius 

FRIENDS, 
FT-MOP 
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2.4   Reflective Approach 

Reflection approach separates the concerns between the application and the fault 
tolerance mechanisms and enables off-the-shelf ORBs to be used. It employs 
metalevel architecture to integrate fault tolerance in CORBA systems and provides a 
means to develop transparent fault tolerance software as any CORBA software with 
different object-oriented languages. In this approach the replication necessarily in-
volves creating a single point of failure outside the client’s failure domain, thus par-
tially defeating the purpose of the replication (no single failure is visible to the client). 
The use of Metaobjects Protocol (MOP) and restricted reflective features of some 
object-oriented languages makes this approach different from other approaches. Using 
this approach MOP can be implement as compile time or runtime. But the integration 
of runtime and compile-time MOPs enables more efficient functionality for fault 
tolerance. This MOP is CORBA compliant which enables the execution and the state 
evolution of CORBA objects to be controlled. Metaobjects are not only used for the 
purpose of fault tolerance but can also be used for security purposes.  Interoperability 
can be achieved with the engagement of Metaobjects protocol.  

All these approaches support different types of object replication styles in which 
they replicate their constituent objects. The need for object replication is to increase 
the reliability and performance of the system. Failure of a replica does not affect the 
services provided, as other replicas are there to give the required services. Perform-
ance issues arise when distributed systems need to scale in number and geographical 
area [4]. Fault tolerance benefits can be achieved only when object replication main-
tains strong replica consistency. Strong replica consistency means that all the repli-
cated objects should have the same state and they perform the same behavior. There 
are many issues which should be analyzed while maintaining strong replica consis-
tency [7,8]. First, all the replicas perform the same sequence of operations in the same 
order. Second, to perform a single invocation multi-replicated client objects initiate a 
request to replicated server objects, thus each of server objects receive multiple re-
quests made by each of the client object. Therefore, the system should be capable 
enough to detect duplicate requests. Third, systems which support multithreading 
should carefully analyze different threads and the functions they perform. Fourth, in 
case of failure of replicated objects, recovery mechanisms should be transparently 
managed to provide the reliable fault tolerant services. 

3   Replication Styles  

The replication logic is a set of protocols, mechanisms and services that allow a 
CORBA system to handle object replication [9]. There are many styles of object rep-
lication but the main ones are Active replication and Passive replication [5,6,7]. Un-
derlying mechanisms for both are the same but their role to provide strong replica 
consistency is different. Some of the FT-CORBA systems rely on proprietary group 
toolkit for replication logic implementation but others provide either centralized repli-
cation logic in its core or completely distributed above the ORBs [9]. A comparison 
between replication styles is represented in Table 2. 
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3.1   Active Replication 

In Active Replication, all replicated objects are active and independently handle client 
requests and return the responses to the client. Duplicate responses should be detected 
and suppressed to provide client transparency. One of these active replica objects is 
called primary, while others act as backup. The crash failure of single primary is 
masked by the presence of other active replica by providing fault tolerant services; 
thus this style provides better fail-over time, and state transfer and recovery mecha-
nisms are provided to regain the use of the crashed node. To ensure replica consis-
tency, it consumes a lot of computational resources and totally ordered multicast of 
messages is needed to maintain the same state and to achieve same behavior by active 
replicas, i.e., it needs operations on the replicated objects to be deterministic. It 
shields fastest recovery from faults.  

3.2   Passive Replication 

In Passive Replication only one operational replica is active, termed as primary, to 
fulfill client request. It requires less memory and processing costs, and shields slower 
recovery from faults. On the basis of recovery mechanisms it has two variations:  

Warm Passive. Only one server replica (primary) is active in each object group and 
remaining replicas are preloaded into the memory and are synchronized periodically 
to handle state transfer while crash faults. To achieve this state synchronization, 
totally ordered multicast as well as deterministic operations are needed.  Only active 
replica is operational to fulfill client request, while backups are running for the sake 
of state storage and state transfer in case of primary failure. When primary fails, new 
primary is selected from the backup replicas. 

Table 2. Comparison between Replication Styles 

Analysis Parameters Active Warm Passive Cold Passive 
Number of operational replica All Only primaries One 
Fail-over time Very low Medium Very high 
Computational resources High Medium Low 
Duplicate message detection and 
suppression required 

Yes Yes No 

Totally ordered multicast required Yes Yes No 
Operations on replicated objects Deterministic Deterministic Non-

deterministic 
Recovery from faults Fastest, 

very Rapid 
Rapid Slower 

Cold Passive. Only one server replica is active and the remaining replicas are not 
even preloaded into the memory. State of the primary is logged into the storage for 
recovery mechanisms. If the primary fails, new primary is created and state is 
transferred from logged storage to the new primary, which increases the fail-overtime. 
This approach uses less resources and non-deterministic operations, as only one 
replica is operational at a time. 
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4   Overview of FT-CORBA  

In 1998, Object Management Group (OMG) felt the need of making fault tolerant 
standard properties for CORBA Architecture for adding availability and reliability in 
CORBA applications. Hence issued a Request For Proposal (RFP) that results the 
Fault Tolerant CORBA specifications in early 2000 [3]. FT-CORBA specification 
addressed the issues of entity redundancy, fault detection, and fault recovery. This 
section throws a light on FT-CORBA Specification.  

4.1   FT-CORBA Architecture 

The Fault Tolerant CORBA Architecture [3] is achieved by handling issues of object 
replication transparently, fault detection and recovery mechanisms in CORBA Archi-
tecture as shown in the Fig. 1. Major components with their functionality are:  
 

Replication Manager. Replication Manager has three components; Property Man-
ager, Generic Factory, and Object Group Manager. Property Manager allows ap-
plication developer to choose and set object group properties i.e. replication style, 
consistency style, membership style etc according to requirements. Generic Factory 
creates objects and makes object groups. Object Group Manager adds or deletes 
members.  

 

Fig. 1. The Architecture of Fault Tolerant CORBA [7] 
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Fault Detector and Fault Notifier. Fault Detector supports Pull Model and Push 
Model based fault monitoring [3]. In Pull Monitoring, crash faults are detected by 
invoking an isAlive() method of monitored object asking about its aliveness. If 
monitored object does not reply within some time interval then it is assumed that 
object has crashed. By this approach, application checks the status of objects when it 
is needed [10]. In Push Monitoring, crash faults are detected on the basis of 
I_am_Alive() messages sent by monitored object who tells about its aliveness. Crash 
fault of monitored object is assumed when it does not send message telling about its 
aliveness. By this approach fast detection of the crash failure is achieved [10]. 
Whenever a fault is detected, Fault Detector reports the fault to Fault Notifier, which 
diverts it to Replication Manager to take necessary actions. There should be separate 
Fault Detector and Fault Notifier components according to standard Fault tolerant 
CORBA specification. 
 
Logging and Recovery. FT-CORBA defines a logging and recovery mechanisms by 
two IDL interfaces (Checkpointable and Updateable). The logging mechanism peri-
odically stores object related information on the log, and recovery mechanism  
retrieves log information to restore valid state to the crashed replica. 

4.2   Requirements of FT-CORBA Specification 

According to FT-CORBA specification [3], system build on CORBA middleware 
should preserve CORBA object model for the infrastructure-controlled consistency 
style, and extended format of Interoperable Object Reference (IOR) should be used 
for the individual replicas so that legacy ORBs that does not support fault tolerance 
can invoked methods on ORBs that support fault tolerance and vice versa. Each com-
ponent should be replicated to avoid single point of failure; moreover creation and 
deletion of objects, fault detection, and recovery mechanisms should be invisible to 
client to achieve transparency. In case of failure of replica, client’s request should be 
transparently redirected to other available replica and client ORB systematically  
re-initiate the request until the request fulfills.  

4.3   Limitations of FT-CORBA Specification 

FT-CORBA specification [3] has many limitations that are: i) Clients running on non-
FT-CORBA can invoke methods/operations on an object group, supported by the 
fault tolerant infrastructure without taking the benefits of its fault tolerant properties. 
ii) To achieve interoperability and full fault tolerance, the hosts with in a domain 
should use fault tolerant infrastructure and ORBs from the same vendor. iii) To 
achieve strong replica consistency, specification addressed that application objects 
should have deterministic behavior. iv) There is no support for partitioned systems, 
and Network-Partitioning faults, Commission faults (wrong results generated by the 
objects), and Correlated faults (Design Faults, and Programming Logic Errors) are 
not addressed in the specification. 
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5   Existing Fault Tolerant CORBA Systems 

Many FT-CORBA systems were developed to address the issues of secure group 
based communication for embedding fault tolerance by the notion of object replica-
tion. The evolution of FT-CORBA systems starts with the integration of fault tolerant 
properties in the ORB, but later on different approaches were introduced to build 
replication for ease of use and customization purpose to provide fault tolerance in 
CORBA based distributed systems. The following sub-sections present the brief  
introduction to various Fault Tolerant Systems.  

5.1   Electra 

The Electra [4] is one of the earliest implementation of fault tolerant CORBA sys-
tems, developed at the University of Zurich which exploits the integration approach. 
It was the first time using the strengths of CORBA model and improving the weak-
nesses of CORBA model with group communication for consistent ordering of  
distributed events and transactions, handling of partial failures and support of asyn-
chronous communication. 

The first research based CORBA object request broker, Electra, combines the 
benefits of CORBA object model and virtual synchrony with reliable group commu-
nication as part of an ORB to achieve fault tolerance. As the replication logic is em-
bedded into the ORB, it neither is ORB compliant nor maintains interoperability of 
CORBA architecture. Also we cannot achieve interoperability using Electra. The key 
focus of Electra is to enable ORB with build-in fault tolerant capabilities. All the 
special features of adding fault tolerance are enhanced by two C++ interfaces Basic 
Adaptor Object (BOA) Interface and Environment Interface, so C++ is the only target 
language for building fault tolerant CORBA based application using Electra proto-
type. Underlying toolkit, which is built on the model of virtual synchrony, provides 
reliable multicast. BOA provides active replication and Environment Interface is 
responsible for synchronous, asynchronous and deferred-synchronous communica-
tion. Adaptor object has the code specific to the toolkit so application developer can 
use another toolkit by simply relinking the application with the appropriate Adaptor 
Object. Basic Adaptor Object, which is hooked into the ORB, is responsible for repli-
cation services and mechanisms like creation and deletion of objects and object 
groups, and state transfer when primary replica fails. It also allows application devel-
opers to select the ordering protocol given by the toolkit according to requirements. 
Group communication is achieved by the subsystems (Horus, Isis) that are built on the 
model of virtual synchrony to maintain replica consistency.  

5.2   Orbix+Isis 

First commercially available Fault Tolerant CORBA system [11] developed by the 
IONA Technologies was Orbix+Isis, which exploits the integration approach. Isis 
developed by the Isis Distributed Systems was the first commercial toolkit built upon 
the model of virtual synchrony to provide high performance, totally ordered multicast 
and fault monitoring. Orbix is the C++ development environment to work on distrib-
uted CORBA objects. 
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It modifies ORB to use Isis toolkit which provides totally ordered multicast reliable 
communication, object groups and failure monitoring, whereas Orbix provides the 
object oriented environment to work on distributed objects and supports point-to-
point communication. Fault tolerant replication mechanisms are implemented by 
using two base classes ActiveReplica and Stream Event. ActiveReplica provides trans-
parent Active and hot-passive replication, and Event Stream (supports asynchronous 
requests using publish/subscribe paradigm) makes object groups and used for load 
balancing. Orbix+Isis allows application developers to select the object replication 
execution style. Transparent replications of server objects and filter mechanisms are 
provided by the Orbix specific smart proxies. Active replica execution style also gives 
an option to select the replication style. In Event Stream style, Event Streams are 
replicated which keep event history and Event Log. Servers registered to specific 
events are invoked by Event Stream when it receives the event from the client.  Fault 
monitoring is based on two functions _newMember() and _memberLeft(). The former 
is called when an object joins group and latter one is called when the object leaves.   

5.3   Eternal 

Eternal [1,7], a FT CORBA standard, was developed at the University of California, 
Santa Barbara, which exploits the interception approach to provide transparent fault 
tolerance to ORB and application as well. It employs Totem toolkit for totally ordered 
multicast. 

Eternal has an ORB compliant architecture but does not maintain interoperability 
of CORBA because when request came, it is captured by OS-level interceptor and 
then propagated to ORB, thus making Eternal OS dependant. Interoperability can still 
be achieved by writing a separate interception layer for every different ORB. It sup-
ports active and different types of passive replication (e.g. cold passive, warm pas-
sive) and logging-recovery mechanisms to provide reliable consistent replication. 
Active replication allows the Eternal to work, when single replica fails as this is 
masked by the presence of other active replicas and during recovery phase. For pro-
viding consistent replication it maintains three types of states; application level state, 
ORB/POA level state and Infrastructure state, and this distinguishes Eternal from 
other fault tolerant CORBA systems.  It provides fault detection service based on 
user-defined timeouts to identify crash faults. It allows developers to select configura-
tion management properties of fault tolerance, and employs mechanisms to overcome 
the non-determinism inherent in multithreaded CORBA applications. 

5.4   DOORS  

The Distributed Object Oriented Reliable Service (DOORS) [6] is an application-level 
framework developed at Lucent Technologies as an experimental middleware so that 
lessons learned during its implementation are integrated into the FT-CORBA standard. 
DOORS exploits the service approach to provide fault tolerance and follows an ORB 
compliant architecture which maintains interoperability of CORBA. The proposed 
architecture supports active and passive replication, but prototype implementation  
only provides passive replication. Both pull and push methods of fault monitoring are 
supported to provide fault detection and employs libraries for the transparent  
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checkpointing of applications. Fault detection and fault notification are merged into 
fault detector component. It provides transparently fault detection and fail-over to the 
client. The prototype does not support recovery and logging mechanisms, and dupli-
cate detection and suppression of messages for reliable fault tolerance. Replication 
Manager is responsible for configuration management and replication mechanisms by 
allowing application developer to choose and set object group properties i.e. replication 
style and consistency style, according to requirements. Fault Detector detects the faults 
and reports them to super fault detector that diverts them to replication manager to take 
necessary actions. There is no separate Fault Notifier component thus it violates the 
standard fault tolerant CORBA specification. All these component services act as 
CORBA objects above the ORB. 

5.5   AQuA 

The BBN Technologies and University of Illinois, developed the AQuA’s gateway 
architecture to provide adaptive fault tolerance to CORBA systems [12]. Its architec-
ture consists of Quality Objects, Proteus, Maestro/Ensemble and gateways. It replaces 
the ORB IIOP implementation with proprietary gateway which propagates IIOP calls 
to other CORBA objects by using Maestro/Ensemble toolkit. The gateway and the 
group toolkit employ the replication logic. Due to replacement of only IIOP module 
of ORB with gateway, it is regarded to exploit integration approach [9]. But as the 
gateway captures the initial request by client object which acts as an OS-level inter-
ceptor, it is regarded to exploit interception approach [6]. We classified AQuA  
exploiting service approach, as it provides replication via a collection of CORBA 
objects above the ORB [1]. Nevertheless, interoperability is achieved by implement-
ing gateway for each different OS and ORB. The configuration management regard-
ing fault tolerance properties can be set during runtime. Push-based or heartbeat fault 
monitoring is supported for fault detection. Different types of active and passive rep-
lication schemes are supported to tolerate crash and value faults. The application 
developer can set the level of dependability by Quality Objects according to desired 
application requirements and state of the distributed system during execution of the 
system. Proteus, a flexible infrastructure, has replicated dependability manager, gate-
way handler and object factory. The replication dependability manager makes deci-
sions on reported faults, manages configuration properties, and replicas are created 
and deleted by the object factories. 

5.6   FTS 

FTS [13] as a lightweight CORBA fault tolerance service was developed at Israel 
Institute of Technology that maintains the portability and interoperability of CORBA 
ORBs.  It aims to support transparent client-side replication and embeds fault toler-
ance in CORBA by utilizing the standard CORBA’s Portable Object Adaptor (POA). 

It provides fail-over transparency and reliable transparent fault tolerance by redirect-
ing a client’s requests during processing. It supports two types of fault detection; proc-
ess-based which is monitoring of Group Object Adaptor (GOA) and object-based in 
which all the objects are monitored which are connected with GOA by push  
fault monitoring model. Active replication of server objects is supported. A set of 
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components, which provide reliable functionality for fault tolerance, are merged into 
group object adaptor, which is built on the top of POA. FTS Interceptors detect faults 
during client-server replica communication and redirects a client’s request to other 
replicas when they receive an indication of faults during request processing, thus add-
ing reliable transparent fault tolerance to client applications. It partially supports  
network partitioning by imposing a primary component model.  

5.7   IRL 

IRL was developed by the University La Sapienza, Roma, Italy, which exploits the 
service approach [9]. It maintained the CORBA’s interoperability and was built with 
supports of passive centralized replication logic. Later on, a distributed design was 
proposed to give more reliable fault tolerant properties [14]. 

With its replication logic implemented as CORBA objects above the ORB, IRL  
offers interoperable ORB compliant architecture in which all the components are 
deployed distributedly to avoid single point of failure, thus adding more reliable fault 
tolerant ways to handle client’s request in a more transparent manner. Adding support 
of the client-side replication and the server-side replication to system makes IRL 
more reliable while achieving good performance. Object Replicas are distributed in 
different host domains for balancing loads and achieving high fault tolerance. To 
handle object creation and deletion, replication style and its management, Object 
Group Handler (OGH) and Object Group (OGs) Components were designed. Fault 
detector and fault notifier detect faults and provide fail-over transparency to clients. 
Host-specific IRL components as well as domain-specific IRL components handle 
failure management activities. Local failure detectors monitor crash faults by pull 
fault tolerant technique. Recovery mechanisms are carried out by Object Group com-
ponent, which ensures strong replica consistency in a group.   

5.8   OGS 

Object Group Service (OGS) [5] developed at the Swiss Federal Institute of Technology, 
Lausanne, exploits the service approach as the first time in the history to provide fault 
tolerance in a CORBA system. It maintains interoperability and provides distributed 
replication support in building more reliable fault tolerance.  

OGS supports a set of independent generic IDL specified interfaces, which pro-
vides transparent group invocations. It preserves portability of CORBA ORBs, and 
provides both reliable (for read-only client requests) and unreliable multicast of mes-
sages, and mechanisms for duplicate detection and suppression. Furthermore, it sup-
ports active and warm passive replication techniques, as well as fault monitoring by 
push and pull methods. Group Service component manages work related to objects 
and group membership and provides client transparency. The consensus service en-
sures the total ordered multicast and replica consistency, crash fault detection is done 
by monitoring service, and messaging service transmits client server invocations onto 
the transport layer. Replication service employs the user to select replication style and 
other fault tolerant properties. Clients implement IDL interfaces to use a set of ser-
vices of known replicated server so it does not maintain replication transparency. 
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Furthermore, recovery services are used incase of failures of object replicas and for 
the transfer of application-level state. 

5.9   Newtop 

 Newtop [15] was developed by the University of Newcastle, which exploits the ser-
vice approach. It follows the similar approach as being implemented by OGS but it 
provides more group management facilities. It embeds the support for objects belong-
ing to multiple groups and handling the failures due to partitioning. Newtop Service 
Object (NOS), provides the distributed mechanisms and handles client requests in a 
fault tolerant way. It achieves its functionality by three services implemented as an 
object, i.e., Group management service object, Invocation/multicast service object and 
Membership service object. Group management service is responsible for creation 
and deletion of objects from groups. Invocation/multicast service provides synchro-
nous and asynchronous communication facilities and information about the object is 
kept by the Membership service. However it does not employ consistent remerging of 
the subgroups once communication is reestablished. Membership service is also held 
responsible for checking crash faults on the bases of a timeout protocol.  

5.10   Aquarius 

Aquarius was developed at the Hebrew University of Jerusalem, Israel [16]. It ex-
ploits the service approach and is based on Quorum Object Adaptor Architecture [17]. 
It provides the data-centric approach to build fault tolerance in CORBA. 

Aquarius embeds server-side replication support by using the object adaptor ap-
proach like FTS. But it modifies the adaptor by adding an ordering protocol’s algo-
rithm. It employs proxies (stateless servers), which act as middle tier between client 
and server. These proxies propagate client requests to server and help to achieve effi-
cient client-server invocation and transparency. It consists of two parallel threads of 
execution, one is responsible for propagating client requests to all replica servers and 
other is responsible for creating a total order of all client requests. Its architecture is 
similar to that of IRL but the middle tier of Aquarius uses independent entities that are 
not aware of each other and do not run any kind of distributed protocols among them. 
It applies the ordering protocol to maintain strong replica consistency. It utilizes RPC 
mechanisms that support asynchronous invocations for delivery of client requests to 
all replicas. 

5.11   Pluggable Protocol Framework (PPF) 

PPF was developed at the University of California, Santa Barbara, which utilizes the 
pluggable protocols framework to provide fault tolerance in CORBA [18]. It is an FT 
standard CORBA compliant infrastructure and achieves performance to maintain 
strong replica consistency, similar to DOORS or Eternal.  

There is no need for any modification in CORBA ORB but PPF requires minimal 
modification in the application to run. It engages totem toolkit for totally ordered 
multicast of messages, fault detection and fault notification. FT protocol plug-in pro-
vides the fault tolerance on the server-side and client-side failover mechanisms. The 
Fault Detector, a component of FT protocol plug-in, detects the faults. Interoperability 
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is achieved by passively replicated gateways, which provide access of un-replicated 
clients to replicated servers. Active and semi-active replication styles are supported 
for strong replica consistency. Smart duplicate mechanisms are provided for duplicate 
message detection and suppression. This scheme is similar to the interception ap-
proach as it employs an underlying toolkit for message delivery but in fact it is closer 
to the integration as fault tolerant mechanisms are embedded inside the ORB. But it 
differs from the integration-based systems as no need modification in ORB is required 
and it can be ported from one ORB to another.  

5.12   CARRIAGE 

CARRIAGE [19] is a fault tolerant CORBA system developed at the Southeast Uni-
versity of China, which employs portable interceptors to integrate ORBUS and EDEN 
to achieve fault tolerant services in CORBA. ORBUS is a CORBA implementation, 
and EDEN is a fault tolerant framework provided by IRISA/INRIA, France. Both of 
these were combined together on the basis of standardized Portable Interceptor 
mechanisms.   

EDEN uses active replication style to enhance fault tolerance services. It consists 
Replication Manager, which handles all activities related to object replication, and 
Total Order Component, which is responsible for totally ordered multicast of mes-
sages. ORBUS, an OMG CORBA specification implementation that supports C++ 
and JAVA programming environments to work with distributed CORBA objects. 
ORBUS supports ClientRequestInterceptor for client-side and ServerRequest- Inter-
ceptor for server-side request processing.  The approach followed is similar to the 
integration approach, as interceptors are hooked into the ORB; but differs from it as 
CARRIGE maintains inherent features of CORBA (i.e., language transparency, loca-
tion transparency, portability and interoperability), which plays a vital role in its suc-
cess. Moreover, it fully follows the standard specification and application programs 
do not require any modification to use this framework. 

5.13   Lightweight Fault Tolerance (LW-FT) 

Felber introduced a lightweight approach of embedding fault tolerance in existing 
CORBA system [20]. It employs replicated gateways for client-server interactions and 
uses semantic repository for achieving fault tolerance in CORBA. Use of gateways 
enables two fault tolerant CORBA frameworks to bridge that are supported by different 
mechanisms and QoS. 

The proposed architecture uses client-side FT mechanisms and keeps semantic re-
pository about server objects for fault tolerant request processing. The client request is 
propagated through replicated Gateway, which uses semantic repository for request 
processing. Semantic repository helps to choose optimal protocols for component 
interactions, replica management, automatic request redirection in case of failure, 
cache management to avoid unnecessary invocations to the servers, and load balanc-
ing of client requests. However, this approach cannot be applied to passively repli-
cated or non-deterministic servers, and does not address the issues of maintaining 
strong replica consistency. 
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5.14   FRIENDS 

FRIENDS stand for Flexible and Reusable Implementation Environment for your 
Next Dependable System [21]. FRIENDS, a meta-object protocol developed at 
LAAS-CNRS, Toulouse, provides libraries of meta-objects for fault tolerance, secure 
communication and group-based distributed applications. It exploits the reflective 
approach as the first time to build fault tolerance in CORBA systems. It aims to pro-
vide flexibility through object-oriented libraries of meta-objects and enhance  
non-functional requirements such as security by using the meta-objects. 

FRIENDS system engages separate meta-objects for providing fault tolerance in 
CORBA. The system is composed of three layers, Kernel layer, System layer and 
User layer. System layer is responsible for providing fault tolerance by detecting 
crash faults, stable storage, secure communication, and replication management. User 
layer is responsible for controlling application objects and remote object interactions. 
System layer is built on the top of the Kernel layer, which is either a UNIX kernel or a 
micro kernel.  Due to being kernel specific, it does not maintain portability. It uses 
time-outs to detect crash faults and both replication styles (active and passive) to 
maintain strong replica consistency.  By applying FRIENDS, non-fault tolerant appli-
cations do not invoke functions on fault tolerant applications. The drawback of 
FRIENDS is that it is not CORBA compliant and fault tolerance properties cannot be 
configured dynamically as the link between objects and meta-objects cannot be 
changed at runtime. 

5.15   FT-MOP 

A Reflective fault tolerant CORBA system was developed at LAAS-CNRS, which 
uses a Fault Tolerant Meta-Object Protocol (FT-MOP) to build fault tolerance in 
CORBA [22]. By FT-MOP, desirable fault tolerance properties can be attached to 
CORBA objects as CORBA Meta Objects and enables off-the-shelf ORBs to be used.  
Its architecture is an extension of FRIENDS with the elimination of its drawbacks, 
which is based on a general-purpose runtime meta-object protocol. FT-MOP provides 
more efficient functionality by using a general-purpose compile-time MOP to imple-
ment a runtime MOP, than by using only a runtime MOP as in the FRIENDS system.  

FT-MOP controls the behavior and the state of application level CORBA objects. 
FT-MOP handles the creation, deletion and invocation of CORBA objects. The client 
sends a request to the server by using the stub to invoke the server’s services, which 
are implemented as IDL interfaces. The request is propagated to Metaobjects through 
the Metastub. Metaobjects controls the behavior and state of the server. FT-MOP is 
ORB compliant and it maintains interoperability of ORBs. FT-MOP is C++ language 
dependant, but the reuse ability of this system in many application domains with  
different object-oriented languages distinguishes it from other systems.  

6   Comparative Analysis 

Table 3 shows a comparative analysis of the existing FT-CORBA systems, which 
provides a quick insight on the features of these systems. Analysis parameters are: 
Approach, Interoperability, ORB compliance, OS dependence, Fault detection and 
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notification, Replication transparency, Replication style, Replication implementation, 
Portability, Transparency to application, and FT-CORBA standard compliance. Val-
ues and meanings of these parameters are discussed above along with the systems. 

Most of the FT-CORBA such as OGS, Eternal, DOORS, etc. provide fault moni-
toring based on non adaptive fault detectors [10], but their performance can be im-
proved by using adaptive fault monitoring approaches, i.e., Discard Past Consider 
Present (DPCP) [23], or ADAPTATION [10] algorithms. 

Table 3. Comparison among FT-CORBA Systems 

Eternal Isis+Orbix Electra CARRIGE PPF Friends FT-MOP
interception integration integration interception integration reflective reflective 
no no no yes yes no yes 
yes no no yes yes yes yes
yes yes yes no no yes no
separate combined combined separate separate separate separate 
yes yes yes yes yes yes Yes

both both passive active 
active,
semi-active

metaobject 
protocol 

metaobject 
protocol 

by totem by Isis 
by Isis,  
Horus EDEN Totem 

Open to 
programmer 

open to 
programmer

no no no yes yes no yes 
yes yes yes yes yes yes yes
yes no no yes yes no no

Analysis Parameter DOORS FTS IRL OGS Newtop AQuA Aquarius 
Approach service service service service service service service
Interoperability yes yes yes yes yes no yes
ORB Compliance yes yes yes yes yes yes yes
OS dependence no no no no no yes no
Fault detection and  
notification combined separate separate combined combined separate separate 
Replication transparency yes yes yes no no yes yes

ordering protocol Replication style passive both passive both both both 

Replication implementation centralized centralized both distributed distributed 
By Maestro 
/Ensemble data-centric 

Portability yes yes yes yes yes no yes
Transparency to application not always not always yes no no not always yes 
FT-CORBA standard 
compliance yes No no no no no no

 

7   Conclusion 

Traditional CORBA-based middleware cannot meet the demanding quality of service 
(QoS) for dependable systems, thus OMG fault tolerant CORBA specification 
addressed many of the QoS and fault tolerant mechanisms while maintaining 
CORBA’s transparency, interoperability and simplicity of application programming. 
FT CORBA is not a replacement of fault tolerant infrastructure that were deployed 
before this specification, FT CORBA complements fault tolerant infrastructures by 
defining QoS policies, associated fault tolerance mechanisms and services to enhance 
the reliability of CORBA applications. This paper presents an overview of FT-
CORBA specification; its architecture, requirements and limitations. We discussed 
the existing approaches for building CORBA based distributed systems, and evaluated 
the various fault tolerant CORBA systems by analyzing their prominent features and 



520 M. Fahad, A. Nadeem, and M.R. Lyu 

limitations. We have discussed the various styles of replicating the objects of the 
application that provides fault tolerance for CORBA applications.   
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