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Abstract— We consider the regression problem for financial
time series. Typically, financial time series are non-stationary
and volatile in nature. Because of its good generalization
power and the tractability of the problem, the Support Vector
Regression (SVR) has been extensively applied in financial time
series prediction. The standard SVR adopts the �p-norm (p = 1

or 2) to model the functional complexity of the whole data
set and employs a fixed ε-tube to tolerate noise. Although
this approach has proved successful both theoretically and
empirically, it considers data in a global fashion only. Therefore
it may lack the flexibility to capture the local trend of data;
this is a critical aspect of volatile data, especially financial time
series data. Aiming to address this issue, we propose the Local
Support Vector Regression (LSVR) model. This novel model is
demonstrated to provide a systematic and automatic scheme
to adapt the margin locally and flexibly; the margin is fixed
globally in the standard SVR. Therefore, the LSVR can tolerate
noise adaptively. We provide both theoretical justifications and
empirical evaluations for this novel model. The experimental
results on synthetic data and real financial data demonstrate
its advantages over the standard SVR.

I. INTRODUCTION

We consider the regression or prediction problem for
financial time series data in this paper. The objective is to
learn a model from a given financial time series data set,
{(x1, y1), . . . , (xN , yN )}, and then use the learned model to
make accurate predictions of y for future values of x. The
Support Vector Regression (SVR), a successful method in
dealing with this problem, is well suited to generalization [8].
The standard SVR adopts the �p-norm (p = 1 or 2) to control
the functional complexity and chooses an ε-insensitive loss
function with a fixed tube (margin) to measure the empirical
risk. By introducing the �p-norm, the optimization problem in
SVR can be transformed to a tractable programming prob-
lem, in particular a quadratic programming problem when
p = 2. Furthermore, the ε-tube has the ability to tolerate
noise in data, and fixing the tube confers the advantage of
simplicity. Although these settings are effective in common
applications, they are designed in a global fashion and lack
the flexibility to capture the local trend in some applications,
in particular in stock markets data or financial time series.
In the context of financial time series prediction, the data are
usually highly volatile and the associated variance of noise
varies over time. In such domains, fixing the tube cannot
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capture the local trend of data and cannot tolerate noise
adaptively.

One typical illustration can be seen in Figure 1. In this
figure, the data become more noisy as the x value of the data
increases. As shown in Figure 1(a), with a fixed ε-margin (set
to 0.04 in this example), SVR considers the data globally and
equally: The derived approximating function in SVR deviates
from the actual data trend. On the other hand, as illustrated
in Figure 1(b), if we address the local volatility of the data by
adaptively and automatically setting a small margin in low-
volatile regions and a large margin in high-volatile regions,
the resulting approximating function (the blue solid line in
Figure 1(b)) is more appropriate and reasonable.

In order to address this issue, we propose the Local Sup-
port Vector Regression (LSVR) model. We will show that,
by taking the local data trend into consideration, our model
provides a systematic and automatic scheme to adapt the
margin locally and flexibly. Moreover, we will demonstrate
that this novel LSVR model has extensive connections with
other models. Specifically, this model can be seen as an
extension of a recently-proposed general large margin classi-
fier, the Maxi-Min Margin Machine (M4) [2], for regression
tasks; it can also yield a special case, which will be proven
to be equivalent with the standard SVR under certain mild
assumptions. One critical feature of our model is that the
associated optimization of LSVR can be relaxed as a Second
Order Conic Programming (SOCP) problem, which can be
efficiently solved in polynomial time [5]. Another appealing
feature is that kernelization is also applicable to the LSVR
model. Therefore, the proposed LSVR can generate non-
linear approximating functions and hence can be applied to
more general regression tasks.

The rest of this paper is organized as follows. In Section II,
we review the standard Support Vector Regression. The
linear LSVR model, including its model definition, appealing
features, and optimization method, is described in Section III.
In Section IV, we demonstrate how the LSVR model can
be linked with other models including M4 and SVR. The
kernelized LSVR is tackled in Section V. In Section VI, we
present the result of experiments using both synthetic and
real financial data. Finally, we set out the conclusion and
propose future work in Section VII.

II. SUPPORT VECTOR REGRESSION

We define a training data set D =
{(x1, y1), . . . , (xN , yN)}, where xi ∈ X, yi ∈ R, N
is the number of training data points, and X denotes the
space of the input samples R

n. The aim is to find a function

0-7803-9490-9/06/$20.00/©2006 IEEE

2006 International Joint Conference on Neural Networks
Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada
July 16-21, 2006

1622

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 11,2021 at 08:07:34 UTC from IEEE Xplore.  Restrictions apply. 



x

y

SVR
SVR+0.04
SVR−0.04

(a)

x

y

More Reasonable Line

(b)

Fig. 1. Illustration of the ε-insensitive loss function with fixed and non-fixed margins in the feature space. In (b), a non-fixed margin setting is more
reasonable. It can moderate the effect of the noise by enlarging (shrinking) the margin width in the local area with large (small) variance of noise.

which can not only approximate these data well, but also
can predict the value of y for future data x accurately.

In general, the approximating function in SVR takes the
following linear form, f(x) = wT x + b, where w ∈ R

n

and b ∈ R. Furthermore, the above linear regression model
can be extended into the non-linear one by using Mercer’s
kernel. Now the question is to determine w and b from the
training data by minimizing the regression risk, Rreg(f) =

Ω[f ] + C
∑N

i=1 Γ(f(xi) − yi), where Ω[f ] is the structure
risk, used to control the smoothness or complexity of the
function, Γ(·) is a cost function that measures the empirical
risk, and C is a pre-specified trade-off value. Generally, in
SVR, Ω[f ] takes the form of ‖w‖ in l1-SVR or 1

2w
T w in

l2-SVR. The empirical cost function adopts the form of an
ε-insensitive loss function [8], which is defined as follows:

Γ(f(x)−y) =

{
0, if |y − f(x)| < ε

|y − f(x)| − ε, otherwise
.

In this function, when the data points are in the range of ±ε,
they do not contribute to the empirical error.

The complete optimization of SVR (or more precisely, the
optimization of l1-SVR) can be written as follows:

min
w,b,ξi,ξ

∗

i

‖w‖ + C

N∑
i=1

(ξi + ξ∗i ), (1)

s.t. yi − (wT xi + b) ≤ ε + ξi, (2)

(wT xi + b) − yi ≤ ε + ξ∗i , (3)

ξi ≥ 0, ξ∗i ≥ 0, i = 1, . . . , N, (4)

where ξi and ξ∗i are the corresponding positive and nega-
tive errors at the i-th point, respectively. This optimization
problem can be solved by the Linear Programming method.
When the structure risk term Ω[f ] takes the form of 1

2w
T w

(as in l2-SVR), the optimization becomes a Quadratic Pro-
gramming problem.

In the above optimization problem, the standard SVR fixes
the margin ε globally for all data points. Although this simple

setting achieves great success in many tasks, it lacks the
flexibility to capture the data’s volatility, which is a typical
feature of financial time series data. In order to address
this problem, we therefore develop the novel Local Support
Vector Regression model.

III. LOCAL SUPPORT VECTOR REGRESSION MODEL

In this section, we first present the definition of the LSVR
model. We then detail its interpretation and its appealing
characteristics. After that, we state its corresponding opti-
mization method.

A. Model Definition

The objective of the LSVR model is to learn the linear
approximating function in D by making the function locally
as involatile as possible while keeping the error as small as
possible. We formulate this objective as follows:

min
w,b,ξi,ξ

∗

i

1

N

N∑
i=1

√
wT Σiw + C

N∑
i=1

(ξi + ξ∗i ), (5)

s.t. yi − (wT xi + b) ≤ ε
√

wT Σiw + ξi,

(wT xi + b) − yi ≤ ε
√

wT Σiw + ξ∗i , (6)

ξi ≥ 0, ξ∗i ≥ 0, i = 1, . . . , N,

where ξi, ξ∗i , and ε are defined as in the previous section. Σi

is the covariance matrix formed by the i-th data point and
those data points close to it.

B. Interpretations and Appealing Properties

In this section, we interpret our novel LSVR model.
First, we discuss the physical meaning of the term wT Σiw.
Suppose yi = wT xi + b and ȳi = wT x̄i + b (x̄i denotes
the mean of xi and a certain number of points closest to
it). We have the variance around the i-th data point as
Δi = 1

2k+1

∑k
j=−k(yi+j − ȳi)

2 = 1
2k+1

∑k
j=−k(wT (xi+j −

x̄i))
2 = wT Σiw, where 2k is the number of data points

closest to the i-th data point. Therefore, Δi = wT Σiw
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actually captures the volatility in the local region around
the i-th data point. In addition, Δi can also measure the
complexity of the function around the i-th data point, since
it reflects the smoothness in the corresponding local region.

By using the first interpretation of Δi = wT Σiw (rep-
resenting the local volatility), LSVR can systematically and
automatically vary the margin: If the i-th data point lies in
an area with a larger variance of noise, it will contribute to
a larger ε

√
wT Σiw or a larger local margin, resulting in a

reduction of the impact of the noise around the point. On
the other hand, if the i-th data point is in the region with
a smaller variance of noise, the local margin, ε

√
wT Σiw,

will be smaller; in this case, the corresponding point will
contribute more in the fitting process. By contrast, the
standard SVR adopts a fixed margin, which treats each point
equally and therefore lacks the ability to tolerate variations
of noise.

By applying the second interpretation of Δi = wT Σiw,
namely, a measure describing the local functional complexity,
LSVR controls the overall smoothness of the approximating
function by minimizing the average of Δi, as seen in (5). In
contrast, the standard SVR globally minimizes a complexity
term, i.e., ‖w‖ or 1

2w
T w, which is insensitive to local

changes in the complexity of the function.

C. Optimization Method

In order to solve the optimization problem of (5), we
introduce auxiliary variables, t1,. . . , tN , and transform the
problem as follows:

min
w,b,ti,ξi,ξ

∗

i

1

N

N∑
i=1

ti + C

N∑
i=1

(ξi + ξ∗i ),

s.t. yi − (wT xi + b) ≤ ε
√

wT Σiw + ξi, (7)

(wT xi + b) − yi ≤ ε
√

wT Σiw + ξ∗i , (8)√
wT Σiw ≤ ti,

ti ≥ 0, ξi ≥ 0, ξ∗i ≥ 0, i = 1, . . . , N.

It is clear that (7) and (8) are non-convex constraints. This
may present difficulties in optimizing the LSVR problem.
In the following, we relax the optimization to a Second
Order Conic Programming problem (SOCP) problem [5] by
replacing

√
wT Σiw with its upper bound ti.

min
w,b,ti,ξi,ξ

∗

i

1

N

N∑
i=1

ti + C

N∑
i=1

(ξi + ξ∗i ),

s.t. yi − (wT xi + b) ≤ εti + ξi,

(wT xi + b) − yi ≤ εti + ξ∗i ,√
wT Σiw ≤ ti,

ti ≥ 0, ξi ≥ 0, ξ∗i ≥ 0, i = 1, . . . , N.

Since ti is closely related to
√

wT Σiw, weighting the
margin width with ti will achieve the original objective,
i.e., adapting the margin flexibly. Furthermore, the relaxed
form is a linear programming problem under quadratic cone
constraints, or more specifically it is a Second Order Conic

Programming problem. Therefore, this problem can be solved
in polynomial time by using many general optimization
packages, e.g., Sedumi [9]. Another advantage is that the re-
laxation also enables the application of kernelization, which
can yield more general non-linear approximating functions.
This will be demonstrated in Section V.

We now analyze the time complexity of LSVR. As in-
dicated in [5], if the SOCP is solved based on interior-
point methods, it contains a worst-case complexity of O(n3).
Adding the cost of forming the system matrix (constraint
matrix), which is O(Nn3), the total complexity would be
O((N + 1)n3), which is in the same order as the Maxi-Min
Margin Machine and can be solved in polynomial time. Note
that for time series prediction, we do not need to use sorting
methods to find the closest points for each data sample, since
the series itself provides the order information. For example,
2k points closest to the i-th point are simply those data with
time values i−k, i−k+1, . . . , i−1, i+1, . . . , i+k. Therefore
no further computation is involved.

IV. CONNECTIONS WITH OTHER MODELS

In this section, we establish various connections from our
novel model to other models. We first show that the LSVR
can be considered as the extension of the Maxi-Min Margin
Machine to regression tasks. We then demonstrate how the
standard SVR can be incorporated as a special case of LSVR.

A. Connection with Maxi-Min Margin Machine

The LSVR model can also be considered as an extension
of the general large margin classifier, the Maxi-Min Margin
Machine (M4) [2]. Within the framework of binary classi-
fication for class X and Y , the M4 model is formulated as
follows:

max
ρ,w �=0,b

ρ s.t. (9)

(wT xi + b)√
wT Σxw

≥ ρ, i = 1, 2, . . . , Nx , (10)

−(wT yj + b)√
wT Σyw

≥ ρ, j = 1, 2, . . . , Ny , (11)

where Σx and Σy refer to the covariance matrices of the
X and the Y data, respectively. The M4 model seeks to
maximize the margin defined as the minimum Mahalanobis
distance for all training samples,1 while simultaneously clas-
sifying all the data correctly. This model has been shown
to contain the Support Vector Machine, the Minimax Prob-
ability Machine [4], and the Fisher Discriminant Analysis
as special cases. Furthermore, it can be linked with the
Minimum Error Minimax Probability Machine (MEMPM)
known as a worst-case distribution-free classifier [3].

Within the framework of classifications, M4 considers
different data trends for different classes, i.e., it adopts the
covariance information of two classes of data, Σx and Σy.
Analogously, in the novel LSVR model, we allow different

1This also inspired the name of this model.
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data trends for different regions, which is more suitable for
a regression application.

B. Connection with Support Vector Regression

We now analyze the connection of the LSVR model
with the standard Support Vector Regression model. By
considering the data trend globally and equally, i.e., setting
Σi = Σ, for i = 1, . . . , N , we can transform the optimization
of (5) as follows:

min
w,b,ξi,ξ

∗

i

√
wT Σw + C

N∑
i=1

(ξi + ξ∗i ), (12)

s.t. yi − (wT xi + b) ≤ ε
√

wT Σw + ξi,

(wT xi + b) − yi ≤ ε
√

wT Σw + ξ∗i ,

ξi ≥ 0, ξ∗i ≥ 0, i = 1, . . . , N,

Further, if Σ = I, we obtain:

min
w,b,ξi,ξ

∗

i

‖w‖ + C
N∑

i=1

(ξi + ξ∗i ), (13)

s.t. yi − (wxi + b) ≤ ‖w‖ε + ξi,

(wxi + b) − yi ≤ ‖w‖ε + ξ∗i , (14)

ξi ≥ 0, ξ∗i ≥ 0, i = 1, . . . , N,

The above optimization problem is very similar to the �1-
norm SVR, except that it has a margin related to the
complexity term. In the following, we will prove that the
above optimization is actually equivalent to the �1-norm
SVR in the sense that, if one of the models for a given
value of the parameter ε produces a solution {w, b}, then
the other method can derive the same solution by adapting
its corresponding parameter ε.

Lemma 1: The LSVR model with setting Σi = I is equiv-
alent to the �1-norm SVR in the sense that: (1) Assuming a
unique ε∗1 exists for making �1-norm SVR optimal,2 if for ε∗1
the �1-norm SVR achieves a solution {w∗

1, b
∗
1} = SVR(ε∗1),

then the LSVR can produce the same solution by setting
the parameter ε =

ε∗1
‖w∗

1
‖ , i.e., LSVR(

ε∗1
‖w∗

1
‖ ) = SVR(ε∗1).

(2) Assuming a unique ε∗2 exists for making the special
case of LSVR optimal,3 if for ε∗2 the special case of LSVR
achieves a solution {w∗

2, b
∗
2} = LSVR(ε∗2), then the �1-norm

SVR can produce the same solution by setting the parameter
ε = ε∗2‖w∗

2‖, i.e., SVR(ε∗2‖w∗
2‖) = LSVR(ε∗2).

The proof can be seen in the appendix. In addition, if in
LSVR we use the item of wT Σw instead of its square root
form as the structure risk or complexity risk, a similar proof
can also be developed showing that the �2-norm SVR is
equivalent to the special case of LSVR with Σi = Σ. In
summary, we can see that the LSVR model actually contains
the standard SVR model as its special case.

2This means that setting ε to ε
∗

1
will minimize the objective function of

SVR.
3This means that setting ε to ε

∗

2
will minimize the objective function of

LSVR

V. KERNELIZATION

Only linear approximating functions are discussed in the
above. We next kernelize the LSVR in order to generate non-
linear approximating functions. Assume a kernel mapping
from the original space to a feature space is formulated as:
xi → ϕ(xi), where i = 1, . . . , N , and ϕ : R

n → R
f is a

mapping function. The optimization of the relaxed LSVR in
the feature space can be written as:

min
w,b,ti,ξi,ξ

∗

i

1

N

N∑
i=1

ti + C

N∑
i=1

(ξi + ξ∗i ), (15)

s.t. yi − (wT ϕ(xi) + b) ≤ εti + ξi, (16)

(wT ϕ(xi) + b) − yi ≤ εti + ξ∗i , (17)√
wT Σϕ

i w ≤ ti, (18)

ti ≥ 0, ξi ≥ 0, ξ∗i ≥ 0, i = 1, . . . , N.

To apply the kernelization, we need to represent the optimiza-
tion and the final approximating function in a kernel form,
K(xi,xj) = ϕ(xi)

T ϕ(xj). In the follownig, we present
Theorem 1 showing that the representer theory is validate
in LSVR.

Theorem 1: If the corresponding local covariance Σϕ
i can

be estimated by the mapped training data, i.e., ϕ̂i, Σϕ
i can

be written as

Σϕ
i =

1

2k + 1

k∑
j=−k

(ϕ(xi+j) − ϕ̂i)(ϕ(xi+j) − ϕ̂i)
T ,

ϕ̂i =
1

2k + 1

k∑
j=−k

ϕ(xi+j),

where we just consider 2k data points which are the closest
to the i-th data point, then the optimal w lies in the span of
the mapped training data.
The proof is very similar to the proof for representer theory
of the MEMPM and M4 [2][3]. Due to the space limit, we
omit the detailed procedure here.

VI. EXPERIMENTS

In this section, we report the experiments on both synthetic
sinc data and real world financial series data. The SOCP
problem associated with our LSVR model is solved using a
general software package, Sedumi [9]. The SVR algorithm
is performed by LIBSVM [1].

A. Evaluations on Synthetic Sinc Data
50 examples (xi, yi) are generated from a sinc func-

tion [8], where xi are drawn uniformly from [−3.0, 3.0], and
yi = sin(πxi)/(πxi) + τi, with τi drawn from a Gaussian
with zero mean and variance σ2. Two cases are evaluated.
In the one case, the standard deviation is set to zero, i.e.,
σ = 0.0; in the other case, the standard deviation of the
data increases linearly from 0.5 at x = −3.0 to 1.5 at
x = 3.0. Hence, in this case, the variance of noise is
different in different regions. We use the default parameters
C = 100.0 and the RBF kernel K(u,v) = exp(−‖u−v‖2).
Table I reports the average results over 100 random trails with
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Fig. 2. Experimental results on synthetic sinc data with ε=0.2.

ε
Case I: σ = 0.0 Case II: Varying σ

LSVR SVR LSVR SVR

0.0 0 0 0.1825±0.1011 0.3101±0.1165
0.2 0.0004 0.0160 0.2338±0.0888 0.2761±0.1111
0.4 0.0016 0.0722 0.1917±0.0726 0.2217±0.0840
0.6 0.0044 0.1695 0.1540±0.0687 0.2384±0.0867
0.8 0.0082 0.1748 0.1333±0.0674 0.2333±0.1096
1.0 0.0125 0.1748 0.1115±0.0597 0.2552±0.1218
2.0 0.0452 0.1748 0.0959±0.0421 0.2616±0.1517

TABLE I

EXPERIMENTAL RESULTS (MSE±STD) OF THE LSVR MODEL AND THE

SVR ALGORITHM ON THE sinc DATA WITH DIFFERENT ε VALUES

different ε values. Figure 2 illustrates the difference between
the LSVR model and the SVR algorithm when ε = 0.2.
For the first case, σ = 0.0, the LSVR model can adjust
the margin automatically to fit the data with a smaller Mean
Square Error (MSE), as shown in Figure 2(c). However, since

it uses a fixed margin, the SVR algorithm models the data
poorly(see Figure 2(a)); as a result, the MSE increases as
ε increases. We also note that, when ε ≥ 0.8, there are no
support vectors in SVR and the MSE reaches a maximum.
In the second case (with varying σ), the LSVR model has
smaller MSEs and smaller STDs for all ε’s. Figure 2(b) and
2(d) also show that the resulting approximating function in
LSVR is smoother than that in SVR.

B. Evaluations on Real Financial Data

We evaluate our model on financial time series data; these
are highly volatile in nature. The experimental data used are
drawn from three major indices for the period January 2,
2004 to April 30, 2004: (1) the Dow Jones Industrial Average
(DJIA), (2) the NASDAQ, and (3) the Standard & Poor 500
index (S&P500).

Following the procedure in [7], we convert the daily clos-
ing prices (dt) of these indices to continuously compounded
returns (rt = log dt+1

dt

) and set the ratio of the number of
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the training return series to the number of test return series
to 5 : 1. We perform normalization on these return series by
Rt = rt−Mean(rt)

SD(rt)
, where the means and standard deviations

are computed for each individual index in the training period.
We compare the performance of the LSVR model against
the SVR. The predicted system is modelled as R̂t = f(xt),
where xt takes the previous four days’ normalized returns
as indicators, i.e., xt = (Rt−4, Rt−3, Rt−2, Rt−1). We
choose to use the preceding four data points based on the
suggestions in [7]. We then apply the modelled function f
to test the performance by one-step ahead prediction. The
trade-off parameter C and the parameter β of the RBF
kernel (K(u,v) = exp(−β‖u−v‖2)), are obtained by five-
fold cross validation, conducting the SVR on the following
paired points: [2−5, 2−4, . . . , 210] × [2−5, 2−4, . . . , 210]. We
obtain the corresponding parameters {24, 2−3}, {2−3, 21},
and {20, 22} respectively for DJIA, NASDAQ and S&P500.

Pompe [7] has suggested that there is a relationship in the
sequential five days’ values. We therefore select k = 2, i.e.,
five days’ values, to model the local volatility. Since when
ε ≥ 2.0, there are no support vectors in the SVR, we just re-
strict the ε values in the range of 0.0, 0.2, . . . , 1.0 to 2.0. The
corresponding MSE’s are reported in Table II. As observed,
the LSVR model demonstrates a consistent superiority to the
SVR algorithm, even though the paired parameters (C, β)
are not tuned for our LSVR model. Furthermore, a paired
t-test [6], performed on the best results of both models in
Table II, shows that the LSVR model outperforms SVR with
α = 10% significance level for a one-tailed test.

TABLE II

EXPERIMENTAL RESULTS OF THE LSVR MODEL AND THE SVR

ALGORITHM ON THE FINANCIAL DATA WITH DIFFERENT ε VALUES

ε
DJIA NASDAQ S&P500

LSVR SVR LSVR SVR LSVR SVR

0.0 0.9204 1.3241 1.2897 1.3050 1.2372 1.2833
0.2 0.9835 1.1274 1.2896 1.3246 1.2399 1.2831
0.4 0.9341 0.9156 1.2898 1.3314 1.2442 1.2952
0.6 0.9096 0.9387 1.2901 1.3404 1.2540 1.2887
0.8 0.9273 0.9450 1.2904 1.3891 1.2788 1.2798
1.0 0.9434 0.9713 1.2908 1.4105 1.3044 1.2664
2.0 0.9666 1.0337 1.2928 1.3619 1.2643 1.3220

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed the Local Support Vector
Regression model in order to improve the performance of
the standard Support Vector Regression model for time
series prediction. In contrast to the standard Support Vector
Regression model, our novel model offers a systematic and
automatic scheme to adapt the margin locally and flexi-
bly. Therefore, it can tolerate noise adaptively. We have
demonstrated that this promising model not only captures
the local information of data in approximating functions,
but also incorporates the standard SVR as a special case.
Moreover, kernelization can also be applied to this novel
model. Therefore it can generate non-linear approximating
functions and can be applied to general regression tasks.

The experiments conducted on synthetic sinc data and three
series from real financial time series indices show that our
model outperforms the standard SVR in modelling the data.

APPENDIX

Proof of Lemma 1. Proof: Since (1) and (2) are
very similar statements, we only prove (1). When ε is set
to ε∗1

‖w∗

1
‖ in the special case of LSVR, the value of the

objective function of LSVR will always be smaller than the
one obtained by setting {w, b} = {w∗

1, b
∗
1}, since {w∗

1, b
∗
1}

is easily verified to satisfy the constraints of LSVR and SVR
contains the objective function same as LSVR with Σi = I.
Namely,

fLSV R(
ε∗1

‖w∗
1‖

) ≤ fSV R(ε∗1), (19)

where we use fSV R(εs) (fLSV R(εs)) to denote the value
of the SVR (LSVR) objective function when ε is set to a
specific value εs.

We assume the solution to be {w2, b2} when ε is set to
ε∗1

‖w∗

1
‖ in the special case of LSVR. Similarly, by setting ε =

ε∗1
‖w2‖
‖w∗

1
‖ in SVR, we have:

fSV R(ε∗1
‖w2‖
‖w∗

1‖
) ≤ fLSV R(

ε∗1
‖w∗

1‖
). (20)

Combining (19) and (20), we have:

fSV R(ε∗1
‖w2‖
‖w∗

1‖
) ≤ fLSV R(

ε∗1
‖w∗

1‖
) ≤ fSV R(ε∗1) . (21)

Since ε∗1 is the unique ε that achieves the objective of
minimizing SVR, (21) implies that ‖w2‖ = ‖w∗

1‖. This
further implies that w2 is equal to w∗

1 , since, with ‖w2‖ =
‖w∗

1‖, the optimization of LSVR is exactly the same as that
of SVR. This will naturally lead to the same solution.
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