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Abatmet--In this paper, we propose a technique to 
construct a sub-optbal semi-naive Bayesian network 
when given a bound en the maximum number of m i -  
ahles that can he combined into a node. We thwret- 
i d l y  show that our approach hae a less computation 
cost when compared with the traditional semi-naive 
Bayesian network. At the same time, we can obtain 
I resulting sub-optimal structure ascording to the 
maximum likelihood criterion. We conduct a series 
ofexperiments to e d u a t e  our approach. The results 
show our approach is encouraging and promising. 

K e y w o r d c  Bayesian network, Semi-Naive, Bound, 
Integer programming . 

I. INTRODUCTION 

Classilkation is a basic problem in data anal- 
ysis and machine learning field. Learning accu- 
rate classifiers €rom data has been an active re- 
search topic in recent years. Different approaches 
have been proposed to learn a classifier &om pre- 
classified data sets. Among them are Statistical 
Neural networks [4], Decision trees 161, and Support 
Vector Machines 1111. 

Regarded as a knowledge representation method 
under uncertainty, Bayesian network did not come 
into classification experts’ view nntil the discovery 
of Naive Bayesian network classifier (NB) [l], (141. 
The NB network is a very simple Bayesian network, 
which assumes every variable (feature) of the data 
is independentgiv en the class label. With this as- 
sumption the probability induction is made easily 
and efficiently. Figure 1 is an example of NB. In 
this example, given a set of symptoms, one wants 
to determine whether these symptoms give rise to a 
particular disease as shown in Fig. 1. Experts usu- 
ally judge the probability of a disease’s occurrence 
by examining the existence of some symptoms. Sim- 
ilarly in Naive Bayesian networks, according to the 
independency assumption, it is easy to write down 
the following equation: 

P(Disease [s I,s~,s~,s~) cx 

DivCUC 

Symptom1 Symptom2 Symptom3 Symptom4 

Fig. 1 . h  example of Naive Bayesian network 

I 

U P ( . ,  ID isease)P(Disease) (1) 

Where, si represents the ith Symptom, 1 5 i 5 
4. Given an instance of each variable (symp 
tom), for example (true, false, true, false), accord- 
ing to the equation above, we can obtain the fmal 
probability of the disease hypothesis by calculating 
P(Disease = true I s1 = true,sz = false,s3 = 
true, SI = false) and P(Disease = false 1 SI = 
true, s2 = f alse, s3 = tme, s4 = f alse). This com- 
putation can be made easily and fast according to 
Q. (1) under the independence assumptions. Then 
we take the judgment with larger probability value 
between Disease = false and Disease = true as 
the diagnosis. With such a simple structure, NB is 
surprisingly effective in many application domains 
even when compared with state-of-the-art classi- 
tiers [13]. This success triggered experts to explore 
more deeply into Bayesian networks as classifiers. 

Since the strict assumption in NB can be vio- 
lated strongly in many cases, rffiearchers have won- 
dered if the performance will beb etter when the 
strong independence assumption between variables 
in NB is relaxed. Then the so-called semi-naive 
Bayesian network(SNB) 151 113) was invented. SNB 
constrains the network‘s structure by dividing the 
variables into several sets based on some criterions. 

i=1 
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Inside each set, the variables are assumed dependent 
while inter-sets are independent, given the class la- 
bel. Also other classifiers such as K2 [a], TANB 131 
were discovered based on more complex structures. 

The structure complexity in Bayesian network 
can be defined as the number of the parameters 
which are needed to quantify the network. In the 
NB example of Fig. 1, to quantify the network, we 
only need to record the parameters: P(s1 IDisease), 
P(szJDisease),  P(sslDisease), P(srlDisease), and 
P(Disease).  For binary symptoms and disease ex- 
ample, thereare ( 2 ~ ( 2 - 1 ) ) ~ 4 + ( 2 - 1 ) = 9 v a l u e s  
(parameters) we need to record. However if Fig. 1 is 
represented as a complete graph, we have to record 
P(s1, s2, SJ, s41Disease) and P(Disease) which will 
have (2 x (2* - 1)) + (2 - 1) = 31 parameters. To 
understand the complexity of the Bayesian network, 
we can simply regard “a network with more edges 
will bep ossibly more complex than the one with 
fewer edges”. ( It is not always true especially when 
the variables can take on Werent number of Val- 
ues.) NB can be considered as the simplest Bayesian 
network while a complete graph can be regarded as 
the most complex network. 

Theoretically a more complex structure will a p  
proximate the training dataset more accurately. So 
it seems that a more complex structure will have 
a more accurate classifier. However it is absolutely 
not the case. It is shown that complex structure will 
often cause an over-fitting problem, that is the clas- 
sifier learns the training data perfectly while having 
a high error rate in predicting a new data [3]. It 
seems that we are facing a dilemma: if we prefer 
the simple structure, the restriction caused by its 
simplicity may be violated frequently; if we prefer 
a complex structure, the over-fitting problem may 

One of the trade-off strategies is to restrict the 
network‘s complexity first and then to explore the 
best structure which can approximate the dataset. 
In fact this strategy has been done recently in 19). 
They proposed a bounded treewidth graph a p  
proach. Reewidth can be considered to  be one 
less than minimum possible Value of the number 
of nodes involved in the maximum completely con- 
nected subnetwork of speciiic networks, which are 
transformed from the original network [12]. And 
this treewidth bound can avoid the network into a 
complex network. They ikstly prove that it is NP 
problem to find the optimal I - treewidth structure, 
where 1 is greater than 1. And then they give out 
an approximation solution based on a combination 
techniqne: Integer Programming (IP) technique. It 
is believed that their approach is the first combi- 
natorial formulation of the learning problem. How- 

occur. 

ever their approximation is somewhat far away from 
the optimal solution. It is reported that their a p  
proximation bound to the optimal solution is about 
1/324 when the tree-width is equal to 3. 

In this paper, we use this strategy in building an 
optimal K-bounded-large-node semi-naive Bayesian 
network (BLN-SNB). K-bounded-large-node means 
that “the cardinality of every subset in SNB is not 
greater than the value K”. Detailed issues about 
this can be seen in Section 11. At the same time 
we found that even though in 191 they cannot find 
an accurate approximation to the hypertree, their 
methods can be used in searching an accurate BLN- 
SNB. In this way we restrict the network in a not 
so complex SNB structure and then we try to find 
the optimal structure in this restriction. 

One interesting observation is that our proposed 
SNB has a polynomial time cost in searching a s u b  
optimal structure. We do not need a great num- 
ber of iterations on the training dataset as in tradi- 
tional SNB [5]. Also we do not just combine pairs 
of attributes as in [13] since in our approach we 
can combine any number of variables fewer than a 
bound. At the same time, in [5] there is no evidence 
that shows a Suboptimal or optimal structure can 
bemain tained while our approach is shown to be 
suboptimal given a bound on the cardinality of the 
subset based on the maximum log likelihood crite- 
rion. 

In the following we first give the BLN-SNB model 
definition. Then we reduce the optimization prob- 
lem of this model into a K-rrgular semi-naive net- 
work which means each subset of SNB has the same 
cardinality K. After that we transform the search- 
ing procedure into an integer programming (IP) 
problem in a similar method as [9] and we approxi- 
mate the IF’ solution in a linear programming (LP) 
method which is polynomial time in computational 
complexity. We show the computational complexity 
analysis in Section N. And in Section V, we show 
our experimental results. Finally we conclude our 
paper with discussion and conclusion sections. 

11. BLN-SNB MODEL DEFINITION 

See Fig. 2, our BLN-SNB model is defined as: 
BLN-SNB Model definition: Given a dataset 
D with a class C, n variables A I , A ~ ,  . . . , A ,  and 
a bound K ,  BLN-SNB is a maximum likelihood 
Bayesian network which satisfies the following con- 
ditions: 
1. It is composed of m large nodes ASI, AS2,.  . . , 
AS,,,, 1 5 m 5 n,  each large node AS, is a subset 
of {AI,&,.  . . , A n - i , & l .  
2. There is no coverage among the large nodes and 
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s. U ,  AI- AS 

Fig. 2. Semi-Naive Bayesian netamrk:AS;i the combination 
of some variablm, and ASi n AS, = 6. i # j 

their union forms the variables set. 

AS,n AS, = 9, 
for i # j , a n d  I < i , j < m ,  

AS, U AS2 U. .. U ASm 
= {Ai,Az, ..., A m )  (2) 

3. Given the class label C ,  AS; is independent with 
AS, for i # j .  

P(AS,,ASj I C) = P(ASi IC )P(ASj ( C )  
for i # j , a n d  l < i , j < m  (3) 

4. The cardinality of eaeh large node ASl ( 1 < I 5 
m) is no greater than K. 
Item 4 above is used to control the network wm- 
plexity. We can see that if K is scaled up into n, 
it will he a wmplete graph. This structure is ob- 
viously a perfect approximation to the data with a 
certainly heavy over-fitting problem as well. On the 
other hand, if K is set to 1, it is degraded into Naive 
Bayesian network. 

111. MAXIMUM LIKELIHOOD 
BOUNDED-LARGE-NODE SEMI-NAIVE 

A. Reducing BLN-SNB Optimization Problem 

Lemma 1: The log likehood of a SNB, repre- 
sented by 1 s ~ ~  can bewritte n into the following 
form: 

BAYESIAN NETWORK 

(4) 
,=I 

where H(AS,) is the entropy of variable subset 
AS,. The entropy among a k-variable subset 

( X l , X z ,  ..., &} caubedeiinedas: 

H(XI,XZ, .  ..,X,) 
- _ -  E P(z* ,... ,zk)logP(zl,. .  . ,z*)(5) 

I,, -..FL 

where low-case character z, represents the assign- 
ment of the value to the varjable X,, 1 5 i 5 k. 

Lemma 2: Let p and p are two SNBs over 
dataset D. If p' is coarser than p then, p provides 
a better approximation than p over D .  TF Cwrser concept can he defined in this way. If 
p can be obtained by combiniug the Large nod? of 
p without splitting the large node of p, then p is 
coarser than p. The details of the proof of Lemma 1 
and Lemma 2 are shown in the Appendix. 

According to Lemma 2, given ab ound K, we 
should not separate the variables set into too many 
small subsets. Or it is more possible that we can 
combine same of t h e e  small subsets into a new sub- 
set whose cardinality is no greater than K, thus the 
new SNB will be coarser than the old one. From this 
viewpoint, we reduce the searching space of BLN- 
SNB into a K-regular SNB space since there are 
no possibility that a SNB coarser than K-regular 
SNB exists in the K-bound. Even though it is rea- 
sonable to search the maximum likelihood SNB in 
the K-regular-SNB space, we will not say that: a 
K-regnlar SNB is absolutely better than a non-K- 
regular SNB with the biggest wdinality no more 
than K. It is obvious some non-K-regular SNBs 
cannot be wmhined into a K-regular SNB. Thus in 
such a way, we reduce the searching space into a 
subspace of K-bound SNB. 

Thus sccording to Lemma 1 and Lemma 2 the 
BLN-SNB problem defined in Section I1 is trans- 
formed into the following: 
BLN-SNB Problem: From attributes set, 6nd- 

ing rn = [n/K]K -cardinality subsets, which satisfy 
the SNB conditions, to  maximize the log likelihood 
as shown in Eq. (4). Here [z] means rounding the z 
to the nearest integer. 

B. ?bansforming into IP pmblem 
It is obvious that the BLN-SNB problem is a wm- 

binatorial problem. However it is not acceptable 
that we use a greedy search method to  find the o p  
timization solution. It can he easily calculated that 
the greedy search cost will be &. For a sim- 
ple example n = 18, k = 3, the cost will be up to 13 
billion! 

In fact we can write the BLN-SNB into tbe fol- 
lowing IP problem: 

Min z ~ 1 . v ~  ,... v,H(K,VZ, ..., VK) ( 6 )  
Vl.V2, ..., VK 
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(VVK) zV,,R. .... VK = (7) 
v ~ ~ v Z ~ ~ . . ~ v K ~  

zv,,v, ,..., vK = IO, 11 (8) 

Here VI,%, _ _  ., V, represents any K variables. 
Eq. (7) describes that: for any variable, it can 
just belong to  one subset, i.e., when it comes out 
in one subset, it must not be in another subset. 
H(Vl, VZ,. . . , VK) representing the entropy of vari- 
able set {VI, V,, . . . , VK}, can beeasily calculated 
from the data. 

IF' problem can be solved in many methods such 
as Cutting Plane, Simulating Annealing, etc. A tu- 
torial note about IP can be obtained in [7]. Here 
we approximate the solution of IP via LP problem 
which can be solved in a polynomial time. By relax- 

the IP problem is transformed into a LP problem. 
Then a rounding procedure is conducted on the so- 
lution of LP. We assume the set of all zv,,v, ,..., vK 
as X. 
1. Until all the variables are covered. 
2. Set the maximum ZV>,V ,,..., v,to value 1 in X, 
record its subscript as {VM,, VM,, . . . , VM,}, delete 

3. Set all ZV~,V, ,..., vK to 0 , which have the coverage 
with {VM~, VM~, . . . , V M ~ } .  Delete all these z from 
X. 
4. Goto 1. 
As discussed in [7], a LP solution provided much 

information for the one of E'. Approximating IF' 
solution by LP may reduce the accuracy of the 
SNB while it can decrease the computational cost. 
Shown in our experiments, a LP approximation re- 
ally stands for much information of the IP solution. 

C. When nlK is not an integer 

We may notice that if n cannot be divided by K 
exactly, i.e., (n mod K)= I # 0, we will not be 
able to 6nd a K-Regular-SMB since one subset will 
have only I variables. In solving this problem, we 
modified the method into the following: 
1. Assume (n mod K)= I # 0, among all the 1- 
subset of variables set, select the one which has 
the minimum entropy. We m u m e  this I-subset 
is AS,, = {A,,,,Am,2 ,..., A,,,}. Let B = 
{AI, Az, . . . An-l,AnI\ASmi. 
2. Perform the optimization on the attributes set B 
as shown in the last section. 
Actually, the solution of the modi6cation approach 
aboveis in some sense a local minimum solution 
of LP problem. From Lemma 1 we know that to 
maximize the log likelihood, the entropy of every 
subset should be as little as possible. That is why 

ing zv,,v2 ,..., vx = {0,1) into 0 5 zv,,v ,,..., VK 5 1, 

this qvM,.vM =,.... vM,) from X. 

we choose the minimum entropy among all the 1- 
subsets in the beginning. 

IV. COMPUTATIONAL COMPLEXITY ANALYSIS OF 
BLN-SNB 

In this section, we conduct a simple computa- 
tional complexity analysis for BLN-SNB. 

A strong empirical evidence shows that classical 
LP optimization methods such as simplez only takes 
O(w) iterations to find an optimal solution with 
w equality constraints [lo]. Each iteration costs 
O ( w N )  arithmetic operations where N is the num- 
ber of variables to be solved. For our LP prob- 
lem of Eq. (ti), there are totally N = C n  variables 
zv1,y ,,..., yK which need to be solved and w is equal 
to n. Accordingly the computational cost in om 
optimization process is about nZC n .  In the other 
hand, rKC n operations are needed to computing 
the K-variable entropy in 6. Here r is the maximum 
number of values a variable can take on. Accord- 
ingly the total cost will be (nZ + rK)C n. It will be 
a O(nK+Z) time cost, when K << n. 

However, in the traditional SNB [5], the compu- 
tational cost is exponential. It is said that: the 
number of iterations over the training dataset is ap- 
pmzimately equal to the number of values of all at- 
tributes. For a simple example in which every vari- 
able has r values, the combination cost will be r". 
it is an exponential cost. As the variable dimension 
grows, the cost Merence between the BLN-SNB 
and Kononenko SNB will be bigger and bigger. Es- 
pecially in order to resist the over-fitting problem 
the K has to be k e d  at a small number. 
On the other hand, the approaches by Paz- 

zani [I31 is impractical for even three attributes 
combination even though their approaches have a 
low cost report of O(n3) when combining two at- 
tributes. "Although it would be possible to con- 
sider joining three (or more attributes), the compu- 
tational complexity makes it impractical for most 
databases" [13]. Thus the accuracy of Pazzani SNB 
may be limited in this sense. Table I shows the 
analysis result of the above. Here "Max V means 
the maximum number of variables which involve in 
a large node. 

K 

K 

K 

K 

TABLE I 
COMPUTATION COST TABLE 

Methods 11 BLN-SNB I Kononenko 1 Pazzani 
Cost 11 O(n"+') I o(r") I O(nJ) 
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v. EXPERIMENTAL RESULTS 

To evaluate the performance of BLN-SNB a p  
proach, we conduct a series of experiments on 
Tic-tac-toe and Vote databases from UCI Machine 
learning Repository 115). Since NB is a competitive 
model even when compared with the stateof-art 
classifier, we only conduct the performance compar- 
ison between ow model and NB. In both datasets, 
we use a five fold cross validation described by Ko- 
havi et. al. in 121. We test 2-BLN-SNB and 3-BLN- 
SNB. 

Table I1 describes the datasets used in our exper- 
iments. We build one BLN-SNB for each class in 
both data sets. When used in recognition, we out- 
put the class with the higher probability. From Ta- 
ble 111, we can see that there is a significant increase 
in recognition rate when using BLN-SNB compared 
with NB in Tic-tac-toe dataset both in training ac- 
curacy and test accuracy. The performance of BLN- 
SNB in Vote is slightly high or nearly the same in 
test accuracy and significantly higher in training ac- 
curacy than NB. 

TABLE I1 
DFSCRIWION OF DATA SETS USED IN THE EXPERIMENTS 

DB 

Tic 
Vote 

[ Dataset 11 Variables 1 Class I train 1 test 1 
Tic-tac-toe (1 15 I 2 I 435 I cv-5  

Vote )I 9 I 2 I 958Cp -5 

NB BLN-SNB 
K=2 I K =3 

74.09 * 1.22 1 81.47f  2.21 
94.02 * 0.76 I 96.03 f 0.85 

71.30 * 0.64 
90.75 f 0.27 

TABLE III 
RECOGNITION BATE 

From the experiments, we found that in all the 
CV-5 training process, that LP solution is part of 
IP solution only happens 3 times in all of 20 times 
training. This means that our LP approximation 
to the IP solution is reasonable. See Table IV, we 
show the IF' and LP solutions only in one of CV-5 
training in 2-SNB. In Vote database of Table IV, the 
BLN-SMB LP solution of Class 1 is not the integer 
solution. It is then rounded into the integer solution 

as in the rightt WO columns of Table N according 
to our rounding scheme. In the last line of Class 1 
in Table IV z1 = 1 means H(X4)is the minimum 
entropy in all the 1-subset in Class 1. It comes from 
the modified approach introduced in Subsection III- 
C since the result of 15 mod 2 = 1 is not equal to 
zero. 

TABLE IV 
LP SOLUTEON AND ROUNDED IP SOLUTION(K=Z) OF Vote 

LP solution 1 Rounded LP solution 
Class1 1 Class2 1 Class1 I Class2 

VI. DISCUSSION 

We can see that tbe complete graph and the Naive 
Bayesian network are special cases of our BLN- 
SMB. In BLN-SMB when K is equal to n, it is a 
complete graph. When K is equal to 1, it is de- 
graded into the Naive Bayesian network. 

At the same time, our approach is a bound strat- 
egy. To resist the over-fitting problem, the K has to 
be chosen as some small value. In the Vote dataset 
of o w  experiments, even when K is chosen as 2 or 3, 
the BLN-SNB has a tendency towards overfitting. 
This sbows that the Naive Bayesian network may 
be the better model for this dataset. 

VII. CONCLUSION 

In this paper,we proposed a bounded-Large-Node 
Semi-Naive Bayesian network model. When com- 
pared with the traditional Semi-Naive Bayesian net- 
work, our model can be solved in a polynomial time 
and also can maintain a sub-optimal fituess in Semi- 
Naive network domain. Our experiments show that 
our approach can both increase the training ac- 
curacy and testing accuracy compared with Naive 
Bayesian network. 
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VIII. APPENDIX 

Proof for Lemma 1: 
Proof.. Let there are n variables which are repre- 
sented respectively by A,, 1 5 i 5 R. And accord- 
ing to the SNB assumption, the variable set can be 
partitioned into m subsets without coverage among 
them. Weassume the subsets respectively as B;, 
1 2 i 5 m. We use low-case characters represent 
the assignments of values to the variables. So b; 
is a vector which represents an assignment of val- 
ues to the variables in E,. We use (E1,. ..,E,) as 
the short form of (E,,  E 2 , .  . . , B,-l, Em). The log 
likelihood over a data set can be written into the 
following: 

Proof for Lemma 2: 
Proof: We just consider a simple case, a general 
case proof is much similar. 
Consider one partition asp = (B,, Bz, . . . , B,) and 
another partition as 

(9) 

m 

pi = ( E l ,  Bz, . . . ,Em-i, Bmi, Bm2) 

,where we have: 

BmlnE,z=6 and 
Em1 U Bm2 = Em 

According to the proof of Lemma 1 above, we have: 

According to Entropy theory, H ( X Y )  2 H(X) + 
H ( Y ) .  We can write Q. (10) into: 

m-1 

LSNB.  = - H(Ed - WB,) 
i=1 

m-1 

t - H(B;)  - H(Bm1) - H(Bmz) 
,=I 

= LSNB,,  (11) 
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