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Abstract—With the rapid growth of Web services in recent
years, the optimal service selection from functionally-equivalent
service candidates has become more critical for building high
quality service-oriented systems. To provide accurate QoS
values for service selection, user-side QoS prediction thus
becomes an important research problem. Although collabora-
tive filtering based prediction approaches have been studied
in several previous works, these methods suffer from the
limitation of the sparsity of available historical QoS data,
which greatly degrades the prediction accuracy. To address this
problem, this paper proposes a Web service positioning (WSP)
framework for response time prediction, which is one of the
most important QoS properties. In our approach, a small set of
landmarks are deployed to periodically monitor the response
times of the Web service candidates and provide references
to the numerous service users. By combining the advantages
of network coordinate based approaches and collaborative
filtering based approaches, the response times between users
and Web services can be accurately predicted using their
corresponding Euclidean distances. Extensive experiments are
conducted based on our real-world QoS dataset collected on
PlanetLab, comprising about 359,400 response time values
from 200 users on 1,597 Web services. The experimental results
show that our WSP approach outperforms the other existing
approaches, especially when the historical data is sparse.

Keywords-Web service positioning; QoS prediction; collabo-
rative filtering; network coordinate

I. INTRODUCTION

Web services are designed as computational components
to build service-oriented distributed systems, such as e-
commerce, automotive systems, multimedia services, etc [1].
With the rising popularity of Service-Oriented Architecture
(SOA), more and more alternative Web services offered by
different providers become available over the Internet to
provide equivalent or similar functions for service users.
With the growing number of Web services, it has become
an urgent task to make effective selection from the large
number of functionally-equivalent Web service candidates.

Quality-of-Service (QoS), such as response time, through-
put, failure probability, reputation, etc., has been widely
employed as a differentiating factor to describe and eval-
uate the non-functional characteristics of Web services [2].
QoS-based selection has become a promising approach for
effective service selection and performance optimization.
Among different QoS properties, response time is one of

the most important properties, which stands for the time
duration between user sending out a request and receiving
a response. Due to the unpredictable network environment,
users at different locations may experience different QoS
performance of Web services, which cannot be identified
by the Service Level Agreement (SLA) from the service
providers’ perspective. However, it is infeasible for each
user to actively measure the QoS performance of all the
Web services by invoking them due to the large number of
service candidates in the Internet. As a result, efficient and
effective QoS prediction approaches are urgently needed to
provide accurate prediction of the QoS values of different
Web services for each user without requiring real-world Web
service invocations. In this paper, we will focus on response
time prediction.

In recent literature, a number of QoS prediction ap-
proaches have been proposed [2], [3], [4], [5]. In these
works, collaborative filtering (CF) is employed to make
QoS predictions using Web service invocation histories
of different users. With extensive experiments, these QoS
prediction approaches have been shown to achieve good
overall prediction accuracy under dense historical QoS data.
However, the CF-based approaches suffer from a major
limitation of the sparsity of the available historical QoS
data. As reported in [2], given a very sparse response time
matrix (where rows stand for users, columns represent Web
services, and entries stand for the response time of a certain
user on a certain Web service), the performance of CF-based
approaches is greatly degraded. In practice, the response
time matrix is very sparse since a user usually only invokes
a few out of the numerous Web service candidates each
time. Moreover, user-side response time performance of
Web services is dynamically changing from time to time,
influenced by the unpredictable network condition and the
server workload. The out-of-date historical QoS data may
not be able to provide accurate QoS prediction.

On the other hand, network coordinate systems (e.g.,
GNP [6]) are widely used in P2P networks to estimate the
network distance between pairwise Internet hosts. The basic
idea of network coordinate systems is to embed the Internet
hosts into a high dimensional Euclidean space by assigning
each host a coordinate in that space such that the measured
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network distances between hosts can be well approximated
by the corresponding Euclidean distances. After obtaining
the coordinates of different hosts, we can use a simple
Euclidean distance between two Internet hosts to predict the
unknown network distance in constant time.

Inspired by the success of network coordinate based
prediction approaches, and to address the data sparsity
problem of CF-based approaches, we propose a Web service
positioning (WSP) framework by combining the advantages
of network coordinate based approaches and CF-based ap-
proaches. For ease of presentation, this paper only focuses
on response time prediction. We will extend the proposed
WSP framework to other QoS properties in our future work.
In our WSP framework, firstly, we redesign the traditional
GNP algorithm (typically employed in peer-to-peer scenario)
to fit for the response time prediction of Web services in
client-server scenario. Then, the available historical data of
users (these data are employed in CF-based approaches for
making prediction) are adopted to optimize the coordinate
computation of users which enhances the prediction accu-
racy. Finally, extensive experiments are conducted based
on real-world data. The comprehensive experimental results
show that our WSP approach significantly outperforms the
existing network coordinate based approaches and CF-based
approaches.

The key contributions of this paper are two-fold:

∙ Firstly, we propose a Web service positioning (WSP)
framework for response time prediction by combining
advantages of network coordinate based approaches
and CF-based approaches. Our WSP framework solves
the data sparsity problem of CF-based approaches and
significantly enhances the prediction accuracy.

∙ Secondly, we conduct a large-scale experiment to col-
lect real-world response time data of Web services for
verifying the performance of our WSP approach. The
dataset includes 359,400 response time values from
200 users on 1,597 real-world Web services. To make
our experiments reproducible and to promote future
research, this reusable research dataset is publicly re-
leased online.

The rest of the paper is organized as follows. Section II
introduces the related work. Section III presents the WSP
Framework. Section IV describes our response time predic-
tion algorithm in detail. Section V shows the experimental
results. Finally, Section VI concludes the paper.

II. RELATED WORK

A. Collaborative Filtering

Collaborative filtering (CF), as one of the most popu-
lar recommendation algorithms, has been widely used in
commercial recommender systems, such as Amazon.com,
Netflix.com, etc. In recent literature, collaborative filtering
has been introduced to personalized QoS (e.g., response

time) prediction for Web services [2], [3], [4], [5], [7],
[8]. Shao et al. [3] introduced the user-based CF algorithm
to predict the QoS values with similarity between users.
Zheng et al. [2] proposed the item-based CF algorithm
based on the similarity between Web services. These two
algorithms are denoted as UPCC (user-based CF with PCC
coefficient) and IPCC (item-based CF with PCC coefficient)
respectively. In addition, a hybrid CF approach, UIPCC [2],
was also proposed by combing UPCC and IPCC approaches.
Experimental results have shown that CF-based approaches
can achieve good overall prediction accuracy under dense
historical QoS data. However, CF-based approaches suffer
from the sparsity of available historical data in practice,
which greatly reduces the prediction performance. In order
to remit the data sparsity problem, Zhang et al. [9] put for-
ward a time-aware CF approach, by adding time-dimension
historical QoS data to their model, to enhance the QoS
prediction accuracy. However, the accuracy improvement is
limited. Especially, due to the high mobility of mobile users,
no available historical QoS data can be obtained, which will
cause the malfunction of CF-based approaches.

B. Network Coordinate System

On the other hand, the network coordinate system is
proposed in [6] to estimate the network distances, i.e., round-
trip time (RTT), between pairwise Internet hosts. Among
various network coordinate systems, triangulated heuristic
and global network positioning (GNP) are two widely em-
ployed approaches, due to their simplicity and generality.

Triangulated Heuristic [6] employs a kind of relative
coordinates based on the triangle inequality. A fixed set of
landmarks are deployed in the network as references. Then
each ordinary host is assigned an n-tuple relative coordinate,
composed of the network distances between the ordinary
host and the landmarks. Given the relative coordinate of
each host, we can obtain the upper bound 𝑈 and the lower
bound 𝐿 of the network distance between two hosts by
triangle inequality. The network distance can be estimated
by the convex combination of 𝑈 and 𝐿 (e.g. U+𝐿

2 ). It is
reported in [6] that taking the upper bound 𝑈 as the network
distance prediction result can achieve better performance.
The triangulated heuristic approach is widely used in online
shortest path distance prediction in large graphs [10].

GNP [6] is a typical landmark-based network coordinate
system, which embed the Internet hosts into an Euclidean
space for network distance estimation. After obtaining the
coordinate of each host, the network distance between two
Internet hosts can be well approximated by the correspond-
ing Euclidean distance. Figure 1 illustrates a prototype of the
network coordinate system. As we can see from the figure,
the four Internet hosts can be embedded into a 2-dimensional
Euclidean space by assigning each host a coordinate, and
then the original network distances can obtain good estima-
tion results using the corresponding Euclidean distances.
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Figure 1. A Prototype of Network Coordinate System

Network coordinate systems, originally designed to esti-
mate the network distances between Internet hosts in peer-to-
peer distributed networks, have been comprehensively stud-
ied in recent years. To date, the adoption of network coordi-
nate systems has benefited a variety of Internet applications,
such as file sharing via Bit-Torrent [11], content distribution
networks (CDN) [12], P2P multimedia streaming [13], etc.
For further details on network coordinate systems, we refer
the reader to a recent survey [14].

III. WEB SERVICE POSITIONING (WSP) FRAMEWORK

To address the limitations of CF-based prediction ap-
proaches, we propose a Web service positioning framework
(named WSP) to make response time prediction for Web
services. In our framework, a small number of landmarks are
deployed in the Internet to construct the network coordinate
system and also to periodically monitor the available Web
services. By adding the available historical data to the
network coordinate model to optimize the coordinate compu-
tation, our proposed WSP approach combines the advantages
of network coordinate based and CF-based approaches. As
a result, our WSP approach not only can serve for users
without available historical data (e.g., mobile users) but
also enhances the prediction accuracy for users with sparse
historical data.

The WSP framework is illustrated in Figure 2, which
mainly includes the following procedures:

1) Offline Coordinates Updating: a) The deployed land-
marks measure the network distances between each other
(e.g. use ping to measure the RTT), and then construct
a coordinate system by embedding the landmarks into an
high-dimensional Euclidean space such that each landmark
obtains a coordinate. b) The landmarks monitor the available
Web services by periodically invoking. The coordinate of
each Web service is obtained by taking the landmarks as
references and embedding each Web service to the same
coordinate system.

2) Online Web Service Selection: a) When a service user
requests for a Web service invocation, it first measures the
network distances to the landmarks (e.g by ping). Then the
results are sent to a central node to compute the user’s
coordinate, also combining the available historical response
time data. b) The response times between the user and all
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Figure 2. Web Service Positioning (WSP) Framework

the available Web service candidates are easily predicted
by computing the corresponding Euclidean distances via the
coordinates. c) Optimal Web service is selected for the user
based on the response time prediction results of Web service
candidates. d) The user invokes the optimal Web service
for composition, and also obtains the real response time
data for this Web service. e) The response time database is
updated with the new observation to contribute to the next
Web service selection.

IV. WSP-BASED QOS PREDICTION ALGORITHM

A. Landmark Coordinate Computation

Note that for an 𝑚-dimensional Euclidean space, we
should use at least 𝑚+ 1 landmarks for coordinate compu-
tation, as it is impossible to construct an unique Euclidean
space with less landmarks. It remains an open question
about how to deploy the landmarks. In this paper, we select
the landmarks from the candidate nodes using the spectral
clustering based approach in [15]. In addition, we will study
the impact of number of landmarks in Section V-E.

Suppose 𝑛 landmarks, denoted by 𝐿 = {𝑙𝑖, 𝑖 =
1, 2, ⋅ ⋅ ⋅ , 𝑛}, are set up and deployed in the Internet. The
network distances between landmarks are measured using
ping messages, and then transmitted to a central node for
coordinate computation, which can be expressed as an 𝑛×𝑛
distance matrix in the following:

𝐷𝐿 =

⎡
⎢⎢⎢⎣

0 𝑑(𝑙1, 𝑙2) ⋅ ⋅ ⋅ 𝑑(𝑙1, 𝑙𝑛)
𝑑(𝑙2, 𝑙1) 0 ⋅ ⋅ ⋅ 𝑑(𝑙2, 𝑙𝑛)

...
... ⋅ ⋅ ⋅ ...

𝑑(𝑙𝑛, 𝑙1) 𝑑(𝑙𝑛, 𝑙2) ⋅ ⋅ ⋅ 0

⎤
⎥⎥⎥⎦ (1)

where the entry 𝑑(𝑙𝑖, 𝑙𝑗) denotes the network distance be-
tween landmarks 𝑙𝑖 and 𝑙𝑗 . The distance matrix 𝐷𝐿 is
assumed to be symmetric along the diagonal, which is
denoted as 0 where 𝑙𝑖 = 𝑙𝑗 .
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Our goal is to embed these 𝑛 landmarks into an 𝑚-
dimensional Euclidean space 𝑅𝑚, such that each landmark
obtains a coordinate, denoted as 𝑥𝑙𝑖 = (𝑥1

𝑙𝑖
, 𝑥2

𝑙𝑖
, ⋅ ⋅ ⋅ , 𝑥𝑚

𝑙𝑖
),

where 𝑥𝑘
𝑙𝑖
∈ 𝑅, 1 ≤ 𝑘 ≤ 𝑚. We define the objective function

as the sum of error square in the following:

𝑓𝐿(𝑥𝑙1 , ⋅ ⋅ ⋅ , 𝑥𝑙𝑛) =
∑

𝑙𝑖,𝑙𝑗∈𝐿,𝑖>𝑗

[𝑑(𝑙𝑖, 𝑙𝑗)− 𝑑(𝑙𝑖, 𝑙𝑗)]
2 (2)

where 𝑑(𝑙𝑖, 𝑙𝑗) denotes the predicted network distance
between 𝑙𝑖 and 𝑙𝑗 as follows:

𝑑(𝑙𝑖, 𝑙𝑗) =
∥∥𝑥𝑙𝑖 − 𝑥𝑙𝑗

∥∥
2
=

√√√⎷
𝑚∑

𝑘=1

(𝑥𝑘
𝑙𝑖
− 𝑥𝑘

𝑙𝑗
)
2

(3)

Directly minimizing Equation 2 will suffer from the
overfitting problem, which means optimal solutions often
lead to an accurate model with small errors on the landmarks
embedding while having large errors on the unseen data,
i.e., the unknown response times between users and Web
services. To address this problem, we add a regularization
term to penalize the norms of the solutions, expressed as
follows:

𝑓
′
𝐿(𝑥𝑙1 , ⋅ ⋅ ⋅ , 𝑥𝑙𝑛 , 𝜆𝑙) =

∑
𝑙𝑖,𝑙𝑗∈𝐿,𝑖>𝑗

[𝑑(𝑙𝑖, 𝑙𝑗)− 𝑑(𝑙𝑖, 𝑙𝑗)]
2

+ 𝜆𝑙

𝑛∑
𝑖=1

∥𝑥𝑙𝑖∥22 (4)

Note that there are many solutions for minimizing the
Equation 2, because any rotation or translation of the
landmark coordinates will not influence the inter-landmark
distances [6]. In addition to overcoming overfitting, the
regularization term can also help to avoid the coordinate
drift of the solution by choosing the coordinates with the
smallest norm. The impact of the regularization term will
be discussed in Section V-G.

With this formulation, the optimal coordinates of land-
marks can be obtained by minimizing Equation 4, as a
generic multi-dimensional global minimization problem. In
this paper, we choose the simplex downhill algorithm [16]
to solve this minimization problem.

Finally, the coordinates of the 𝑛 landmarks are obtained
and stored in the central node to provide references to the
coordinate computation of Web services and users. Note
that the coordinates of landmarks should keep updated
periodically to track the changes of network conditions.
For periodical re-computation, we can simply input the old
coordinates as the start state each time, which can greatly
accelerate the convergence of the minimization problem.

B. Web Service Coordinate Computation

In the WSP framework, a small number of landmarks
monitor the available Web services by periodically invoking
them. Suppose there are 𝑤 available Web services, denoted

by 𝑆 = {𝑠𝑖, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑤}. Then an 𝑛 × 𝑤 matrix
composed of network distances between 𝑛 landmarks and
𝑤 Web services can be obtained, expressed as follows:

𝐷𝐿𝑆 =

⎡
⎢⎢⎢⎣

𝑑(𝑙1, 𝑠1) 𝑑(𝑙1, 𝑠2) ⋅ ⋅ ⋅ 𝑑(𝑙1, 𝑠𝑤)
𝑑(𝑙2, 𝑠1) 𝑑(𝑙2, 𝑠2) ⋅ ⋅ ⋅ 𝑑(𝑙2, 𝑠𝑤)

...
... ⋅ ⋅ ⋅ ...

𝑑(𝑙𝑛, 𝑠1) 𝑑(𝑙𝑛, 𝑠2) ⋅ ⋅ ⋅ 𝑑(𝑙𝑛, 𝑠𝑤)

⎤
⎥⎥⎥⎦ (5)

where the entry 𝑑(𝑙𝑖, 𝑠𝑗) denotes the network distance be-
tween landmark 𝑙𝑖 and Web service 𝑠𝑗 .

The network distances to Web services are measured by
landmarks and then transmitted to a central node to compute
the coordinate for each Web service. Therefore, each Web
service is embedded into the network coordinate system by
taking the coordinates of the landmarks as references. Given
a Web service 𝑠𝑗(1 ≤ 𝑗 ≤ 𝑤), the m-dimensional coordinate
𝑥𝑠𝑗 can be obtained by minimizing the following objective
function.

𝑓𝑆(𝑥𝑠𝑗 , 𝜆𝑠) =
∑
𝑙𝑖∈𝐿

[𝑑(𝑙𝑖, 𝑠𝑗)− 𝑑(𝑙𝑖, 𝑠𝑗)]
2 + 𝜆𝑠

∥∥𝑥𝑠𝑗

∥∥2
2

(6)

where 𝑑(𝑙𝑖, 𝑠𝑗) denotes the predicted network distance be-
tween landmark 𝑙𝑖 and Web service 𝑠𝑗 . And also 𝜆

∥∥𝑥𝑠𝑗

∥∥2
2

is the regularization term.
Similarly, this computation can also be cast as a generic

multi-dimensional global minimization problem such that we
can solve it with simplex downhill algorithm. Meanwhile
the coordinates of the available Web services are updated
periodically.

C. Service User Coordinate Computation

Any service user can request our WSP system for optimal
Web service selection. At the beginning, the user measures
the network distances to the landmarks using ping messages,
and then transmit the results to the central node for coordi-
nate computation. The measured network distances can be
denoted as a vector in the following:

𝐷𝑢𝐿 = [𝑑(𝑢, 𝑙1), 𝑑(𝑢, 𝑙2), ⋅ ⋅ ⋅ , 𝑑(𝑢, 𝑙𝑛)] (7)

where 𝑑(𝑢, 𝑙𝑖) denotes the network distance between the user
𝑢 and the landmark 𝑙𝑖.

To enhance the prediction accuracy, we also incorporate
the advantage of CF-based approaches by making effective
use of the available historical data. Suppose the available
response time data between the user 𝑢 and the Web services
is denoted as {𝑑(𝑢, 𝑠𝑖), 𝑠𝑖 ∈ 𝑆𝐴}, where 𝑆𝐴 is the Web
service set with available historical data, then we propose
to minimize the following objective function to obtain the
coordinate of the user, i.e. 𝑥𝑢.

𝑓𝑢(𝑥𝑢, 𝜆𝑢) =
∑
𝑙𝑖∈𝐿

[𝑑(𝑢, 𝑙𝑖)− 𝑑(𝑢, 𝑙𝑖)]
2 (8)

+
∑

𝑠𝑖∈𝑆𝐴

[𝑑(𝑢, 𝑠𝑖)− 𝑑(𝑢, 𝑠𝑖)]
2 + 𝜆𝑢∥𝑥𝑢∥22
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where 𝑑(𝑢, 𝑙𝑖) denotes the predicted network distance be-
tween user 𝑢 and landmark 𝑙𝑖, and 𝑑(𝑢, 𝑠𝑖) denotes the
predicted response time value between user 𝑢 and the Web
service 𝑠𝑖 in 𝑆𝐴. The first part of the objective function
𝑓𝑢(𝑥𝑢, 𝜆𝑢) employs the reference information of landmarks
while the second part takes advantage of the available histor-
ical data. Besides, the regularization term is also considered
in the third part.

D. Response Time Prediction and Web Service Selection

After obtaining the coordinate of the user, as well as
the coordinates of all the monitored Web services, the
response time prediction can be easily achieved by taking
the Euclidean distance between the coordinates as follows:

𝑑(𝑢, 𝑠𝑖) = ∥𝑥𝑢 − 𝑥𝑠𝑖∥2, 𝑠𝑖 ∈ 𝑆, 𝑠𝑖 /∈ 𝑆𝐴 (9)

where 𝑑(𝑢, 𝑠𝑖) denotes the prediction value between user 𝑢
and Web service 𝑠𝑖. 𝑠𝑖 ∈ 𝑆, 𝑠𝑖 /∈ 𝑆𝐴 means the set of Web
services with unknown response time data.

With all the response time predictions, the optimal Web
service can be selected for the user according to the response
time performance. However, the specific QoS-aware service
selection approach for Web service composition is out of the
scope of this paper.

V. EXPERIMENTS

A. Data Collection

To evaluate the prediction performance, real-world Web
service dataset of response time is needed. Although several
QoS datasets for Web services have been collected in the
previous work [2], they are not applicable for our experiment
due to the lack of network distances among landmarks to
construct the network coordinate system.

In this paper, we collect a new QoS dataset for our
experiment, comprising the response times between 200
users (PlanetLab nodes) and 1,597 Web services, together
with the network distances between the 200 distributed
nodes, for our WSP approach.

To collect the real-world data of Web services, we have
an access to the open research platform, Planetlab1, which
is widely used for experiments of distributed systems and
networks. We first get a list of 588 active PlanetLab nodes
via CoMon2 service, since some nodes may shut down or
lose connection of the Internet. Meanwhile, about 5,800 Web
services are obtained by crawling Web service information
from the Internet.

To obtain the response time data, we use ping messages
to measure the round-trip time (RTT) from each PlanetLab
node to each Web service, assuming that the service-running
time is equivalent for each Web service due to their same
function. We send 32-byte ping packets continually for ten

1http://www.planet-lab.org
2http://comon.cs.princeton.edu

Table I
DESCRIPTIONS OF WS RESPONSE TIME DATASET

Statistics Values
Num. of records 359,400

Num. of service users 200
Num. of Web services 1,597

Minimum response time 0.008 ms
Maximum response time 2,976.714 ms
Mean of response time 71.984 ms

Standard deviation of response time 64.746 ms

times and take the average RTT from all replies as the
response time. Similarly, the network distances among the
PlanetLab nodes are obtained as well. The raw data is then
post-processed to retain the nodes and Web services that are
all reachable. Finally, we are left with 200 PlanetLab nodes
and 1,597 Web services. The relatively low yield is partially
due to the case that some Internet hosts are ping unavailable,
and partially due to the failure of the Internet connection.
Consequently, a 200-by-1597 matrix of response times and
a 200-by-200 matrix of network distances are obtained.

The statistics of our QoS dataset is summarized in Table I.
Our dataset is also publicly released online3 for future
research.

B. Evaluation Metrics

In our experiment, we employ two metrics, Mean Absolute
Error (MAE) [9] and Median Relative Error (MRE), to
evaluate the prediction performance of our proposed WSP
approach. The two metrics are defined as follows:

∙ MAE: This metric is widely employed to measure the
average prediction accuracy.

𝑀𝐴𝐸 =

∑
𝑖,𝑗

∣∣∣𝑑(𝑢𝑖, 𝑠𝑗)− 𝑑(𝑢𝑖, 𝑠𝑗)
∣∣∣

𝑁
(10)

where 𝑑(𝑢𝑖, 𝑠𝑗) and 𝑑(𝑢𝑖, 𝑠𝑗) denote the predicted value
and the measured value, respectively, between service
user 𝑢𝑖 and Web service 𝑠𝑗 . 𝑁 is the number of
predicted items.

∙ MRE: This metric is median value of all the relative
error values.

𝑀𝑅𝐸 = 𝑀𝑒𝑑𝑖𝑎𝑛
𝑖,𝑗

∣∣∣𝑑(𝑢𝑖, 𝑠𝑗)− 𝑑(𝑢𝑖, 𝑠𝑗)
∣∣∣

𝑑(𝑢𝑖, 𝑠𝑗)
(11)

which means 50% of the relative errors are below MRE.

C. Performance Comparison

In this section, in order to evaluate the prediction accuracy
of our proposed WSP approach, we compare our method
with other existing approaches in the following:

3http://www.wsdream.net

9494

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 04:45:42 UTC from IEEE Xplore.  Restrictions apply. 



Table II
PERFORMANCE COMPARISON (SMALLER MAE, RMSE OR MRE VALUES MEANS BETTER PERFORMANCE)

Density = 0 Density = 5% Density = 10% Density = 15%Methods
MAE MRE MAE MRE MAE MRE MAE MRE

UPCC N/A N/A 33.4439 0.1842 25.4751 0.1329 21.2634 0.1051
IPCC N/A N/A 51.9462 0.3064 31.3841 0.1674 26.2708 0.1335

UIPCC N/A N/A 33.7476 0.1856 25.3795 0.1317 21.0852 0.1027
Triangulated 33.9315 0.1733 33.9315 0.1733 33.9315 0.1733 33.9315 0.1733

GNP 29.2793 0.1375 29.2793 0.1375 29.2793 0.1375 29.2793 0.1375
WSP 28.3502 0.1316 20.6982 0.0972 20.3531 0.0927 19.9709 0.0922

Improvements(%) 3.17% 4.29% 29.31% 29.31% 19.80% 29.61% 5.28% 10.22%

1) UPCC: This method is first introduced to Web service
QoS prediction in [3], which employs the similarity
between users to predict the response time values.

2) IPCC: This method employs the similarity between
Web service items for Web service QoS prediction.

3) UIPCC: This is a hybrid method, proposed in [2], by
combing both user-based and item-based collaborative
filtering approaches, which can make full use of the
similarity between users and the similarity between
Web service items.

4) Triangulated heuristic: This method is based on the
triangle inequality in the metric space. In this paper,
we take the the upper bound as the response time
prediction result as indicated in Section II-B.

5) GNP: GNP is proposed as a landmark-based network
coordinate system to estimate network distances be-
tween Internet hosts for P2P networks in [6].

In this experiment, we choose 16 nodes as landmarks from
our dataset as did in GNP [6] (the impact of the number
of landmarks will be discussed in Section V-E), while the
remaining 184 computer nodes are taken as service users.
Therefore, the measured response time data between 184
service users and 1,597 Web services can be denoted as
a 184 × 1597 matrix. As we mentioned in the previous
section, the available historical data is very sparse. In order
to simulate the sparse situation in real world, we randomly
remove entries from the data matrix such that each user
only keeps a few available historical values. In this way, we
vary the matrix density as 0, 5%, 10%, 15%. Particularly,
matrix density = 0 means no historical data of users are
employed, such as for mobile users, whose historical data
may vary significantly due to their high mobility and are
not applicable for response time prediction. Matrix density
= 5%, for example, indicates that each user has 5% (i.e.
about 80) response time data out of all the Web services.
The removed entries are used as the expected values to
verify the prediction quality. In the sequel, for simplicity,
we set 𝜆𝑙 = 𝜆𝑠 = 𝜆𝑢 = 𝜆, and denote 𝑛 as the number
of landmarks, 𝑚 as the coordinate dimensionality. In this
experiment, the parameter settings are 𝜆 = 0.1,𝑚 = 10.

Each approach is performed 100 times and the average
values are reported. In contrast, we set Top-K= 10, 𝜆 = 0.1
for CF-based approaches [2]. The prediction performance
of different approaches under two metrics are shown in
Table II.

The experimental results show that:

∙ Our WSP approach obtains smaller MAE and MRE val-
ues consistently under different matrix densities, which
indicates that our approach outperforms the others.
The last row shows the percentages of the accuracy
improvements of our WSP approach, compared with
the best of other existing methods.

∙ While CF-based approaches are heavily influenced by
the matrix density, our WSP approach is less sensitive
to the matrix density and obtains good prediction ac-
curacy even under sparse historical data. For instance,
the WSP has about 20% improvement compared with
the UIPCC method, with 10% historical data.

∙ Especially, for matrix density = 0, the CF-based ap-
proaches (UPCC, IPCC and UIPCC) run into a mal-
function (denoted as N/A) while landmark-based ap-
proaches (Triangluated, GNP, and WSP) achieve good
overall prediction accuracy. It implies that our WSP
approach can also serve well for newly joining users
or mobile users without available historical data.

∙ Our WSP approach outperforms the traditional network
coordinate based approaches, triangulated heuristic and
GNP, even at matrix density = 0, indicating that our
WSP approach makes improvement based on GNP.

∙ The IPCC approach performs worse than the UPCC
approach in our experiments. This is because the IPCC
method cannot find enough similar neighbors as the
number of users is much smaller than the number of
Web services. In other words, it is the data sparsity
that significantly degrades the performance of the IPCC
method.

∙ With the increase of matrix density, the triangulated
heuristic approach and GNP approach have no perfor-
mance improvement since they make no use of the
historical data.
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Figure 4. Impact of the Number of Landmarks

To sum up, our proposed WSP approach combines the
advantages of network coordinate based approaches and CF-
based approaches, and achieves better performance com-
pared with the existing prediction methods.

D. Impact of the Matrix Density

To study the impact of the matrix density on the prediction
accuracy, we vary the matrix density from 0 to 20% at
the step of 2.5%, where matrix density = 0 means making
response time predictions without using historical data, i.e.
𝑆𝐴 = ø in Equation 8. In this experiment, without loss of
generality, we set 𝑛 = 16, 𝑚 = 10, and 𝜆 = 0.1.

The experimental results are shown in Figure 3, composed
of MAE and MRE values under different matrix densities.
We can observe that dense historical data can benefit the pre-
diction performance. However, after significantly decreasing
when the matrix density varies from 0 to 2.5%, MAE and
MRE both keep steady with a little reduce when the matrix
density becomes denser. In other words, the prediction per-
formance of WSP approach is less sensitive to the sparsity of
data matrix, as a result, addresses the limitations of practical
data sparsity problem of CF-based approaches.

E. Impact of the Number of Landmarks

The landmark deployment (e.g., the position and number)
is very essential to the performance of our WSP approach. In
this experiment, we select the landmarks from the candidate
nodes using the spectral clustering based approach in [15].
To characterize the impact of the number of landmarks, we
conduct the experiment by varying the number of landmarks
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Figure 6. Impact of the Regularization Term

from 11 to 45. We also set 𝑚 = 10, 𝜆 = 0.1 and matrix den-
sity = 5%. Note that there should be more than 11 landmarks
for 10-dimensional Euclidean space construction. The results
of MAE and MRE are illustrated in Figure 4. We can observe
that the MAE and MRE values both decrease slightly when
the number is less than 20, and then rise when the number
is larger than 25. We can find that the large number of
landmarks may not make for the prediction performance
improvement, since there exist larger errors when embedding
the Web services and users into Euclidean space with too
many reference nodes, as a result of the triangle inequality
violations (TIV) of network latencies [15]. In practice, we
can deploy enough landmarks while each Web service and
user only choose 𝑛 landmarks as references, which can also
avoid the single point of failure of landmarks.

F. Impact of the Coordinate Dimensionality

Dimensionality is a key factor when embedding the In-
ternet hosts into an Euclidean space. We may wonder how
many dimensions should be used to construct the coordinate
system in WSP. Intuitively, higher dimensionality contributes
to more accurate coordinate computation. To characterize
the impact of the dimensionality, we conduct experiments
with our dataset and vary the dimensionality from 2 to
14 at the step of 2. We also set 𝑛 = 16, 𝜆 = 0.1 and
matrix density= 5%. The experimental results are illustrated
in Figure 5. We can observe that both MAE and MRE
values decrease with the increase of the dimensionality of
coordinates, but the accuracy improvement diminishes when
the dimensionality is larger than 8. As a result, higher
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dimensionality beyond a certain point only makes little
performance improvement.

G. Impact of the Regularization Term

To address the overfitting problem when computing coor-
dinates, we introduce a regularization term to penalize the
norms of the solutions which is widely adopted in machine
learning area. In addition, the regularization term can also
avoid the coordinate drift due to the non-uniqueness of the
solution by choosing the coordinates with the smallest norm.

In this experiment, we vary the 𝜆 from 0 to 1, while
𝜆 = 0 means no regularization term is used. For other
parameters, we set 𝑛 = 16,𝑚 = 10, and matrix density
= 5%. The experimental results are shown in Figure 6. As
is shown in the figure, when 𝜆 = 0.1, smaller MAE and
MRE values are obtained compared with 𝜆 = 0, indicating
that the regularization term can contribute to the prediction
performance improvement. However, MAE and MRE rise
with the increase of 𝜆. Therefore, the prediction performance
is sensitive to 𝜆 and we set 𝜆 = 0.1 in this paper, which is
verified to achieve a good performance.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a network coordinate based Web
service positioning framework for response time prediction.
By combining the advantages of network coordinate based
approaches and CF-based approaches, our WSP framework
is constructed to support online personalized response time
prediction for service users. Extensive experimental results
show that our proposed WSP approach solves the data
sparsity problem of CF-based approaches and significantly
enhances the prediction accuracy. Besides, our WSP ap-
proach can also serve for users without available historical
data, such as mobile users and the newly joining users, which
is not applicable for CF-based approaches.

This paper focuses on the response time prediction of
Web services. In the future, we will extend our WSP
framework to other QoS properties, and investigate QoS-
based service selection approaches by taking into account
these available QoS values. We will further study to improve
the accuracy of Euclidean embedding by taming the triangle
inequality violations in the Internet. In addition, we will
deploy practical systems to evaluate our WSP framework
more realistically.
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