
Scaling Service-oriented Applications into
Geo-distributed Clouds

Jieming Zhu∗†, Zibin Zheng∗†, Yangfan Zhou†, and Michael R. Lyu∗†‡

∗Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
†Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China

‡School of Computer Science, National University of Defence Technology, Changsha, China
{jmzhu, zbzheng, yfzhou, lyu}@cse.cuhk.edu.hk

Abstract—With the significant prevalence of cloud computing,
more and more data centers are built to host and deliver
various online services. However, a key challenge faced by service
providers is how to scale their applications into geo-distributed
data centers to improve application performance as well as
minimizing the operational cost. While most existing deployment
methods ignore the service dependencies in an application, this
paper proposes a general dynamic service deployment framework
to bridge this gap, in which a deployment manager and a local
scheduler are designed to optimize data center selection and
auto-scale the service instances in each data center respectively.
More specifically, we formulate the deployment problem across
multiple data centers as a compact minimization model, which
can be solved efficiently by a genetic algorithm. To evaluate
the performance of our approach, extensive experiments are
conducted based on a large-scale real-world latency dataset.
The experimental results show that our approach substantially
outperforms the other existing methods.

Keywords—Dynamic deployment; service-oriented application;
geo-distributed clouds; genetic algorithm

I. INTRODUCTION

The cloud computing paradigm has recently gained much
popularity for provisioning a pool of computational resources
to host and deliver various large-scale online services over the
Internet, including search engine, e-commerce, social network,
file hosting service, and so on. With the prevalence and benefit
of cloud computing, many cloud providers like Amazon,
Google and Microsoft have built large data centers in geo-
graphically distributed locations to achieve reliability and serve
millions of users world-wide. For example, Amazon EC21

nowadays provisions cloud services over nine geographically
dispersed regions, where service providers have options to
deploy their applications in data centers from Virginia, Oregon,
California, Ireland, Singapore, Tokyo, Sydney, São Paulo and
GovCloud. Moreover, as the ideas of InterCloud and cloud fed-
eration [1], [2] become mature, more and more geo-distrbuted
data centers will be cooperatively utilized for the purpose of
operational cost minimization, traffic load balancing, demand
spikes accommodation and catastrophic recovery.

In this context, a key challenge faced by service providers
is how to scale their applications across these geographically
distributed data centers. That is how to optimize the deploy-
ment strategies to take full advantage of the geo-diversity

1http://aws.amazon.com/ec2/

to achieve better performance and minimize the operational
cost when serving globally dispersed users. In addition to the
conventional resource constraints (e.g., resource capacity, CPU
and memory requirements of virtual machines) and on-demand
resource assignment of service deployment in a single data
center, the dynamic pricing [3] in different data centers and
non-negligible time-varying communication latencies between
data centers are also needed to take into consideration when
deploying applications across multiple data centers. Moreover,
the dynamic service demand and geographical distribution of
end users [4] further increase the difficulty of this task. As a
result, there is an increasingly urgent need for a dynamic and
adaptive deployment strategy to scale cloud applications into
geo-distributed clouds.

On the other hand, with the attractive features (e.g., high
re-usability, fast development and reduced cost) of service-
oriented architecture (SOA), many online applications de-
livered in the cloud are currently designed in the SOA
style (namely service-oriented applications), which consist of
a number of service components and data components, as
well as a workflow. Individual service components and data
components are composed together to form a higher-level
functionality, where the interaction relationship between these
components are defined by the workflow. As an example,
Fujitsu, as a provider of ICT-based business solutions for the
global market, describes their approach to SaaS (Software-as-
a-Service) in [5], which envisions to provision service-oriented
online applications not only from single data centers but across
multiple geo-distributed data centers, so as to extend functions
and services with global expansion.

However, the data sharing and interdependency between
services or even between applications will pose new challenges
in deploying service-oriented applications into geo-distributed
data centers. The deployment should be aware of these de-
pendencies, since the deployment strategy of each service will
directly impact the performance (e.g., response time) of the
application. In recent literature, although a few work have
been conducted to address the challenge of service deployment
across multiple data centers, most of them (e.g., [3], [6], [7],
[8], [9]) have not taken the service dependencies into con-
sideration, where single services are independently deployed
to optimize the corresponding performance and operational
cost. Some work (e.g., [10], [11], [12]) has investigated the
service dependencies of the SOA application. However, the
deployment problem across geo-distributed clouds has not

2013 IEEE Seventh International Symposium on Service-Oriented System Engineering

978-0-7695-4944-6/12 $26.00 © 2012 IEEE

DOI 10.1109/SOSE.2013.56

335

2013 IEEE Seventh International Symposium on Service-Oriented System Engineering

978-0-7695-4944-6/12 $26.00 © 2012 IEEE

DOI 10.1109/SOSE.2013.56

335

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 04:31:03 UTC from IEEE Xplore. Restrictions apply.

1C

2C

3C
Service-oriented Application

3S
1S

2S

Geo-distributed Clouds

Deployment Manager

Request Log Analysis

M
on
ito
rin
g

(e
.g
.,
ne
tw
or
k,
pr
ic
e)

Local Scheduler
Monitoring

Local Scheduler

Load balancing
Auto Scaling

Monitoring

Request Log
Resource

Local Scheduler

Load balancing
Auto Scaling

Monitoring

Request Log
Resource

D
em
an
d
P
re
di
ct
io
n

A
dd
iti
on
al

C
on
st
ra
in
ts

Dynamic Deployment
Optimization

Fig. 1. The Framework of Service-oriented Applications Deployment in Geo-distributed Clouds

yet been addressed. In [13], a service co-deployment model
based on integer programming has been proposed to optimize
the deployment strategy with potential service dependencies.
However, the integer programming based approach suffers
from poor scalability, as its complexity grows exponentially
with the number of services and candidate data centers.

To tackle these challenges, in this paper, we propose a
dynamic service deployment framework to cope with the
service-oriented application deployment across geo-distributed
clouds. In this framework, we answer two questions on ser-
vice deployment strategy optimization: 1) Which data centers
should be selected for each service deployment? 2) How many
service instances should be replicated for each service in a
data center? In particular, we focus on the data center selection
problem for each service that takes service dependencies into
account, which is formulated as an optimization problem.
While the original model is a NP-hard problem, we tailor the
genetic algorithm to solve it, which provides a good trade-
off between the running time and the quality of the result. To
evaluate the performance of our proposed deployment model,
we conduct extensive experiments based on a large-scale
real-world latency dataset, which includes 307 geo-distributed
Planetlab2 nodes across about 40 countries and 1,881 public
Web services in about 60 countries. The experimental results
show the effectiveness and efficiency of our model, which
substantially outperforms other existing approaches.

In summary, our main contributions are three-fold:

∙ First, we propose a general framework to address
the problem of dynamic service-oriented application
deployment in geo-distributed clouds, which optimizes
the application performance while keeping minimal
operational cost.

∙ Second, this paper exploits service dependencies to
optimize the deployment strategy across a set of
candidate data centers. A tailored genetic algorithm
is employed to solve our model efficiently.

∙ Finally, extensive experiments are conducted based on
a large-scale real-world latency dataset to evaluate the
effectiveness and efficiency of our proposed deploy-
ment strategy.

2http://www.planet-lab.org

Paper Organization. Section II presents our proposed
dynamic deployment framework of service-oriented applica-
tions across geo-distributed clouds. Section III formulates the
deployment problem and Section IV describes the detailed
genetic algorithm to solve this problem. The experimental
results are reported in Section V. We discuss the related work
in Section VI and finally conclude this paper in Section VII.

II. SYSTEM ARCHITECTURE

To address the challenge of scaling service-oriented ap-
plications into geo-distributed clouds, we propose a general
dynamic deployment framework, as illustrated in Fig. 1, to
periodically optimize the deployment strategies of services
while taking service dependencies into consideration. The
process to deploy service-oriented applications across geo-
distributed data centers typically involves the following two
phases: 1) deciding the deployment strategy for each service
component, i.e., selecting data centers to deploy each service
components; and 2) automatically deciding the number of
service instances for each service running in the data center.
In this paper, we propose a two-level management framework
to solve these problems, including a deployment manager in
data center level and a local scheduler in service instance
level (either physical server or virtual machine). In the high
level (i.e., the data center level), the deployment manager is
employed to analyze the service dependencies and predict the
request demand to decide the number and locations of each
service across data centers. In the low level (i.e., the service
instance level), the local scheduler is used to automatically
scale the service instances according to the workload assigned
to this data center.

1) Deployment Manager: The deployment manager is
a key component in our framework to determine
the locations of each service in the geo-distributed
clouds. Generally, the service provider makes an
initial deployment and then iteratively improve the
deployment. Towards this end, the request logs are
collected and analysed to capture the user demand,
and the network latencies can be measured period-
ically to adapt to the network dynamics. As such,
the service deployment can be optimized periodically
to improve the application performance, while ser-
vice dependencies are considered in addition to the

336336

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 04:31:03 UTC from IEEE Xplore. Restrictions apply.

network condition, cloud service prices, and other
additional constraints (e.g., some data components
are required to be placed in certain data centers for
privacy concern). It is worth mentioning that there is a
large body of work demonstrating the effectiveness of
network coordinate systems for network performance
prediction, which can also be incorporated into our
framework to reduce the measurement overhead.

2) Local Scheduler: After deploying the services into
the selected data centers, each local scheduler will
automatically scale service instances according to
the dynamic request workload and route the service
requests with load balancing. For example, we can
employ the auto scaling3 and elastic load balancing4

services in Amazon EC2 to implement the local
scheduler. Furthermore, the request logs will be col-
lected in each data center (e.g., with the approach
proposed in [10]) to facilitate the log analysis in
the deployment manager. In each local scheduler, the
platform-level resource allocation can be achieved,
where the resource constraints of virtual machines
are considered.

In this paper, we focus only on the deployment manager
component. In other words, we address how to select the
candidate data centers for deployment, since the local sched-
uler problem is well studied in the literature (e.g., [14]) as a
resource allocation problem in a single data center.

III. DEPLOYMENT MODEL

In this paper, we focus on the minimization of user-
perceived application-level latency. Specifically, given a work-
flow of a service-oriented application, how to deploy each
service into multiple data centers to achieve minimal latency
while keeping low operational cost. A straightforward ap-
proach is to deploy each service into every candidate data
centers, so that each user can perceive the minimal latency.
However, this straightforward approach is not cost-effective.
The minimization of user-perceived latency should also brings
operational cost into account.

Application-level latency (i.e., response time) typically
denotes the time duration starting with a user request sent
out and ending with a response to the user finally received,
during which multiple invocations across services are per-
formed. Generally, it can be computed as a summation of
three elements: the involved communication delays between
user and data centers and also those between data centers, the
involved communication delays inside data centers, and the
processing time for the service request. The second element,
i.e., the communication delays inside data centers, are negli-
gible compared with the other elements, since machines in a
data center are all connected by high-speed links. In addition,
as the processing time of each service request is only affected
by the computing capability of a service instance, we assume
each service instance is the same and the total processing time
is constant for each application. Consequently, for simplicity,
we only study the relationship between the fist element and
the service deployment strategy. Note that the processing time
can easily be incorporated into our following formulation.

3http://aws.amazon.com/autoscaling/
4http://aws.amazon.com/elasticloadbalancing/

Model 1 Service Deployment Model across Data Centers

min
𝑁∑
𝑖=1

(𝑀∑
𝑗=1

𝑓𝑖𝑗 ⋅ min
𝑐𝑚𝑗 ∈𝐶𝑗

𝑑(𝑖, 𝑐𝑚𝑗)

+

𝑀∑
𝑗=1

𝑀∑
𝑘=1
𝑘 ∕=𝑗

𝑓 𝑖
𝑗𝑘 ⋅ min

𝑐𝑚𝑗 ∈𝐶𝑗

𝑐𝑛𝑘∈𝐶𝑘

𝑑(𝑐𝑚𝑗 , 𝑐𝑛𝑘)
)

(1)

𝑠.𝑡.

𝐶𝑗 ⊆ 𝐶, ∀𝑗 = 1, 2, ⋅ ⋅ ⋅ ,𝑀 (2)
∣𝐶𝑗 ∣ = 𝐾𝑗 , ∀𝑗 = 1, 2, ⋅ ⋅ ⋅ ,𝑀 (3)

TABLE I. NOTATIONS OF DEPLOYMENT MODEL

Notations Descriptions

𝑁 Number of users

𝑀 Number of service components in an application

𝑓𝑖𝑗 Frequency of invocations between user 𝑖 and service 𝑗

𝑐𝑚𝑗 The 𝑚-𝑡ℎ datacenter deployed by service 𝑗

𝑑(𝑖, 𝑐𝑚𝑗) Latency between user 𝑖 and datacenter 𝑐𝑚𝑗
𝑓𝑖
𝑗𝑘 Frequency of invocations between service 𝑗 and service 𝑘 for user 𝑖

𝐶𝑗 Deployment strategy of servie 𝑗 (the seleted data centers for service 𝑗)

𝐶 The set of candidate datacenters

𝐾𝑗 The number of instances of service 𝑗

Model 1 shows the constraint minimization formulation of
our deployment model. In this model, the objective function
aims at minimizing the total latencies of all requests including
both user requests and cross-service requests. The notations in
the model are summarized in Table I.

The intuition of our model is how to decide the deploy-
ment strategy (i.e., the number and locations of selected data
centers for each service) so as to minimize the user-perceived
latencies. In detail, the frequency 𝑓𝑖𝑗 and 𝑓 𝑖

𝑗𝑘 indicates the
dependencies between user-service requests and cross-service
requests, as we jointly consider the sum of their latencies in
our objective function. min𝑐𝑚𝑗 ∈𝐶𝑗

𝑑(𝑖, 𝑐𝑚𝑗) denotes the lowest
network latency that user 𝑖 can experience when invoking
service 𝑗. Similarly, min𝑐𝑚𝑗 ∈𝐶𝑗 ,𝑐𝑛𝑘∈𝐶𝑘

𝑑(𝑐𝑚𝑗 , 𝑐𝑛𝑘) describes the
lowest latency between dependent services 𝑗 and 𝑘 in the
invocations. Moreover, the first constraint guarantees that for
each service 𝑗 the data centers 𝐶𝑗 are selected from the
whole candidate set 𝐶, while the second constraint ensures
each service 𝑗 will be deployed into 𝐾𝑗 data centers. 𝐾𝑗

keeps a trade-off between the user-perceived latency and the
operational cost.

We can see that such a formulation is actually an NP-hard
problem (reduced to the set k-cover problem). Next, we will
show how it can be solved efficiently with an approximation
algorithm, namely, the genetic algorithm (GA).

IV. GENETIC ALGORITHM DESIGN

To solve our deployment model, we employ the genetic
algorithm, which is a popular search heuristic originated from
the natural genetic systems to solve optimization problems.
The basic idea of GA is to survive the fittest. Generally,
the genetic algorithm works with a set of genomes called a

337337

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 04:31:03 UTC from IEEE Xplore. Restrictions apply.

1 8 5 2 7 5 8 1 6

1 2 43 5 6 7

2S1S MS

C

Candidate Data Center Set

Fig. 2. Genome Encoding of Deployment Strategy

population, where each genome is a feasible solution encoded
with a string of integers. And each genome is associated with
a fitness value, which indicates the possibility of survival
and reproduction in the next generation for each individual
genome. At each generation, the population goes through a
set of operations, including selection, crossover, mutation and
evaluation, to evolve to the next generation. At the beginning,
individuals in the population are selected in pairs as parents
to take the crossover operation for each pair. The crossover
operation randomly cuts off the original genome and swaps
the parts to generate offsprings. Then the offsprings are placed
back into the population to replace the weaker individuals.
After the crossover operation, each genome will be mutated
with some probability to change the genome into a new one.
Finally, the evaluation operation is performed to update the
fitness value of each genome. This process is repeated until
some stop criteria are met (e.g., until the best fitness value
remains unchanged for a given number of generations, or the
maximum number of generations has been reached).

In this paper, we tailor the genetic algorithm by encoding
the deployment strategy as shown in Fig. 2. As we can see,
each service 𝑗 consists of a set of genes with size 𝐾𝑗 , which
can be selected from the candidate data center set. We jointly
consider all the service components in a service-oriented
application as a genome, and we can get different genomes
by varying the values of the genes, as the indicator of each
data center. For the parents selection, we use the roulette wheel
method, which selects individuals of higher fitness values with
higher probability. We use the classical single-point crossover
operator and real-value mutation operator.

V. EXPERIMENTS

A. Data Description

To evaluate the performance of our deployment model,
we collected a large-scale real-world latency dataset. In our
experiments, we use the PlanetLab as the hypothetical geo-
distributed data centers, which consists thousands of computers
distributed all over the world. We first got a list of 588
active PlanetLab nodes via the CoMon25 service, since some
registered nodes may shut down or lose connection of the
Internet. Meanwhile, We obtained 5,800 openly-accessible
Web service addresses across over 60 countries by crawling
the Internet, which are taken as users dispersed world-wide.

To collect the communication latency data, we use ping
messages to measure the round-trip time (RTT) from each
PlanetLab node to each Web service. We send 32-byte ping

5http://comon.cs.princeton.edu

0 100 200 300 400 500 600 700 800
0

1%

2%

3%

4%

P
er

ce
nt

ag
e

of
 th

e
T

ot
al

 R
ec

or
ds

Latency (ms)

Inter−DC Latency
User−DC Latency

Fig. 3. The Approximate Distributions of Inter-DC Latencies and User-DC
Latencies (DC: Data Center)

packets continually for ten times and take the average RTT
from all replies as the latency between two hosts. The network
latencies between pair-wise PlanetLab nodes are obtained in
a similar way. The raw data is then post-processed to retain
the nodes and Web services that are all reachable. Finally, we
are left with 307 PlanetLab nodes and 1,881 Web services.
The relatively low yield is partially due to the case that some
Internet hosts are ping-unavailable, and also due to the failure
of the Internet connection.

In this way, a 307 × 1881 matrix (denoted as User-DC
matrix) of network latencies between 307 data centers and
1,881 users, and a 307 × 307 matrix (denoted as Inter-DC
matrix) of network latencies between 307 data centers are
obtained. The approximate distribution of the two latency
matrix is illustrated in Fig. 3. In particular, we also evaluate
the average latencies of these two matrix, which is 129.4𝑚𝑠
and 138.4𝑚𝑠 respectively. Our dataset is also publicly released
online6 for future research.

B. Performance Comparison

For evaluation purpose, we simulate user requests by
randomly generating the request logs. By default, we set
𝑁 = 1881, 𝑀 = 10, and ∣𝐶∣ = 100. For simplicity, we set all
the values of 𝐾𝑗 equally and the default setting is 𝐾𝑗 = 10
for each 𝑗. A user of a service 𝑠 would have 5 request logs.
One request of a service would involve on average 5 requests
of other services. In addition, the collected latency data are
used to make the simulations realistic.

In our evaluation, we compare our approach to the follow-
ing four heuristics for service deployment. The experimental
results show that our algorithm substantially outperforms these
heuristic methods.

∙ Random: In random deployment, the services are
deployed randomly in 𝐾𝑗 data centers.

∙ OneDC: OneDC is proposed in [10], which deploys
all the services in one data center with the highest
performance of all the candidates. It is commonly
employed by many companies due to its simplicity,

6http://www.zibinzheng.com/cloud2012

338338

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 04:31:03 UTC from IEEE Xplore. Restrictions apply.

50 100 200 307

50

150

250

350

450
A

ve
ra

ge
 L

at
en

cy

The Number of Candidate Data Centers

OneDC
Random
AllDC
Single Deployment
Our Approach

(a) Performance Comparison

1 50 100 150 200 250 307
0

50

100

150

200

A
ve

ra
ge

 L
at

en
cy

The Number of Candidate Data Centers

(b) Impact of ∣𝐶∣

1 5 10 15 20 25 30
0

50

100

150

200

A
ve

ra
ge

 L
at

en
cy

The Number of Selected Data Centers

(c) Impact of 𝐾𝑗

Fig. 4. Performance Evaluation

but the advantages of geo-distributed data centers are
not considered.

∙ AllDC: AllDC simply deploys each service in every
data center. It can be regarded as an extreme baseline,
where the user-perceived latency is minimized with
the operational cost ignored.

∙ Single Deployment: Single Deployment is proposed
in [6], which optimizes the deployment strategy inde-
pendently for each single service. Hence, it does not
take service dependencies into account.

We compare the performance of different approaches. The
results are shown in Fig. 4(a). We can observe that the OneDC
heuristic performs worst, although it is widely employed due to
its simplicity. AllDC can achieve the lowest average latency,
yet with the the highest cost by selecting all the candidate
data centers. Compared with AllDC, our approach obtains
competitive performance result while saving cost by about
15×.

In the following, we report the experimental results un-
der different situations, where the impact of the number of
candidate data centers ∣𝐶∣ and the impact of the number of
selected data centers 𝐾𝑗 are studied. While the parameters,
such as average call length, average number of request logs, the
number of services, are also evaluated, the results are similar
to those reported in the previous work [13] and thus omitted
for report here due to the space limit.

1) Impact of ∣𝐶∣: To study the impact of ∣𝐶∣, i.e., the
number of candidate data centers, we vary it from 1 to 307, and
obtain the latency values. The results are shown in Fig. 4(b).
We can see a decreasing trend of the curve. But such reduction
of latency gets smaller as the number of the candidate data
centers increases. As a result, we can improve the application
performance by deploying each service across multiple data
centers, while the cost can be limited by using only a part
of the candidate data centers. The reason is that with more
candidates, our approach can find a better deployment strategy
by considering service dependencies.

2) Impact of 𝐾𝑗: For simplicity, we assume the values of
𝐾𝑗 are the same for each 𝑗. In this experiment, we vary the
value of 𝐾𝑗 from 1 to 30, to investigate the impact of 𝐾𝑗

on user-perceived average latency. The experimental results
are shown in Fig. 4(c). We can see that the average latency
decrease dramatically with the increasing of 𝐾𝑗 (The little
fluctuation at 𝐾𝑗 = 25 may be caused by the random initial

deployment). This is because with more data centers selected
for service deployment, our approach can take advantage of
the geo-diversity of distributed data centers to improve the
performance for the dispersed users.

VI. RELATED WORK

A. Facility Location and Replica Placement Problems

The service deployment model shares some similar prop-
erties with the popular facility location problem (a.k.a. the
k-center problem), which concerns optimal placement of fa-
cilities to minimize transportation costs. An extensive review
of this problem can be found in [15]. Some classical algorithms
(e.g., 𝑘-median model) are also introduced to solve the replica
placement problem [16].

Although traditional replica placement algorithms
(e.g., [16], [17]) have been extensively investigated in recent
literature, these approaches primarily focus on the scenario
of content replicas placement in content delivery networks
with static topology and thus fail to take the dynamics into
consideration in current cloud systems.

B. Service Deployment

Recently, much attention has been paid on the service
deployment problem in the cloud. Some studies [18], [19],
[20], [21] consider the service deployment problem in a single
cloud, where services are dynamically replicated and mapped
into different servers with various resources to optimize a set
of proposed metrics, such as performance, resource utilization
and operational cost.

Nowadays, with the growing of data center infrastruc-
tures, more research work has been conducted to address the
challenge of deploying services across geo-distributed clouds.
However, most of the work (e.g., [3], [6], [7], [8], [9]) has
not taken the service dependencies into consideration, where
individual services are independently deployed to optimize the
corresponding performance and operational cost.

Service-oriented applications deployment problem has been
widely studied. The work in [22] investigates the underlying
deployment mechanism instead of the deployment strategy.
Work [18] studied the evolution service deployment in a single
cloud, where communication latencies between data centers
are not considered. Furthermore, Björkqvist et al. propose the
dynamic replication of service component in a single cloud.
In contrast, this paper focuses on the data center selection

339339

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 04:31:03 UTC from IEEE Xplore. Restrictions apply.

problem. Some studies (e.g., [10], [11], [12]) also consider the
service or data interdependency for deployment, but they have
not focused on the problem of service-oriented applications
deployment across geo-distributed clouds.

The most related work to ours is [12], which identifies the
composite service placement problem with service dependen-
cies in the cloud and solve the model by evolutionary algo-
rithms. However, it focuses on the resource optimization from
the perspective of cloud providers, and does not characterize
the service deployment across geo-distributed data centers.
Moreover, each service component is only deployed as one
service instance, which is not the case in reality. In [13], the
service co-deployment problem is addressed by modeling it as
an integer programming formulation. However, the integer pro-
gramming model fails to scale to large-scale service-oriented
applications deployment problem across multiple data centers,
since its complexity grows exponentially with the number of
services and candidate data centers.

C. Genetic Algorithms

A genetic algorithm is a classical search heuristic which
mimics the process of natural evolution and tries to approxi-
mate optimal result by a set of operators, such as crossover,
mutation and selection. Genetic algorithms are widely used to
address service deployment [18], [12], service selection and so
on. This paper tailors the genetic algorithm to solve our service
deployment model, which can achieve good efficiency.

VII. CONCLUSION AND FUTURE WORK

This paper is the first work to address the problem of
service-oriented applications deployment in geo-distributed
clouds. Towards this end, we propose a dynamic service
deployment framework including the deployment manager and
the local scheduler, which can optimize the deployment strate-
gy in the data center level and automatically scale the number
of service instance in the instance level. More specifically,
we focus on the deployment strategy optimization problem
which aims at minimizing the user-perceived latency while
keeping low operational cost. This problem is formulated as a
constraint minimization problem and can be solved efficiently
via the genetic algorithm. To evaluate the performance of our
deployment model, extensive experiments are conducted based
on a real-world latency dataset. It is shown that our approach
substantially outperforms other existing methods.

In our future work, we will explore how to improve our
deployment model by incorporating the capacity and cost
models for each data center. Moreover, more experiments can
be conducted in the production geo-distributed clouds (e.g.,
Amazon EC2) to evaluate the performance of our approach.

ACKNOWLEDGMENT

The work described in this paper was fully supported
by the National Basic Research Program of China (973
Project No. 2011CB302603), the National Natural Science
Foundation of China (Project Nos. 61100078 and 61100077),
the Shenzhen Basic Research Program (Project No. J-
CYJ20120619153834216, JC201104220300A), and the Re-
search Grants Council of the Hong Kong Special Adminis-
trative Region, China (Project No. CUHK 415212).

REFERENCES

[1] I. Goiri, J. Guitart, and J. Torres, “Characterizing cloud federation for
enhancing providers’ profit,” in Proc. of IEEE CLOUD, 2010, pp. 123–
130.

[2] X. Lu, H. Wang, J. Wang, J. Xu, and D. Li, “Internet-based virtual
computing environment: Beyond the data center as a computer,” Future
Generation Comp. Syst., vol. 29, no. 1, pp. 309–322, 2013.

[3] Q. Zhang, Q. Zhu, M. F. Zhani, and R. Boutaba, “Dynamic service
placement in geographically distributed clouds,” in Proc. of IEEE
ICDCS, 2012, pp. 526–535.

[4] H. Qian, “Proximity-aware cloud selection and virtual machine allo-
cation in iaas cloud platforms,” in Proc. of the 2013 International
Workshop on Internet-based Virtual Computing Environment (iVCE),
2013.

[5] K. Satake, “Fujitsu’s approach to saas in Japan - Fujitsu SaaS platform,”
Fujitsu Scientific and Technical Journal, vol. 45, no. 3, 2009.

[6] Y. Kang, Y. Zhou, Z. Zheng, and M. R. Lyu, “A user experience-based
cloud service redeployment mechanism,” in Proc. of IEEE CLOUD,
2011, pp. 227–234.

[7] M. Steiner, B. G. Gaglianello, V. K. Gurbani, V. Hilt, W. D. Roome,
M. Scharf, and T. Voith, “Network-aware service placement in a
distributed cloud environment,” in Proc. of ACM SIGCOMM, 2012,
pp. 73–74.

[8] M. Alicherry and T. V. Lakshman, “Network aware resource allocation
in distributed clouds,” in Proc. of IEEE INFOCOM, 2012, pp. 963–971.

[9] F. Chang, R. Viswanathan, and T. L. Wood, “Placement in clouds
for application-level latency requirements,” in Proc. of IEEE CLOUD,
2012, pp. 327–335.

[10] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, A. Wolman, and H. Bhogan,
“Volley: Automated data placement for geo-distributed cloud services,”
in Proceedings of USENIX NSDI, 2010, pp. 2–2.

[11] E. Juhnke, T. Dörnemann, D. Böck, and B. Freisleben, “Multi-objective
scheduling of BPEL workflows in geographically distributed clouds,”
in Proc. of IEEE CLOUD, 2011, pp. 412–419.

[12] Z. I. M. Yusoh and M. Tang, “Composite saas placement and resource
optimization in cloud computing using evolutionary algorithms,” in
Proc. of IEEE CLOUD, 2012, pp. 590–597.

[13] Y. Kang, Z. Zheng, and M. R. Lyu, “A latency-aware co-deployment
mechanism for cloud-based services,” in Proc. of IEEE CLOUD, 2012,
pp. 630–637.

[14] M. Björkqvist, L. Y. Chen, and W. Binder, “Dynamic replication in
service-oriented systems,” in Proc. of the 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID’12),
2012, pp. 531–538.

[15] M. T. Melo, S. Nickel, and F. S. da Gama, “Facility location and
supply chain management - a review,” European Journal of Operational
Research, vol. 196, no. 2, pp. 401–412, 2009.

[16] L. Qiu, V. N. Padmanabhan, and G. M. Voelker, “On the placement of
web server replicas,” in Proc. of IEEE INFOCOM, 2001.

[17] X. Tang and J. Xu, “Qos-aware replica placement for content distribu-
tion,” IEEE Trans. Parallel Distrib. Syst., vol. 16, no. 10, pp. 921–932,
2005.

[18] H. Wada, J. Suzuki, Y. Yamano, and K. Oba, “Evolutionary deployment
optimization for service-oriented clouds,” Softw. Pract. Exper., vol. 41,
no. 5, pp. 469–493, 2011.

[19] P. Fan, Z. Chen, J. Wang, Z. Zheng, and M. R. Lyu, “Topology-aware
deployment of scientific applications in cloud computing,” in Pro. of
IEEE CLOUD, 2012, pp. 319–326.

[20] J. Edmondson, A. Gokhale, and D. Schmidt, “Approximation techniques
for maintaining real-time deployments informed by user-provided
dataflows within a cloud,” in Proc. of IEEE SRDS, 2012.

[21] A. Wieder, P. Bhatotia, A. Post, and R. Rodrigues, “Orchestrating the
deployment of computations in the cloud with conductor,” in Proc. of
USENIX NSDI, 2012, pp. 27–27.

[22] S. van der Burg and E. Dolstra, “A self-adaptive deployment framework
for service-oriented systems,” in Proc. of 2011 ICSE Symposium on
Software Engineering for Adaptive and Self-Managing Systems (SEAM-
S’11), 2011, pp. 208–217.

340340

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 04:31:03 UTC from IEEE Xplore. Restrictions apply.

