
Video Summarization Using Greedy Method in a Constraint Satisfaction
Framework

Lu Shi, Irwin King, and Michael R. Lyu
Department of Computer Science and Engineering

The Chinese University of Hong Kong
Shatin, N.T., Hong Kong SAR

{slu, king, lyu}@cse.cuhk.edu.hk

Abstract

Video resources are pervasive nowadays. Since it is
time-consuming for the user to download and browse
videos, video summarization techniques, which aim at pro-
viding a way for the user to grasp the major content of the
video without browsing the whole video, have become more
and more important. In this paper, we present a feature-
based video summarization framework based on constraint
satisfaction programming. We transform the feature dis-
tribution and the user requirements to a set of constraints
to be satisfied. We will show some experimental results
and discuss the effectiveness and efficiency of our solution.
We have also developed a system to generate video sum-
maries with the suggested constraint-satisfaction program-
ming framework.

1 Introduction

With the rapid growth of network bandwidth and high-
capacity storage devices, videos have become pervasive
nowadays. However, the abundance of video data gives rise
to a new challenge: since it is time-consuming to download
and browse most parts of a video before we know the video
contents, it is difficult to find out a video file that we want
from the vast video repositories. Moreover, in some cases
in which we do not have enough bandwidth to stream all the
original video, e.g, some wireless hand-hold devices using
MMS (Multimedia message services), a digest version of
the video is needed to meet the limited bandwidth. There-
fore, in order to help the user to grasp the essence of the
video quickly, video summarization has received more and
more attention.

Video summarization is a short summary of the content
of a longer video document. Specifically, it is a condensed
sequence of still or moving images representing a video in

such a way that the user is provided with concise presenta-
tion of the video content. There are two different kinds of
video summarizations:

1. Still-image Storyboard– The still-image representa-
tion is composed of a collection of salient images
extracted or synthesized from the underlying video
source. For example, some MMS service provides
video summarization services to the users by deliv-
ering still-image storyboard accompanied with audio
track.

2. Moving-image Skimming– The moving-image repre-
sentation, also called video skimming, is made up of a
set of video clips. Movie trailer is a good example for
moving-image skimming.

To generate a perfect video summary requires good un-
derstanding of the video semantic content. However, under-
standing the semantic content of the video is still far beyond
the capability of today’s intelligent systems, despite the sig-
nificant advances in computer vision, image understanding,
and pattern recognition algorithms. So, we can only rely on
some low-level features to generate video summaries.

In this paper we propose a novel video summarization
framework based on constraint-satisfaction programming
(CSP). The contributions of this paper are:

1. Flexible Framework– The proposed system is based
on constraint satisfaction programming which allows
the user to add constraints easily.

2. Multiple Solutions– As a result of CSP, users are able
to view various possible solutions that will be most
suitable for their needs.

This paper is organized as follows. In the next sec-
tion we review some related work done on video summa-
rization field. In Section 3 we model our feature-based
moving-image video summarization generation problem as

a constraint-satisfaction problem and suggest an intermedi-
ate solution for it. Experiment results are shown and an-
alyzed. In Section 4, we briefly describe the video sum-
marization system we have designed and implemented. In
Section 5 we make conclusion and discuss our future work.

2 Related work

In recent years much work has been done on video sum-
marization. For still-image-based story boards, most of the
early work selects key frame images by random or uniform
sampling, like the MiniVideo systems [1]. Later work tends
to extract key frame images by adapting to the video con-
tent. According to the applied features, we can categorize
the methods into color-based approach like [2, 3], motion-
based approach like pixel-based image difference [4], opti-
cal flow [5], and mosaic-based approach [6]. In [7] and [8],
the authors did video segmentation and analyzed the video
structure to get a tree-structured Video-Table-Of-Contents.
In [9], the authors proposed an importance measure for each
selected frame, and a frame packing algorithm to adjust the
shown size of the frames according to their importance. Still
image story boards can be constructed faster but their de-
scriptive ability is limited for they cannot convey the tem-
poral properties of the original video, and in many cases the
audio information is not preserved.

Much effort is also devoted to generating moving-image
based video summaries. In the VAbstract system [10], key
movie segments are selected to form a movie trailer. The
Informedia system at CMU first generates caption text from
the audio stream of the video by speech recognition, then
selects the video segments according to the occurrence of
important keywords in the video sequence [11]. However,
selecting video shots solely by the occurrence of keywords
cannot ensure that the video summary will cover the main
idea of the original video. The CueVideo system from IBM
provides faster playback speed when playing long, static
video scenes and slower speed for short, dynamic video
scenes [12]. Although the playback time has been reduced
but the temporal property of the original video is distorted,
which may mislead the users. In broadcasted sports video,
highlight detection and extraction have been achieved in
basketball videos [13] and baseball videos [14]. Highlight
detection is highly dependent on domain-specific knowl-
edge. The methods listed above may not always yield per-
ceptional important video summaries, and they leave the
users with only limited choices.

To ensure the quality of the video summary, we trans-
form the users’ preference into constraints then find results
that satisfy all of them. Since the method enables the users
to specify parameters according to their preference, it is
much more flexible than the previous methods. Another
merit of this framework is that it is easy to expand by adding

new constraints into the existing framework.

3 Feature based video summarization

The video summarization procedure has two objectives:
the first is to find the most important video segments of the
original video, the second is to shorten the original video
to the target length. To ensure the quality of the generated
summary, we specify some video features to measure the
importance of the video segments then generate the video
summarization according to the feature distribution.

3.1 Problem definition

Here we propose a framework for video summarization
based on constraint satisfaction programming (CSP). We
will model the vide summarization as a constraint satisfac-
tion problem, give a formal definition to it and describe an
algorithm to solve it. Experimental results will be provided
to demonstrate that the algorithm works.

Definition 3.1 A video is defined as a sequence of images.
It is represented by V = (I1, I2...In), where Ii is the i-th
indexed frame image of the video and n is the number of
total frames in the video V . The video can also be rep-
resented in the short form as V = [Ibegin, Iend] where
1 6 begin 6 end 6 n. Moreover, the length of a video,
length(V) is end − begin + 1.

Definition 3.2 The feature score function fi of a frame is
a function over the whole frame image set I . Without loss
of generality, we assume these functions to be non-negative.
It can be discrete, which indicates the occurrence of a fea-
ture of interest like human face; or it can be continuous
to describe the magnitude of the feature like noise volume,
percentage of the interesting color, etc.

Definition 3.3 An extracted video is defined as a mapping
of a video with a set of feature functions to a set of video
clips through a video feature extraction algorithm. This can
be written as h : V × F → {Vi}, where F is a nonempty
set of feature functions and V is a set of zero or more of
valid video clips. If some items in {Vi} are overlapping, i.e.,
Vi

⋂
Vj 6= ∅, i 6= j, we call this the overlapping extracted

video. Otherwise, we call it the non-overlapping extracted
video. We define the length of an extracted video to be the
summation of all the elements’ length in the extracted video.

We can formulate the process to find the final extracted
video as a constraint satisfaction problem. A constraint sat-
isfaction problem is defined as:

• A set of variables X = {x1, x2...xn};

• For each variable, a set Di of possible values (domain);

• A set of constraints restricting the values that the variables
can simultaneously take;

We can define the set of constraints as follows:

f1(x1, x2, · · · , xn) > g1(x1, x2, · · · , xn)

f2(x1, x2, · · · , xn) > g2(x1, x2, · · · , xn)

...

fk(x1, x2, · · · , xn) > gk(x1, x2, · · · , xn)

Here, fi() is the feature extracted from the video and gi()
is the parameter for the constraint. Normally, A constraint
is in an inequality form, and gi() sets the threshold, range,
or valid elements for the variables. For example, consider
the audio volume. Here fi() is the actual audio volume,
gi() can simply be a threshold so that the user could cut out
those frames with a volume greater than a constant db, or
gi() can be a range so that only those frames with a volume
within the desired range is selected. Many other features
can be added as constraints, e.g caption text occurrence,
human face detection, some high-level semantic features
like commercial detection and dialogue detection. Finally,
the length of the video summary must not exceed the pre-
specified time threshold, T . The set of constraints defines
a final video summary which satisfies all the constraints, or
satisfies as many constraints as possible. The domain of
the frame index variable x is from 0 to the whole length of
the video. In real applications, the users may adjust the pa-
rameters if they are not satisfied by the summary, and such
iteration continues until the users are satisfied.

From the feature score function set we can construct an
importance measure for each video frame. The importance
measure function is defined as follows:

Definition 3.4 The importance measure function of a video
frame is a function over the whole image set I , which in-
dicates the importance of the image. Here we employ the
feature score summation as the importance function:

IP (Ii) =
∑

j

fj(Ii)

After we have obtained the features, we aim to get the fi-
nal video summary that mostly represents the content of the
original video. To achieve this, we can select to maximize
the feature score summation of the video summary. Then
the problem can be formalized as described in Problem 3.1:

Problem 3.1 Given a set of video features, a time threshold
T , and {Vi} obtained from a set of video feature extraction
functions, find the final video summary, {Vfinal}, an non-
overlapping extracted video, such that it maximizes the total
feature score summation and length({Vfinal}) = T .

Obviously, a smoother video summary may seem better
than a jumpy one to the users. To do so we need to de-
crease the number of video segments in the video summary

to make it more coherent. To describe the smoothness of
the extracted video summary, we define the transition of an
extracted video as follows:

Definition 3.5 The transition in the non-overlapping ex-
tracted video is defined as the cardinality of the video as
#({Vi}). It is the number of segments in {Vi}.

With the above definition we can extend Problem 3.1 as:

Problem 3.2 Given a set of video features, {Vi} obtained
from the a set of video feature extraction functions, find
the final video summary, {Vfinal}, an non-overlapping ex-
tracted video such that length({Vfinal}) = T . Moreover,
it maximizes the total feature score and minimizes the tran-
sition number.

3.2 Solution and algorithm

To solve Problem 3.1 and Problem 3.2, we need to solve
the constraints. We may solve the constraints with various
methods like greedy method, lagrange multiplier, dynamic
programming, etc. Here we use a straight-forward greedy
method to solve Problems 3.1. We first calculate the fea-
ture score summation value for each video frame, then sort
them according to their feature score values, and select the
T frames with highest scores then we get an extracted video
set {Vi} as the video summary. The time complexity for the
greedy method is O(n log(n)), which is the complexity of
the sorting process.

We can solve Problem 3.2 by refining the video sum-
mary {Vi} that we get by the greedy method. To minimize
the transition number in video summary {Vi}, we need to
decrease the granularity of the selected segments to make it
smoother. We perform a segment merging process to min-
imize the number of the transitions in the extracted video
summary. Each time we find the two nearest selected video
segments and join them to form a longer and more coher-
ent segment until the extracted video is smooth enough.
Let {Ei} be the set of unselected segments, we introduce
a penalty function to measure the granularity of the {Vi} as

p({Vi}, {Ei}) =
∑

j

∑
t
length(Et)

length(Ej)
.

Consequently, we derive the new importance function as:

N({Vi}, {Ei}) = f({vi}) − w · p({Vi}, {Ei}),

where f() is the feature score summation function for the
selected segments {Vi}, p() is the penalty function, and w is
the weight of the penalty function. Our goal is to maximize
the function N .

To maximize function N , we propose a search algorithm
based on the segments generated by the greedy method as
described below: Note that during the 4th step in the repeat
loop, we merge the two adjacent selected segments in the

Algorithm 1 Video summary refinement algorithm
Find the result segments {Ei}, {Vi} with the greedy method;
repeat

1. TEMPTV ALUE = N({Ei}, {Vi});
2. Find the shortest unselected segment ei;
3. Find the adjacent selected segment s1, s2 of ei;
4. Merge s1 and s2, so the shortest unselected segment ei is
eliminated. Now we get updated {Ei},{Vi}.
5. Calculate N({Ei}, {Vi}) for updated {Ei},{Vi}.

until N({Ei}, {Vi}) < TEMPTV ALUE

Undo the last merge;
The final smoother video summary is found.

way that we move the segment with smaller feature score
values, so that the loss of feature score is minimized.

When we continue merging the unselected segments, the
penalty function p changes with the reciprocal of the un-
selected segments’ length. As the merge process contin-
ues, the length of the shortest unselected segments becomes
longer and its reciprocal becomes smaller. Thus function
p decreases quickly and the refinement process soon con-
verges. The complexity of the merge process would not be
greater than O(n log(n)). So we can still regard the com-
plexity of the whole process as O(n log(n)).

3.3 Experiments and Discussions

To test the performance of our video summarization pro-
cedure, we implemented the proposed algorithm and tested
it on some video clips. Our experiment consisted of a sub-
jective test and a quantitative test. We employed a PC plat-
form with 2.0G hz P4 CPU on the Win2000 OS. We de-
veloped a system to perform the summarization procedure
and played the video summary. We will briefly describe the
system in the next section.

We selected two types of video clips for our summariza-
tion experiment. The first set was news video clips, the
other set was movie clips. We select these two types of
video because they are quite pervasive and representative.
Our test includes ten news video clips that were about 1 to
2 minutes long, and three movie clips that were about 7 to
10 minutes long. We show the experimental results for one
sample video from each type of the videos.

For the news video clips, we selected the following
features for video summarization: human face detection,
male/female voices occurrence, camera zooming and cap-
tion text occurrence. Table 1 shows the selected features
and the corresponding parameters specified when we en-
gaged summarization to one of the video clips. Note that
the weights here are normalized so that

∑
i Weighti = 1.

The feature distribution and the finally generated seg-
ments for a sample news video are shown in Fig. 1. The
horizontal axes denote the time.

Table 1. Parameters for news clips
Features Weight

f1:Face occurrence 0.30
f2:Text occurrence 0.20
f3:Voice 0.20
f4:Camera zooming 0.30

Parameters Value
Original length 95 sec
Summary length 22 sec

w 20.0

f1

f2

f3

f4

greedy method
Summary by

summation
Feature score

Figure 1. Result for news video

From Fig. 1 we can see that the feature distribution and
the selected segments are all quite long and coherent, so that
no refinement process is needed. This is because the news
video itself is well structured and composed with longer
video shots. We played the summary and observed that it
did contain the major content of the news story. Tests on
most other news video clips yielded similar results.

For the movie clips, we selected the following features
for video summarization generation: human face occur-
rence, loud human voices/cries, loud noises like gun shots
and explosion, and the color of fire. Table 2 shows the se-
lected features and the corresponding parameters specified
in the experiment.

Table 2. Parameters for movie clip
Features Weight

f1:Gunshot/explode noise 0.45
f2:loud voice 0.25
f3:Face occurrence 0.10
f4:Fire Color 0.20

Parameters Value
Original length 477 sec
Summary length 50 sec

w 20.0

The feature distribution and the finally generated seg-
ments are shown in Fig. 2.

From Fig. 2 we can see that in movies, shot cut and fea-
ture change more frequently than in the news video, es-

f1

f2

f3

f4

summation
Summary by

greedy method
Summary with

refinement

Feature score

Figure 2. Result for movie clip

pecially for the action movies. The result of the greedy
method contains many broken short segments, which causes
jumpy scenes. Consequently, the refinement process is
needed for better results. The refinement process generated
several longer and more coherent video segments from the
short fragments yielded by the greedy method. From Fig. 2
we can see that those refined longer segments still cover
most of the parts with the highest feature scores in the fea-
ture summation distribution graph. Moreover, they matched
the segment clusters generated by the greedy method quite
well. We played the summary and observed that it still cov-
ered the major key events of the original movie.

To demonstrate the capability of our framework to gen-
erate multiple video summaries, we change the weight for
some specific features, for example, if we prefer more on
human faces we can increase its weight then more contents
with human face should be selected into the video summary.
Table 3 shows the effects resulted from changing the weight
for the ”face occurrence” feature.

Table 3. Changing the weight for face occurrence
Weight 0.2 0.4 0.6 0.8

Rate 0.24 0.32 0.54 0.88

To quantitatively evaluate our video summarization al-
gorithm, we invited some people to manually select a video
summary, and we made comparisons between our machine-
generated video summary and the video summary selected
by them. Both video summaries were produced with the
same target length. Suppose the human-selected video sum-
mary be {Ui}, and the machine-generated video summary
is {Vi}, we define the Common Selection Ratio (CSR) to
measure the quality for our generated video summary.

Definition 3.6 The common selection ratio(CSR) is de-
fined as

CSR({Ui}, {Vi}) =
length({Ui}

⋂
{Vi})

length({Vi})
.

After comparing between the video summaries, we
recorded the results shown in Table 4 and Table 5.

Table 4. CSR experiment results with greedy method
Video type Clips No. Ave. CSR Max CSR Min CSR

News 10 0.89 0.94 0.82
Movie 3 0.74 0.84 0.68

Table 5. CSR experiment results with refinement
Video type Clips No. Ave. CSR Max CSR Min CSR

News 10 0.89 0.94 0.77
Movie 3 0.78 0.84 0.71

From Table 4 and Table 5 we can see that the video sum-
maries generated by our algorithm are quite similar to those
selected by human. Furthermore, we can see that the algo-
rithm works better for news videos than for the movie clips.
This is partially because the structure of the news videos
is simpler. The result for movie clips seems to be rela-
tively worse, as the human can semantically interpret the
movie before selecting those video shots, while our algo-
rithm selects the video shots with higher feature scores and
neglect those meaningful video shots without high video
feature scores. To get better results, we will enhance our im-
portance measure for the video frames by integrating more
video features, especially some high level semantic features
into this framework in the future.

From the data we can also see that the refinement pro-
cess really makes a smoother video summary without much
loss of the important contents of the original video. In
some cases, it may generate a video summary which is
even more similar to a human selected video summary than
the greedy method does. We also have observed that the
human-selected video segments are at least 2 seconds long,
which also suggests the necessity of the refinement process.

As we have mentioned, the time-complexity of the video
summarization procedure is O(n log(n)), which enable the
video summarization process to run very quickly. This al-
lows the users to quickly generate various sets of video sum-
maries with different parameters for comprehensive inves-
tigation and experimentation.

4 Overview of the video summarization sys-
tem DImSSum

In this section we briefly introduce DImSSum (Digi-
tal IMage Sequence SUMmarization) system, which is de-
veloped based on the constraint-satisfaction programming
framework discussed in the previous sections.

The system architecture of DImSSum is shown in Fig. 3.
It consists of a video preprocessing module, a constraint
solver module, a video streaming server, and a web-based
interface for the users to see the video summary.

module
Video preprocessing

 Video streaming

 server

Raw Video

Video feature

distribution

Video summary
results

 Constraint
 Solver

User
 Client

Video
 database

parameters
Specify

SMIL presentation

Figure 3. System architecture of DImSSum

The video preprocessing module is employed for video
feature extraction. It is an off-line module operated by the
administrator. Currently we have integrated face detection,
voice detection, color histogram analysis and VOCR into
this module.

The constraint solver module receives the parameters
from the users then generates a video summary according
to the procedure laid out in solving a constraint satisfaction
problem.

The video summarization service is provided to the users
via Web service. The system receives the users’ requests
and parameters, generates the result video summary, then
transforms it into SMIL (Synchronized Multimedia Integra-
tion Language) presentations, which can be played by some
browsers that support SMIL like the RealOne Player. The
users may adjust the parameters to generate new video sum-
maries until they are satisfied.

5 Conclusion and future work

In this paper, we modelled the video summarization
problem as a constraint-satisfaction programming problem
and proposed a feature-based greedy method solution to
generate moving video summaries. A refinement process is
proposed to make a smoother summary. We also conducted
some experiments to evaluate our proposed algorithms, and
we described our video summarization system DImSSum.
The initial experimental results were encouraging.

The future work includes the following aspects:

1. More features and more constraints– The sug-
gested problem solution framework can be extended
by adding informative features, especially some high-
level semantic features, video structure and style, or by
extending the object function with some new impor-
tance measures on the selected video segments. The
refinement process can also be further improved. Be-

sides the greedy method, we will try other constraint-
solving methods to solve the constraints then get the
final video summary.

2. Minimal summarization limit– As the video summa-
rization length T decreases, the quality of the video
summary becomes worse. Therefore, for a specified
video file, there may exist a lower bound time limit
for a meaningful video summary, which is determined
by the content and structure of the video. Finding the
lower bound of the video summary length Tmin within
which we can still ensure the quality of the video sum-
mary is another problem left for us for further study.

References

[1] Yukinobu Taniguchi, Akihito Akutsu, Yoshinobu Tonomura, and Hi-
roshi Hamada. An intuitive and efficient access interface to real-
time incoming video based on automatic indexing. In Proceedings
of the third ACM international conference on Multimedia, pages 25–
33, 1995.

[2] H. J. Zhang, C. Y. Low, and S. W. Smoliar. Video parsing and
browsing using compressed data. Multimedia Tools and Applica-
tions, 1:89–111, 1995.

[3] H. J. Zhang, D. Zhong, and S. W. Smoliar. An integrated system
for content-based video retrieval and browsing. Pattern Recognition,
30(4):643–658, 1997.

[4] W. Wolf. Key frame selection by motion analysis. In Proceeding
IEEE ICASP96, 1996.

[5] R. L. Lagendijk, A. Janjalic, M. Ceccarelli, M. Soletic, and E. Per-
soon. Visual search in a smash system. In Proceeding of IEEE ICIP,
1996.

[6] M. Lee, W. Chen, C. Lin, C. Gu, and T. Markoc. A layered video
object coding system using sprite and affine motion model. lEEE
Transactions on Circuits and Systems for Video Technology, 1:130–
145, 1997.

[7] Y. Rui, T.S. Huang, and S. Mehrotra. Constructing table-of-content
for videos. ACM Multimedia Systems Journal, Special Issue Multi-
media Systems on Video Libraries, 7(5):359–368, Sept 1999.

[8] Ng Chung Wing, Michael R. Lyu, and Irwin King. Advise: Advaced
digital video information segmentation engine and its applications.
In Proceeding of World Wide Web, 2002.

[9] Shingo Uchihashi and Jonathan Foote. Summarizing video using a
shot importance measure and a frame-packing algorithm. In Pro-
ceedings of the International Conference on Acoustics, Speech, and
Signal Processing, volume 6, pages 3041–3044, 1999.

[10] R. Leinhart, S. Pfeiffer, and W. Effelsberg. Video abstracting. Com-
munication of the ACM, pages 55–62, December 1997.

[11] M. A. Smith and T. Kanade. Video skimming and charaterization
through the combination of image and language understanding tech-
niques. In Proceeding of the IEEE Computer Vision and Pattern
Recognition, pages 775–781, 1997.

[12] D. Ponceleon and A. Amir. Cuevideo: Automated multimedia index-
ing and retrieval. In Proceeding of ACM Multimedia, 1999.

[13] Y. Rui, A. Gupta, and A. Acero. Automatically extracting highlights
for tv basketball programs. In Proceeding of ACM Multimedia, pages
105–115, 2000.

[14] N. Bagaguchi. Generation of personalized abstract of sports video.
In Proceeding of IEEE ICME, pages 800–803, 2001.

