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Absrrocl-Discriminative classifiers such as Support Vector 
Machines directly learn a discriminant function or a posterior 
probability model to perform classification. On the other hand, 
generative classifiers often learn a joint probability model and 
then use Bayes rules to construct a posterior classifier from this 
model. In general, generative classifiers are not as accurate as 
discriminant classifiers. However generative classifiers provide 
a principled way to handle the missing information problems, 
which discriminant classifiers cannot easily deal with. To achieve 
good performances in various classification tasks, it is better 
to combine these two strategies. In this paper, we develop a 
novel method to iteratively train a kind of generative Bayesian 
classifier: Bayesian Chow-Liu Multinet classifier in a discrim- 
inative way. Different with the traditional Bayesian Multinet 
classifiers, our discriminative method adds into the optimization 
function a penalty item, which represents the divergence between 
classes. Iterative optimization on this optimization function tries 
to approximate the dataset as accurately as possible. At the 
same time, it also tries to make the divergence between classes 
as big as possible. We state the theoretical justification, outline 
of the algorithm and also perform a series of experiments to 
demonstrate the advantages of our method. The experiments 
results are promising and encouraging. 

I. INTRODUCTION 

Generative classifiers have showed their advantages to deal 
with missing information problems in many classification 
tasks, even though their overall performances are not as 
good as discriminative classifiers such as Support Vector 
Machines [IS]. As one of competitive generative models, 
Bayesian Multinet classifiers [8], [6], [ 5 ] ,  [lo] separately use 
the belief network to model the joint probability of the data 
as accurately as possible for each class and then apply Bayes 
rule to build up a posterior probability classifier. This kind 
of framework to construct classifiers seems to be incomplete 
since this construction procedure actually discards some im- 
portant discriminative information for classification. With no 
consideration of the other data with different class labels, this 
method only tries to approximate the information in each sub- 
dataset. On the other hand, discriminative classifiers preserve 
this discriminative information well by directly constructing 
a classifier among all the data. Thus for Bayesian Multinet 
classifiers, it is not enough that the generative model can ap- 
proximate the data accurately. It should be also discriminative 
enough to separate this class from other classes. 

One of the remedy method is to directly learn a poste- 
rior probability model rather than a joint probability model. 
However in the framework of Bayesian Multinet, this kind 
of approaches are often computationally hard to perform the 
optimization. A typical example is the Bayesian Chow-Liu tree 
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Multinet classifier [ 5 ] ' .  When directly optimizing the posterior 
probability, the optimization is transformed into a conditional 
log likelihood, which does not decompose over the structure 
of the network as in the original Chow-Liu tree. The inability 
of decomposition make the learning difficult to perform [51. 

In this paper, beginning with modelling a Bayesian Chow- 
Liu tree Multinet over the pre-classified datasets, we provide a 
discriminative way to iteratively train this generative classifier. 
On one hand, our novel method tries to build up a tree 
probabilistic model to approximate the data as accurately as 
possible for each class . On the other hand, our method also 
tries to make the divergence among the models for differen 
classes as far as possible, which will benefit the classification 
greatly. Furthermore, What's the most important is that in each 
iteration, our method remains a modified version of Chow-Liu 
tree problem, which can be  easily optimized in polynomial 
time. Our proposed method only demonstrates a two-category 
classification task, further work will be done to extend the 
two-category classification method into multi-category one. 

This paper is organized as follows. In the next section, we 
present a short review on the related work. Then in Section 111, 
we introduce the background knowledge for this paper such 
as the Chow-Liu t r e e  and the Bayesian Multinet classifier. In 
Section IV, we describe our discriminative training framework 
in detail. In Section V, we demonstrate the advantages of our 
methods in a real world dataset. Finally, in Section VI, we 
conclude this paper with remarks. 

11. RELATED WORK 

Combining generative classifiers and discriminative classi- 
fiers has been one of an active topics in machine learning. 
A lot of work [I] ,  171, 1171, [Z] has been done in this 
area. However nearly all of these methods are designed for 
Gaussian Mixture Model (GMM) [13) and Hidden Markov 
Model (HMM) [15]. Since the structures of these models 
are often fixed, optimization only on parameters associated 
with the structure will be a relatively easy job. By contrast, 
our discriminative approaches are developed for Bayesian 
Multinet tree classifiers, where the structure is non-fixed in 
the tree family. Copying the techniques in HMM and GMM 
cannot solve the problem. On the other hand, Jaakkola et. 
al. developed a method to explore generative models from 
discriminative classifiers [ I  61. Different with this approach, 

'In 
Multinet. 

[5], Bayesian Chow-Liu tree Multinet is called directly Bayesian 

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 02:39:01 UTC from IEEE Xplore.  Restrictions apply. 



our method performs a reverse way to use discriminative 
information in generative classifiers. 

111. BACKGROUND 

A. Bayesian Multinet Classijier 

{{d, Cl}, . . . , {zN, C’”}}, where zi = ( A f , A i , .  . . ,A:) is 
an n-dimension vector, A I ,  A 2 ; .  . . ,A,, are called variables 
or attributes and C‘ is the class label, either “CI” or“C2”. 
The dataset is first partitioned into several sub-datasets by 
the class label. Then in each sub-dataset with the uniform 
class label Ck, k = 1 or 2, a Bayesian network B k  is 
used to model the joint probability P B ~  (AI,  Az, . . . , A,,). 
The Bayesian network Bk is called a local network for the 
class label C k .  The local network structure and parameters 
{A4 = { B I , B ~ } , M B  = { P B > , P B ~ } }  are searched by 
minimizing a score function, often the cross-entropy or the 
Kullback divergence between the estimated distribution based 
on Bk and the empirical distribution over the sub-dataset, 
which is defined as: 

- Given a pre-classified dataset D - 

KL(PB,, 4) 

where P k  refers to the empirical distribution for the sub-dataset 
with class label C, and (al, az, . . . ,a,,} is a short form of 
{Al = al ,Az  = az, .  . . ,A,, = a,}. 

The set of local networks combined with the prior informa- 
tion on the class variable C, P ( C )  is called Bayesian Multinet. 
When used in classification tasks, the class label c assigned for 
a new data (a1 , a>, . . . , a,} is given by the following formula: 

c=argmmaxP(C=Ck)P~*(ar,az,  . . .  ,an) (2) 
GI 

The Bayesian Multinet classifier for the two-category classifi- 
cation problem can he defined as: 

Dejinition I :  Bayesian Multinet classifier is a kind of clas- 
sifier, which first finds a Bayesian model by minimizing 
Eq. (1) for each sub-dataset: C, and then uses Eq. (2) to 
perform classification. 

B. Chow-Liu Tree 

Chow-Liu tree [3], [9] is a kind of Bayesian model, which 
assumes a tree dependence relationship exists among the 
attribute set {A,, A2, . . . ,A,,}. An optimal dependence tree 
structure, which minimizes the Kullback divergence defined 
by Eq. (I), can he obtained by the following Chow-Liu Tree 
algorithm: 

I .  Calculate I (A i ;A?)  between each pair of attributes, i # 
j ,  where I ( A , A ~ )  = E{,,,,,} i.(ai,aj)log i.cm,,a<aj, 
is the mutual information, P(.) is the empirical dis- 
tribution of the dataset, ‘ {a , ,a j}  is a short form for 
{A;  = ai,Ai = a j } .  

P(a*,a 1 

2. Construct a Maximum Weight Spanning tree among 
the attribute set ( A l ,  A z ,  . . . ,A,,}, each attribute cor- 
responds to a vertex, where the weight between two 
vertexes is given by the mutual information defined in 
the Step 1. 

A remarkable characteristic of the Chow-Liu tree algorithm 
is that it can optimize the structure M and parameters MO 
associated with M at the same time in a polynomial cost. 
According to the Chow-Liu tree structure obtained from the 
above algorithm, the joint probability among the vertexes, i.e., 
the attributes can be decomposed into a product of several 
subitems: 

n 

P ( A I , A z , . . .  > A n )  = n P ( A j / p a ( A j ) ) ,  (3) 
;=1 

where p ( A j )  means the parent vertex of vertex A;. Each 
subitem P(A;(pa(Aj))  can he reliably estimated based on the 
empirical distribution. 

C. Buyesiun Chow-Liu Tree Multinet Classifer 
A Bayesian Chow-Liu tree Multinet classifier is such a 

Bayesian Multinet classifier, which applies Chow-Liu tree 
alogrithm to model the joint probability in each sub-dataset 
with the uniform class label, and then uses Eq. (2) to perform 
classification. This kind of classifier is demonstrated to per- 
form rather well in comparison to the state-of-the-art decision 
tree learner C4.5 [5].  

IV. DISCRIMINATIVE BAYESIAN CHOW-LIU TREE 
MULTINET CLASSIFER 

The optimization function to construct a two-category 
Bayesian Chow-Liu tree Multinet classifier can he written as: 

This optimization function only takes into account the inner 
divergence information inside each sub-dataset, while it throws 
out the class divergence information between the sub-datasets. 
which is very important for-constructing accurate classifiers. 
Motivated from this point,. we propose the following optimiza- 
tion function to preserve those discriminant information: 

-w’Div (pE , ,pBz ) } ,  ( 5 )  

where W is a penalty parameter, Div(.) refers io the measure 
of the divergence’ between PE, , Pa,. PI, PZ represent the 
empirical distribution respectively for sub-dataset 1 and sub- 
dataset 2. To minimize the function (3, the inner divergence 
in each class, represented by the first two parts need to be as 
small as possible while the class divergence, represented by 
the last part needs to he as large as ‘possible. However, the 
disadvantage caused by adding the interactive item is that we 
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cannot easily learn the structure and the associated parameters 
respectively as in Bayesian Multinet classifiers, since now 
these items are interactive. 

To solve this problem, we propose a novel iterative scheme 
to perform the optimization. By this iterative process, in each 
step, we maintain the merit of the Bayesian Chow-Liu tree 
Multinet, i.e., the structure and the associated parameters can 
be optimized at the same time through a modified Chow-Liu 
tree approach. In the following, we propose our discriminant 
training procedure in detail. 

A. Framework of Iterative Optimization on Discriminant 
Bayesian Chow-Liu Tree Multinet 

To perform the optimization in Eq. (5 ) ,  we first define the 
divergence metric. Different divergence metrics to distinguish 
two distributions can be used here. In this paper, we use 
Kullback divergence Eq. (6) or the similar metric Eq. (7). 

D~VI(PB,,PB~) = 

We combine these two similar divergence metrics .with the 
optimization function. Thus we obtain two optimization func- 
tions named DKLl and DKLz. 

DKL,(,) = K L ( P ~ , , P , )  + K L ( P ~ , , &  - 
w ~ ~ i ~ l ( z ) ( p B ~ , P B ~ )  (8) 

The optimal structure E l ,  E2 and the associated optimal 
parameter PB,, PE, can be obtained by minimizing one of 
these two functions, for example: 

In the above equation, PI, P z  are constant for each instance 
{ a ] , .  . . ,an}, thus, it can be further written as: 

-w PE, b P B ,  + KL(PB,, pl))  (10) 
(a,, ... &I 

It will be hard to directly perform optimization on the struc- 
tures and the parameters BI, PB, and Bz,€'B, in Eq. (IO). 

However if we fix B1, PB,, Eq. (10) will be changed into the 
following optimization on Bz, PB,. 

When applied the tree dependence assumption on the variables 
set, Eq. (11) can be written into the following decomposed 
form: 

w ' PBl(aiiap,(i)))logPB~(ailapa(i))l}r (12) 

where {ai,apo(<)} is the short form of {Ai = ai,Pa(Ai) = 
a,,(<)}. This formula can be optimized by a modified Chow- 
Liu tree algorithm under the constraint that parameters 

is a positive constant close to i:r;:'$he detailed optimization 
process can be seen in the Appendix. We just directly give 
the optimization result. The structure can be obtained by a 
Maximum Weight Spanning Tree algorithm and the associated 
parameters are obtained as follows: 

P~~(ai,a,,(i)) 2 Ez and C( 1 P~~(ai ,a , , ( t ) )  = 1. Ez 

P&(ai,aj) = E %  
i f  I j z (a i , a j ) - -W.Ps , (a i , a j )  S O , i # j ;  (13) 

P&(ai>aj) = ( P z ( a i , a j ) - w ' P B , ( a , , a j ) ) / Z ,  
if % ( a i , a j ) - W . P ~ ~ ( a i , a j )  > O , i $ j ;  (14) 

where Z is a normalization factor, which is used to guarantee 
&n,,aj)P&(a%,aj) = l:P~,(ai,aj)andP~,(ai,aj)arethe 
short forms of PB,(A~ = ai ,Aj  = aj )  and P B ~ ( A ~  = 
ai, Aj  = a j )  respectively. 

Similarly, when fixing the PB~, we can easily minimize the 
DKLz to find the parameter PE,. Motivated from these find- 
ings, we develop an iterative algorithm to perform optimization 
between two functions: D K L l  and DKL2. As Fig. 1 in each 
iteration i ,  we have two steps. 

1. Fix B1, PB, to Bf-I, P&', find E;, Pi1 to minimize 

2. Fix Bz,PB2 to B;,P&, find @ , P i ,  to minimize 

We call this iterative optimization algorithm as Iterative Dis- 
criminative Bayesian Multinet algorithm (IDBM). We outline 
this algorithm in Algorithm 1 and illustrate the algorithm. 

In our experiments, we empirically demonstrate OUT iterative 
method converges rapidly in just several steps. The theoretic 
analysis on the convergence performance will be conducted as 
one of our future work. 

DKLl 

DKLz 

ZNone of the decomposed probabilities can be zero. Otherwise. the restored 
joint probability ar Eq. (3)will be always zero whatever the other decomposed 
probabilities are. 
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I D2 c' Until Convergence 

Fig. 1. 
with class label CO and CI respectively. 

Iterative Optimization Procedure. D1 and Dz are the sub-damel 

Algorithm IDBM(D) 
iflput@re-clussijied Duruset D = {z',zz,. . . >zN} ,W)  

Initialization: {B1,PB,) = {@,P;,), i = 1. Partition 
D into two sub-datasets D1 and Dz by class; 
repeat 
I if li mod 2 == 11 then 

{By,  Pk,} t {Bi- ' ,  P&'} ; 
Find B;, P& by minimizing DKL2; 

1 else 
{Bi ,P&} + {B;-',P&') ; I ;  Find B:,P& by minimizing DIfL1;  

until convergence; 

output(Bi,&, PE,, P B ~ )  

Algorithm 1: Iterative Bayesian Multinet Optimization 
Algorithm 

Fig. 2. Convergence curve far hepatitis dataset. The dash line is the 
convergence c m c  for PB 
The z-axis represents l h e ' i k i o n .  And the y-axis represents the Euclidean 
distance between the current value and previous value for each parameter 
Vector. 

The solid line is the convergence c w e  for P B ~  

W to 0.2 and we use the five-fold cross validation (CV5) [ I l l  
method to test the performance of these methods. The recog- 
nition results are described in Table I. It can be observed 
that DCLT performs significantly better than CLT and NB 
in this dataset, which shows that incorporating discriminative 
information will greatly benefit the classifier's performance. 
In our experiments, it is also interesting that the iterative 

TABLE I 
RECOGNITION RATE 

[ Database )I NB 1 CLT 1 DCLT 1 
[ Hepatitis(%) I( 84.95 I 86.03 I 89.25 I 

process rapidly converges in several steps . In our fivefold 
cross validation experiments, all of the five times experiments 
converge well. We plot out one of the convergence curve 
in Figure 2. This phenomena deserves our further theoretic 
exploration. 

VI. CONCLUSION 

In this paper, beginning with generative modelling over the 
pre-classified datasets, we provide a discriminative way to 
iteratively train the Bayesian Chow-Liu tree Multinet clas- V. EXPERIMENTS 

To evaluate the performance of our discriminative Chow- 
Liu tree (DCLT) Bayesian Multinet Classifier, we implement 
OUT algorithm on the Hepatitis database from UCI Machine 
learning Repository [14]. This dataset consists of 155 in- 
stances, 19 attributes and two classes "die" or "live". For 
continuously-value attributes, we use an equal-interval method 
to quantize them into discrete values. We compare our methods 
with Chow-Liu tree (CLT) Bayesian Multinet classifier and the 
Naive Bayesian (NB) Classifier [41, [12], which is a kind of 
competitive classifier as well. We set the penalty parameter 

sifiers. On one hand our novel approach approximates the 
dataset as accurately as possible. On the other hand, our 
approach also tries to discriminate the divergence between 
different classes. This discriminative characteristic will greatly 
benefit the classification. Even though, we cannot prove the 
convergence of our methods in theory for the time being, our 
experiments show that this iterative approach will converge 
rapidly. As one of our main research direction, we will focus 
on the theoretic exploration on the convergence property of 
our method in the near future. 
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APPENDIX 

Assume 1 = E(a,,,,,,om)(& -W.pB,)lOgPB,, under a 
tree dependence structure t among the variables, this formula 
can be decomposed as: 

Eq. (19) continues lo be: 

maxlt 
n 

(21) = m a x x I d ( A i , A p . ( i ) )  1 

i=l n c 
i = l  (czi,a,,aw) 

log(pB, (ailapa(i)) (15) 

- W .  pB1(ai'apa(i))l This is a Maximum Weight Spanning Tree problem, where the 
weights are given by the discriminative mutual information. 
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%,(ai, a,,(,)) )I1 - 5 H ( A i ) }  (19) 

Where, H ( A , )  = -Cy=, P&(ai)logP&(ai), 1 5 i 5 n. 
- CL, H(A,)  is a constant for any tree structure. Thus we 
can remove this item from Eq. (19). Further, we define the 
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