
CONSTRUCTING A LARGE NODE CHOW-LIU TREE BASED ON FREQUENT ITEMSETS

Kaizhu Huang, Irwin King, and Michael R.Lyu

Department of Computer Science and Engineering
The Chinese University of Hong Kong
Shatin, New Territories, Hong Kong

ABSTRACT

We present a novel approach to construct a kind of tree
belief network, in which the “nodes” are subsets of vari-
ables of dataset. We call this Large Node Chow-Liu Tree
(LNCLT). Similar to the Chow-Liu Tree, the LNCLT is also
ideal for density estimation and classification applications.
This technique uses the concept of “frequent itemsets” as
found in the database literature to guide the construction of
the LNCLT. Our LNCLT has a simpler structure while it
maintains a good fitness over the dataset. We detail the theo-
retical formulation of our approach. Moreover, based on the
MNIST hand-printed digit database, we conduct a series of
digit recognition experiments to verify our approach. From
the result we find that both recognition rate and density es-
timation accuracy are improved with the LNCLT structure.

1. INTRODUCTION

One of the interesting problems in Machine Learning is den-
sity estimation, i.e., given a training dataset, how can we
estimate the data distribution. The estimated distribution
can be used to perform classification or prediction tasks.
Triggered by the success of Naive Bayesian network (NB),
Bayesian belief network [8] has become one of the most
popular techniques in solving this type of problems. By re-
laxing the strong assumption, i.e., the independency among
the data attributes, of NB, many researchers have developed
other types of Bayesian belief networks. Among them are
Semi-naive Bayesian network [5], Selective naive Bayesian-
network [6], and Tree Augmented Naive Bayesian network [4].
Moreover, although the Chow-Liu tree (CLT) [3] was early
proposed in 1968, it can also be regarded as a type of Bayesian
belief network with a looser assumption than NB.

CLT is shown to be a competitive method in distribution
approximation and classification problems due to its abil-
ity to resist over-fitting problem and to have a more relaxed
restriction than NB [4]. However, there are still some prob-
lems when using the CLT. The tree structure dependence as-
sumption on the underlying structure of the training dataset

http://www.cse.cuhk.edu.hk/∼{kzhuang, king, lyu}

A B E

C

D

(a) underlying structure

B E

C DA

(b) large node tree
structure

Figure 1: A large node tree example

will be violated in many cases. For a simple example, see
Figure 1 (a). If the underlying structure of a dataset can be
represented as a graph as Fig. 1 (a), the CLT method will
not be able to restore this structure since Fig. 1 (a) is never
a spanning tree.

It is observed that if we combine some nodes as a “large
node”, then Fig. 1 (a) can be represented as a tree. Fig. 1 (b)
is indeed such a structure which is compatible with Fig. 1 (a)
since they both represent the conditional independence re-
lationship “Given the B and E, there is an independence
relationship between any two nodes in {A,C,D}”.

Motivated from this observation, our approach first cre-
ates a Chow-Liu tree structure as the draft approximation
over the dataset. Then we use reliable “frequent itemset” [1]
together with our combination rule to refine the draft Chow-
Liu tree network into the large node structure. Frequent
itemsets can be considered as the subset of variables which
come out together with each other frequently. Our large
nodes are selected from the frequent itemsets. This selec-
tion is reasonable since the nodes in an frequent itemset
are such variables which come out frequently together with
each other.

We theoretically show that under our combination rule,
the final refined structure will increase the data fitness over
the training set. At the same time, our resulting structure
can be maintained as a “tree”, which is resistant to the over-
fitting.

In Section 2, we give the notation and definitions. In
Section 3 we detail our algorithm. We demonstrate a set of

experiments in Section 4. We then conclude with discussion
and final remarks in Section 5. In Appendix, we show the
theoretical justification of our approach.

2. NOTATION AND DEFINITIONS

Let V denote a set of n random discrete variables. Assume
A is a subset of V , we denote xA as one assignment of the
variables in A. And we consider a graph T = (V,E) where
V is the vertex set andE is a set of undirected edges. If T is
a connected acyclic graph, we call T a tree. If the number of
edges |E| in a tree T is equal to the number of vertex minus
one: |V | − 1, we call T a spanning tree. Let V denote a set
of random discrete variables and let V ∗ denote a set of the
subsets of V . V ∗ satisfies the following condition:

∪Ui∈V ∗Ui = V, Ui ∩ Uj = φ, fori 6= j, Ui, Uj ∈ V ∗

A Large node tree T ∗(V ∗, E∗) is defined as a tree where
V ∗ is the vertex set satisfying the above conditions and E∗

is the set of edges between V ∗. Here we can see that each
vertex of T ∗ is actually the subset of V and these subsets
have no overlapped variables. Fig. 2 (b) is an example of a
large node tree.

The distribution encoded in the large node tree can be
written into:

P ∗(xV ∗) =
Π(u,v)∈E∗,P ∗(xu, xv)

Πv∈V ∗P ∗v(xv)deg(v)−1
.

deg(·) means the degree of a vertex in the graph.

3. LARGE NODE CHOW-LIU TREE (LNCLT)

In this section, we give an upgrading algorithm we call Large
node Chow-Liu tree(LNCLT) which upgrades the CL-tree
to a large-node tree structure. We use frequent itemsets to
guild our upgrading. In Appendix we show that combining
the frequent itemsets whose attributes satisfy the father-son
relationship or sibling relationship will increase the net-
work’s fitness over the dataset. In order to avoid a much
more complex structure, we restricted the frequent itemset’s
cardinality less than K. In brief, we increase the learning
accuracy by combining attributes with a certain relation-
ship. On the other hand we avoid over-fitting problem by
introducing reliable bounded frequent itemsets.

Before introducing the algorithm, we first give a defi-
nition about combination transformation in tree graph. A
combination transformation is defined to be a transforma-
tion in a tree structure T . This transformation combines
several nodes into a large node and keep the connection
relationship of T . Fig. 2 is an illustration of combination
transformation. In Fig. 2, (a) is a tree structure and (b) is
the result after a combination transformation. In (b) when

nodes D, B are combined, the edge BE in (a) will be kept
as the edge (BD)E in (b). In Appendix we theoretically
show that combining several nodes with a father-son rela-
tionship or sibling relationship based on any node as root
will increase the log likelihood of the graphical structure,
thus will make the result structure fit the samples more ac-
curately.

Our algorithm consists of three phases. In the first phase
we utilize Apriori on [1] to detect all the frequent itemsets.
The second phase is basically the Chow-Liu tree construc-
tion algorithm. And in this phase, we check the support
of frequent itemsets, which satisfy the combination condi-
tion. Here support means the frequency the frequent itemset
happens in the dataset. In the last phase, we combine the
attributes with higher supports iteratively and upgrade the
CL-tree structure into LNCLT structure.

A

B C

D E F

G

����������������������

(a)

A

B C

E F

G

D

(b)

Figure 2: Illustration of combination transformation

Phase 1: Detecting the frequent itemsets

(1) Give out a good valve Minisup, which is the mini-
mum support an frequent itemset should have. Call
Apriori procedure to generate the frequent itemsets,
which have the size less than k.

(2) Record all the frequent itemsets together with their
supports into list L.

Phase 2: Drafting Chow-Liu tree. [3]

(3) Calculate all the mutual information between any two
nodes I(Xi, Xj) and insert them into Set B, initiate
tree T (V,E) where V = {all the nodes of a data
set}, E = {} and the mutual information between
two variables X,Y is defined as:
I(X,Y) =

∑
x,y P (x, y) log P (x,y)

P (x)P (y) .

(4) Do until E contains n − 1 edges (n is the number of
nodes)

(5) Find the nodes pair (Xm1 , Xm2) with maximum mu-
tual information Im from B.
If no cycle is formed in T when the vertex Xm1 is

connected with Xm2 , add edge (Xm1 , Xm2) in E,
and delete Im(Xm1 , Xm2) from B.
Else delete Im(Xm1 , Xm2) from B and go to (4).

Phase 3: Adapting the tree structure based on combination
transformation

(6) According to tree T , filter out frequent itemsets which
do not satisfied combination conditions from L, we
get the new L

′
.

(7) Sort L
′

in descending order based on the supports of
the frequent itemsets.

(8) Do until L
′

is NULL.

(a) Do the combination transformation tr based on
the first itemset l1 of L

′
.

(b) Delete l1 and any other itemset li in L
′

which
satisfies the following condition:

l1 ∩ li 6= φ

(c) Keep the new itemsets which has the size less
than k from the combination transformation tr
which are large itemsets and satisfy combina-
tion conditions.

(d) Finding the new itemsets from the combination.
If they are frequent itemsets , insert them into
L
′

and update L
′
, go to (a).

4. EXPERIMENTAL RESULTS

In this section, we conduct classification experiments on
MNIST database [7] of hand-printed digits to evaluate our
LNCLT method. We built 10 LNCLTs for 10 digits. When
a new test digit is input, we calculate the 10 probabilities
based on 10 LNCLTs and output the digit whose LNCLT
has the maximum probability. We show that the data have
the better fitness on the LNCLT structure than Chow-Liu
tree structure according to log likelihood examination. More-
over, the recognition rate is also improved with the LNCLT
structure. The MNIST datasets consist of a 60000-digit
training dataset and a 10000-digit test dataset. Both the
training dataset and the test dataset consist of 28× 28 gray-
level pixels digits. We simply use a global valve to do bi-
narization on these two datasets. This may be the partial
reason why the recognition rate in our experiments is some-
what low. We use the same method in [2] to extract 96-
dimension binary features from the digits. To avoid over-
fitting, in the experiments, we restrict the cardinality of the
frequent itemset no greater than 3.

To verify that our model is superior to Chow-Liu tree
model, we conduct experiments on both log likelihood and
recognition rate based on MNIST in Section 4.1 and Sec-
tion 4.2.

4.1. Log likelihood

We test both the training dataset and testing dataset of MNIST.
The results are showed in Table 1.

Table 1: Minus Log likelihood
Digit Training (bits/digit) Testing (bits/digit)

LNCLT CLT LNCLT CLT

0 30.14 30.87 30.05 31.00
1 13.08 13.75 12.12 12.86
2 33.78 34.68 33.03 34.05
3 34.49 35.51 33.87 34.95
4 27.98 28.70 27.58 28.34
5 32.45 33.17 32.31 33.18
6 26.96 27.63 26.60 27.26
7 25.01 25.83 24.84 25.79
8 34.15 34.94 33.75 34.58
9 26.90 27.52 26.12 26.63

From Table 1, we can see that the likelihood of LNCLT
is greater than the one of CLT both in training dataset and
testing dataset. This result is consistent with our theoretical
analysis in Appendix.

4.2. Recognition rate

We first use the 60000-digit training dataset to train our
LNCLT and Chow-Liu tree. To test the performance of
LNCLT and Chow-Liu tree, we extract 1000 digits from the
10000-digit testing dataset randomly as our test dataset. We
do the 1000-digit test for 10 times to evaluate the perfor-
mance difference between the LNCLT and Chow-Liu tree.
In Table 2 is the result. From Table 2, it is clear that the
LNCLT performs better than Chow-Liu tree in all of 10 test-
ing datasets.

Table 2: Recognition Rate
Dataset 1 2 3 4 5
CLT(%) 83.20 84.70 84.10 83.50 83.70

LNCLT(%) 83.70 85.90 84.70 84.20 84.90

Dataset 6 7 8 9 10
CLT(%) 85.10 84.30 83.30 83.50 83.80

LNCLT(%) 86.00 85.40 83.50 83.90 85.70

5. CONCLUSION

In this paper, we have described a method for construct-
ing a kind of “tree” belief network: Large node Chow-Liu
tree (LNCLT). This method can be seen as the extension of
Chow-liu tree algorithm. With the combination of frequent
itemsets, we can maintain the performance of our LNCLT

no worse than Chow-Liu tree. In both theory and experi-
ments, we verified that the LNCLT is superior to Chow-Liu
tree method more or less.

6. APPENDIX

We prove in the following that the log likelihood of the
“tree” constructed by our algorithm is bigger than the one in
the Chow-Liu tree, which means that our hypertree is supe-
rior to the Chow-Liu tree in the meaning of maximum like-
lihood criterion. Before the proof, some definitions are first
given. We defineH(x) as the entropy for a random variable
X , and H(X |Y) as the conditional entropy of X given Y .
The relationship such as father-son relationship and sibling
relationship can be obtained if any node (variable) is consid-
ered as the root in a spanning tree. We denote the training
dataset S as s independent observations x1, x2, . . . , xs, and
n variables as {1, 2, 3, . . . , n}, then each observation can be
represented as {x1

i, x2
i, . . . , xn

i}, 1 ≤ i ≤ s.

Lemma 1 Given a training dataset S and n variables de-
fined as the above, the log likelihood lt(x1, x2, . . . , xs) of
the observations can be written as the following when the
dataset is fit as a maximum spanning tree:

lt(x
1, x2, . . . , xs) =

n∑

i=1

s∑

k=1

logP (xki |
k

xj(i)) (1)

where j(i) is the father of variable i obtained by the order-
ing based on any certain variable as the root in a tree. And
this log likelihood is maximized when the spanning tree is
obtained with Chow-Liu method [3].

The proof can be seen in [3].

Proposition 1 Given a spanning tree T , if any two nodes
satisfy father-son relationship based on a certain root, then
the graphical structure T ∗ after a combination transforma-
tion of these two nodes is superior to the original tree T
based on the maximum likelihood criterion.

X m

qX

1X

X 2

X p

(a)

X 1 X 2,{ }

X p

������������������

X m X q

(b)

Figure 3: Father-son combination (a):The original sub-tree
(b): The resulting sub-tree after the combination of X1 and
X2

Proof: See Fig. 3, we assume that the left part is one
sub-part (a) of spanning tree T (To be simple, we assume
X1 has the sons: X2 andXq andX2 has only one son :Xm.
We have the similar proof if X1 and X2 have multi-sons)
and in this subpart we do the combination of two variables.
As showed in the right part of Fig. 3, two nodesX1, X2 with
father-son relationship are combined. For the spanning tree
T , only the subpart (a) is changed into (b) when combining
X1 and X2 and the other parts of T are unchanged. We
rewrite the log likelihood of training dataset according to
tree T into two parts:

lt(x
1, x1, . . . , xs)

=
∑

i6=X1,X2,Xm,Xq

[
s∑

k=1

logP (xi
k| k
xj(i))] +

+
s∑

k=1

[logP (
k
xX2 |

k
xX1) + logP (

k
xXm |

k
xX2) +

+ logP (
k
xXq |

k
xX1) + logP (

k
xX1 |

k
xXp)] (2)

The same as (2) we can write the log likelihood of training
dataset according to hypertree distribution T ∗ of the right
part of Fig. 3 into (3):

lt∗(x
1, x1, . . . , xs)

=
∑

i6=X1,X2,Xm,Xq

[
s∑

k=1

logP (xi
k| k
xj(i))] +

+
s∑

k=1

[logP (
k

xXm |
k
xX1

k
xX2) + logP (

k
xXq |

k
xX1

k
xX2) +

+ logP (
k
xX1

k
xX2 |

k
xXp)] (3)

Further we can define the second part of (2) as R(lt) and
write it into entropy form (4)

R(lt) =
s∑

k=1

[logP (
k
xX2 |

k
xX1) + logP (

k
xXm |

k
xX2) +

+ logP (
k
xXq |

k
xX1) + logP (

k
xX1 |

k
xXp)]

=
s∑

k=1

logP (
k
xX2 |

k
xX1) +

s∑

k=1

logP (
k

xXm |
k
xX2) +

+
s∑

k=1

logP (
k
xXq |

k
xX1)−

s∑

k=1

logP
k
xXp +

+
s∑

k=1

logP (
k
xX1 |

k
xXp) +

s∑

k=1

logP
k
xXp

= −H(X2|X1)−H(Xm|X2)−H(Xq |X1)−
−H(X1Xp) +H(Xp) (4)

In the same way, we can write the second part of (3) into
(5).

R(lt∗) =
s∑

k=1

[logP (
k

xXm |
k
xX1

k
xX2)+

+ logP (
k
xXq |

k
xX1

k
xX2) + logP (

k
xX1

k
xX2 |

k
xXp)]

= −H(X2|X1Xp)−H(Xm|X1X2)−
−H(Xq|X1X2)−H(X1Xp) +H(Xp) (5)

According to entropy theory, we have:

H(X2|X1) ≥ −H(X2|X1Xp),

H(Xm|X2) ≥ H(Xm|X1X2),

H(Xq |X2) ≥ H(Xq|X1X2) (6)

From (4),(5) and (6) we have the following (7):

R(lt) ≤ R(lt∗) (7)

From (4),(5),(7) we obtain that:

lt ≤ lt∗ (8)

2

Proposition 1 shows that a single combination transform
will increase the log likelihood of a tree T , which means the
data fitness will be increased.

Proposition 2 Given a spanning tree T , if two nodes sat-
isfy sibling relationship based on a certain root, then the
graphical structure T ∗ after a combination transformation
of these two nodes is superior to the original tree T based
on the maximum likelihood criterion

The proof of Proposition 2 is much similar as Proposition 1,
we won’t prove it here.

Based on a sequence of combination transformation, We
can easily expand the Proposition 1 and Proposition 2 into
the following Corollary 1 and Corollary 2. These two corol-
laries prove that the combination transformation of father-
son relationship and siblings relationship will increase the
data fitness.

Corollary 1 Given a spanning tree T , if a subset of nodes
can be sorted as a sequence based on a certain node as the
root, in which each node is the father of its sequent node,
then the graphical structure T ∗ after a combination trans-
formation of these nodes in this subset is superior to the
original tree T based on the maximum likelihood criterion.

Corollary 2 Given a spanning tree T , if all the nodes in a
subset are sibling relationship, then the graphical structure
T ∗ after a combination transformation of all the nodes in
this subset is superior to the original tree T based on the
maximum likelihood criterion.

7. ACKNOWLEDGEMENT

This research is supported fully by grants from the Hong
Kong’s Research Grants Council (RGC) under CUHK 4407/99E
and CUHK 4222/01E.

8. REFERENCES

[1] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. Proc. VLDB-94, 1994.

[2] R. Bakis, M. Herbst, and G. Nagy. An experimental
study of machine recognition of hand-printed numerals.
IEEE Transactions on systems science and cybernetics,
SSC-4(2), JULY 1968.

[3] C. K. Chow and C.N. Liu. Approximating discrete
probability distributions with dependence trees. IEEE
Trans. on Information Theory, 14:462–467, 1968.

[4] N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian
network classifiers. Machine Learning, 29:131–161,
1997.

[5] I. Kononenko. Semi-naive bayesian classifier. In Pro-
ceedings of sixth European Working Session on Learn-
ing, pages 206–219. Springer-Verlag, 1991.

[6] P. Langley and S. Sage. Induction of selective bayesian
classifiers. In Proceedings of the Tenth Conference on
Uncertainty in Artificial Intelligence, page 399C406.
San Francisco, CA: Morgan Kaufmann, 1994.

[7] Y. Le Cun. http://www.research.att.com/ yann/exdb/
mnist/index.html.

[8] J. Pearl. Probabilistic Reasoning in Intelligent Systems:
networks of plausible inference. Morgan Kaufmann,
CA, 1988.

