
Towards Online, Accurate, and Scalable QoS
Prediction for Runtime Service Adaptation

Jieming Zhu, Pinjia He, Zibin Zheng, Michael R. Lyu
Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China

Ministry of Education Key Laboratory of High Confidence Software Technologies (CUHK Sub-Lab)

Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong

{jmzhu, pjhe, zbzheng, lyu}@cse.cuhk.edu.hk

Abstract—Service-based cloud applications are typically built
on component services to fulfill certain application logic. To meet
quality-of-service (QoS) guarantees, these applications have to
become resilient against the QoS variations of their component
services. Runtime service adaptation has been recognized as a
key solution to achieve this goal. To make timely and accurate
adaptation decisions, effective QoS prediction is desired to obtain
the QoS values of component services. However, current research
has focused mostly on QoS prediction of the working services
that are being used by a cloud application, but little on QoS
prediction of candidate services that are also important for
making adaptation decisions. To bridge this gap, in this paper, we
propose a novel QoS prediction approach, namely adaptive matrix
factorization (AMF), which is inspired from the collaborative
filtering model used in recommender systems. Specifically, our
AMF approach extends conventional matrix factorization into an
online, accurate, and scalable model by employing techniques
of data transformation, online learning, and adaptive weights.
Comprehensive experiments have been conducted based on a real-
world large-scale QoS dataset of Web services to evaluate our
approach. The evaluation results provide good demonstration for
our approach in achieving accuracy, efficiency, and scalability.

Keywords—Service adaptation; QoS prediction; online learning;
adaptive matrix factorization

I. INTRODUCTION

Cloud computing has gained increasing prevalence in re-
cent years for providing a promising paradigm to host and
deliver various online applications over the Internet. How-
ever, as these applications scale up, for example, spanning
across multiple geographically distributed data centers [1], a
significant challenge faced by application designers is how to
engineer their applications with self-adaptation capabilities in
response to the constantly changing operational environments,
whereby the quality of service (QoS) can be guaranteed.

Many cloud applications have employed service-oriented
architecture (SOA) as a mechanism for achieving self-
adaptation [2], where component services are composed in a
loosely-coupled way to fulfill complex application logic. For
example, Amazon’s e-commerce platform is built on SOA by
composing hundreds of component services hosted world-wide
to deliver functionalities ranging from item recommendation to
order fulfillment to fraud detection [3]. The features of SOA
such as loose coupling and dynamic binding enable appli-
cations to switch component services without going offline,
and thus make it particularly amenable to the introduction of
service adaptation [4]. On the other hand, with the proliferation
of cloud computing, many service providers begin to offer

more and more services in the cloud that provide equivalent (or
similar) functionalities through a well-defined interface (e.g.,
Web service) [5]. For example, both providers CDYNE.COM
and WebserviceX.NET offer similar Web services for querying
global weather information. Such redundant services can thus
be utilized for service adaptation by replacing the current
working services with the corresponding candidate services
in response to unexpected QoS changes (e.g., unacceptable
response time). To achieve so, knowledge about QoS values of
the services is required to make timely and accurate adaptation
decisions, such as when to trigger an adaptation action, which
working services to be replaced, and which candidate services
to employ. Note that, in this paper, we refer to working services
as the services that are being used by a cloud application,
and candidate services as the alternative services that have
equivalent functionalities.

For a cloud application, the working services are frequently
invoked, thus their QoS values can be collected via monitor-
ing. In recent literature, existing QoS prediction approaches
(e.g., [6], [7], [8]) for service adaptation focus mostly on
monitoring (or predicting) QoS values of the working services,
which can help determine when to trigger an adaptation action
and which working services to be replaced. However, to the
best of our knowledge, there is no work explicitly addressing
the problem of QoS prediction on candidate services for
service adaptation, thus making it difficult in determining
which candidate services to employ for an adaptation action. It
is challenging to obtain QoS values of the candidate services
due to the prohibitive overhead for actively measuring a large
number of candidate services at runtime. Besides, some service
invocations may be charged, which further increases the cost of
service users (Hereinafter, we refer to cloud applications that
invoke the services as “service users”). Therefore, it is highly
desired to employ QoS prediction approaches to accurately es-
timate the QoS values of candidate services without requiring
direct invocations, which is exactly the goal of our work. In
particular, effective QoS prediction on candidate services needs
to fulfill the following requirements.

1) Online: The changing and evolving cloud environ-
ment introduces a high degree of variability and
uncertainty on user-perceived service quality. For
instance, due to the impact of dynamic network con-
ditions and varying server workload, the QoS values
may vary significantly during different time periods.
Therefore, in order to identify high-quality candidate
services for service adaptation, QoS prediction needs
to be performed in an online fashion.

2014 IEEE 34th International Conference on Distributed Computing Systems

1063-6927/14 $31.00 © 2014 IEEE

DOI 10.1109/ICDCS.2014.40

318

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 11,2020 at 04:27:53 UTC from IEEE Xplore. Restrictions apply.

2) Accurate: Ensuring the accuracy of QoS prediction
is fundamental for service adaptation. Inaccurate
predictions may lead to the execution of improper
adaptations or missed adaptation opportunities. For
example, a working service may be wrongly replaced
by a low-quality service. Consequently, we need
accurate QoS prediction approaches, as well as proper
metrics to evaluate the prediction accuracy.

3) Scalable: In the dynamic cloud environment, new
services with different QoS may become available,
and existing services may be discontinued by their
providers. Likewise, service users may often join or
leave the environment. In face of the high churning
rate of users and services, QoS prediction approaches
need to scale well to new services and users, and
perform robustly to make accurate predictions.

To achieve these goals, in this paper, we propose a novel
QoS prediction approach, which is inspired from the collabora-
tive filtering model used in recommender systems, to estimate
the QoS values of candidate services by leveraging historical
QoS data collaboratively from different users. The insight is
that different users may use a common set of services and
some users may observe similar QoS on the same service.
However, different from the conventional matrix factorization
(MF) model applied in recommender systems, our problem
is more specific to the QoS prediction problem due to the
aforementioned stringent requirements. As a result, we extend
the conventional MF model into an online, accurate, and
scalable QoS prediction approach, namely adaptive matrix
factorization (AMF), by employing techniques of data transfor-
mation, online learning, and adaptive weights. To evaluate our
AMF approach, experiments including accuracy comparison,
efficiency analysis, and scalability analysis are conducted
based on a real-world large-scale Web service QoS dataset,
which consists of response time and throughput data between
142 users and 4,500 services over 64 continuous time slices
(at an interval of 15 minutes). The evaluation results provide
good demonstration for our approach in achieving accuracy,
efficiency, and scalability. For reproducibility, we release our
source code and dataset online1.

In summary, our paper makes the following contributions:

• This is the first work to address the problem of QoS
prediction on candidate services to guide candidate
service selection for runtime service adaptation.

• A novel QoS prediction approach, adaptive matrix
factorization (AMF), is proposed by employing tech-
niques of data transformation, online learning, and
adaptive weights.

• Comprehensive experiments are conducted based on a
real-world large-scale QoS dataset of Web services to
evaluate our proposed approach in terms of accuracy,
efficiency, and scalability.

Paper organization. Section II overviews some back-
ground and related work. Section III presents the framework
of QoS-driven service adaptation. Then we describe our AMF
approach for QoS prediction in Section IV, and report the eval-
uation results in Section V. Finally, we conclude in Section VI.

1http://rmblab.github.io/icdcs2014 AMF.html

1A 2A

1B 2B

1C 2C

...

...

...

A

B C

2A

1B 2C

Abstract Task Component Service

Cloud

2A

2B 1C

Service
Selection

Service
Adaptation

Fig. 1. An Illustrative Example of Service Adaptation

II. BACKGROUND AND RELATED WORK

In this section, we review the background and related work
from three aspects: service adaptation, QoS attributes, and QoS
prediction.

A. Service Adaptation

Self-adaptation is a key solution for cloud applications
to cope with the changing operational environments [9]. In
contrast to the well-studied traditional adaptive software sys-
tems [10], the dynamic cloud environment imposes a number
of new challenges to the adaptation of cloud applications.
In service-based cloud applications, the application logic is
typically expressed as a workflow with a set of abstract tasks,
as shown in the leftmost panel in Fig. 1. These abstract tasks
(e.g., A,B,C) are then implemented by invocations to the un-
derlying component services (e.g., A2, B1, C2) provided in the
cloud. It is expected that the proliferation of cloud computing
will bring substantial deployment of services into the cloud,
so that for each abstract task there are a set of functionally-
equivalent candidate services. Conventional service composi-
tion approaches (e.g., [11]) focus on how to make optimal
service selection from those candidate services at design time.
However, due to the dynamic nature of cloud environment,
original services may become unavailable, new services may
emerge, and the QoS values of services may change from
time to time, thus leading to violations of SLA (service-level
agreement). In such a setting, QoS-driven service adaptation
is desired. Fig. 1 presents such an illustrative example, where
services B1, C2 are replaced with services B2, C1 respectively
in an adaptation action, in the cases that the invocation to B1

fails and the QoS of C2 degrades.

To achieve this goal, a large body of research work has
been conducted in recent literature. For example, the work [4]
and [12] extend BPEL (Business Process Execution Language)
engines with an interception and adaptation layer to enable
monitoring and recovery of services. The work [13] employs
autonomic configuration of performance parameter settings
to achieve self-adaptation for online Web applications. Some
other work, such as [2] and [9], provides feasible adapta-
tion mechanisms (e.g., replacing the component services, or
re-structuring the workflows) to support QoS-driven service
adaptation. While most of these studies focus on adaptation
mechanism design, our work targets at another key challenge,
namely online QoS prediction [14], which is also fundamental
for service adaptation.

B. QoS Attributes

QoS attributes are widely-used metrics to evaluate the
non-functional properties of services, including response time,

319

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 11,2020 at 04:27:53 UTC from IEEE Xplore. Restrictions apply.

0 8 16 24 32 40 48 56 640

2

4

6

8

10
R

es
po

ns
e

Ti
m

e
(s

ec
)

Time Slice

(a) RT v.s. Time Slice

0 20 40 60 80 1000

5

10

15

20

R
es

po
ns

e
Ti

m
e

(s
ec

)

User ID

(b) RT v.s. User ID

Fig. 2. Real-world Response Time (RT) Observations

throughput, failure probability, availability, etc. [11]. Ideally,
the QoS values of services can be directly specified in the
SLA by service providers. However, it is infeasible in most
cases due to the following characteristics of QoS attributes.

Dynamic: Most of QoS attributes (e.g., response time and
throughput) are time-varying. For instance, due to the impact
of varying server workload and dynamic network conditions,
QoS delivered to users may vary widely during different time
periods. Fig. 2(a) depicts a real-world example of the response
times of a user at Pittsburgh (IP: 12.108.127.138) invoking
a Web service located at Iran (http://profiles.roshd.ir/security.
asmx?WSDL) over 64 consecutive time slices (at 15-minute
interval), where the data is extracted from our QoS dataset
in Section V-A. The curve confirms that the user-perceived
response time fluctuates around an average QoS value along
the time. Therefore, some QoS attributes should be evaluated
at runtime.

User-specific: Services hosted in the cloud may be located
across many data centers world-wide (e.g., the shopping cart
service for Amazon.com [3]). With the increase of geographic
distribution of services, the impact of the network on user-
perceived QoS becomes non-negligible. Thus, users from d-
ifferent locations may observe different QoS values even on
the same service. Fig. 2(b) confirms such observation by a
real-world example, which presents the response times (sorted
in ascending order) perceived by 100 randomly-selected users
that invoke the same service. The large variation of the curve
implies that QoS attributes like response time are user-specific
and should be evaluated independently from each user side.

As a result, it is extremely challenging to obtain QoS values
of component services without incurring much overhead. QoS
prediction has been emerged as a key solution to estimate the
unknown QoS values by employing the historical usage data,
while requiring no additional service invocations.

C. QoS Prediction

Accurate QoS prediction is fundamental for QoS-driven
service adaptation. The predicted QoS values directly impact
the service adaptation decisions. For example, inaccurate pre-
dictions may cause improper adaptations and thus lead to SLA
violations. For this purpose, online monitoring and prediction
approaches, as presented in [6], [8], have been proposed to
detect service failures and QoS deviations of the working
services, but QoS prediction on candidate services is still not
well explored. The approach introduced in [15] proposes to
collect QoS values by sampling and invoking the candidate
services, which is heavily limited by the incurred overhead.

Thus, our work is motivated to address the QoS prediction
problem for candidate services.

To drive our study, in the following, we briefly introduce
collaborative filtering (CF). CF techniques [16] are widely
used in commercial recommender systems. The basic idea of
CF is to exploit and model the observed data for predicting
the unknown values. In recent literature, CF has been intro-
duced as a promising technique for system engineering tasks,
including service recommendation [17], [18], system reliability
prediction [19], and QoS-aware datacenter scheduling [20]. In
particular, as with rating prediction in recommender system-
s [16], the user-perceived QoS values on service invocations
can also produce a user-service QoS matrix, which can be
further modelled as a CF problem for making user-specific
QoS predictions.

Matrix factorization (MF), as one of the most promising
models for collaborative filtering, has been widely studied
in recent years [21]. In our previous work [22], we made
use of the MF model to guide dynamic request routing for
online cloud applications. Some recent work (e.g., [18], [23])
introduces MF into the QoS prediction problem for service
selection at design time. However, their approaches primarily
work offline on the collected QoS data, and thus fail to meet
the online requirement for runtime service adaptation. Besides,
these existing approaches cannot easily scale to new users and
services, because of the prohibitive overhead for constant re-
training. Our work thus aims to address these problems.

III. FRAMEWORK OF QOS-DRIVEN SERVICE ADAPTATION

To build high-quality cloud applications, we propose a ba-
sic framework for QoS-driven service adaptation, as illustrated
in Fig. 3. In this framework, two modules are incorporated to
support QoS-driven service adaptation.

Execution middleware: A service-based cloud application
typically comprises a workflow specified in BPEL and runs on
a BPEL engine, like Apache ODE2. In order to support QoS-
driven service adaptation actions (e.g., replacing component
services or re-structuring workflows), BPEL engines can be
enriched with sophisticated functionalities like QoS manag-
er, candidate service manager, and user-specified adaptation
polices. Concretely, candidate service manager discovers all
available candidate services that match their needs, while
QoS manager monitors the QoS values of service invocations,
uploads the observed QoS data, and then obtains the related
QoS prediction results through the interface of QoS prediction
service. Based on the QoS prediction results, various adapta-
tion polices (e.g., when to trigger an adaptation action and, if
necessary, which candidate services to employ) can be plugged
in and executed automatically without causing any downtime
of the overall application.

QoS prediction service: This module is designed as a
service working by collaboratively collecting the observed
QoS data from different users and then providing accurate
QoS prediction results for these users transparently through
a standard interface. More specifically, the QoS prediction
service works as follows: 1) Input handling: The observed
QoS data are collected and processed as formatted stream

2http://ode.apache.org/

320

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 11,2020 at 04:27:53 UTC from IEEE Xplore. Restrictions apply.

AMF Model

2A

1B

3C

BPEL Engine

User 1

QoS Prediction Workflow

QoS Prediction Interface

QoS
Database

Execution Middleware

Adaptation
Action

1A

3B

1D

User 2

A B

C C

Adaptation Policies
Service Manager

QoS Manager

BPEL Engine

Adaptation
Action

Adaptation Policies
Service Manager

QoS Manager

Input Handling Online Updating QoS Prediction

User
Manager

Service
Manager

Execution Middleware

QoS Prediction Service

Prediction
Results

Observed
QoS Data

Prediction
Results

Observed
QoS Data

Fig. 3. Framework of QoS-driven Service Adaptation

data. The QoS database can be updated accordingly. 2) Online
updating: The AMF model can be updated online by using
the sequentially observed QoS data. 3) QoS prediction: The
QoS prediction results by our AMF model can be provided
to users on demand through the QoS prediction interface.
Additionally, a service manager is desired to provide utilities
like service discovery and service management of available
services. Likewise, a user manager is set up to manage the
joining or leaving activities of users.

The framework shows that effective QoS prediction is
fundamental for successful service adaptation executions in
service-based cloud applications, because the performance of
service adaptation is heavily influenced by the QoS prediction
results. Thus, QoS prediction is the main focus of our study.

IV. QOS PREDICTION

In this section, we first introduce the problem of QoS
prediction on candidate services. Then we describe the con-
ventional matrix factorization model and discuss its potential
limitations on service adaptation. At last, we illustrate how to
address these limitations by extending the MF model into our
AMF model to achieve accuracy, efficiency, and scalability for
service adaptation.

A. Problem Description

In the previous work, QoS prediction approaches (e.g., [6],
[8]) focus primarily on QoS prediction for working services
(that are being used by a cloud application) by employing
techniques such as time series analysis on historical QoS data.

According to the prediction results, potential SLA violations
can be detected, thereby facilitating adaptation decisions such
as when to trigger an adaptation action and which component
services to be replaced. In contrary, our work focuses on
QoS prediction for candidate services to help determine which
candidate services to employ for an adaptation action.

Specifically, as with rating prediction in recommender
systems, historical service invocations can produce a user-
service QoS matrix with respect to each QoS attribute (e.g.,
response time). This QoS matrix can be collected from user
side in the form of user collaboration through our framework.
In this matrix, each row denotes a service user (i.e., a cloud
application), each column denotes a candidate service in the
cloud, and each entry denotes the QoS value observed by the
a user when invoking a service. In practice, the QoS matrix is
very sparse, since each user usually only invokes a handful of
services. As in Fig. 4(b), values in grey entries are observed
QoS data from the user-service invocation graph in Fig. 4(a),
and the blank entries are unknown QoS values to be predicted.
For example, the response time between user u1 and service s1
is 1.4s, while the response time between user u1 and service
s2 is unknown because u1 has never invoked s2.

Our goal of QoS prediction is to employ the observed QoS
data to estimate the other unknown values. Formally, suppose
there are n users and m services, we can obtain a sparse QoS
matrix R ∈ R

n×m with respect to each QoS attribute, where
Rij denotes the QoS value between user ui and service sj . As
such, the QoS prediction problem can be modelled as a col-
laborative filtering problem that approximately reconstructs the
unknown values from a small number of observed entries [16].
In addition, the QoS prediction approach should be performed
in an online, accurate, and scalable manner.

B. Matrix Factorization and Its Limitations

Matrix factorization [21] is a classic model to address the
above collaborative filtering problem, which constrains the
rank of the QoS matrix, i.e., rank(R) = d. The low-rank
assumption is based on the fact that the entries of R are largely
correlated, thereby resulting in a low effective rank in R. For
instance, close users may have similar network conditions,
and thus experience similar QoS on the same service. Fig. 4
illustrates an example that makes use of matrix factorization
for QoS prediction. Concretely, factoring a matrix is to map
both users and services into a joint latent factor space of a low
dimensionality d (e.g., d = 2 in Fig. 4(c)), such that values of
the user-service QoS matrix can be captured as inner products
of latent factors in that space. Then the latent factors can be
employed for further prediction on unknown QoS values. For
example, as shown in Fig. 4(d), the predicted response time
value between user u1 and s2 is 0.8s.

Formally, latent user factors are denoted as U ∈ R
d×n

and latent service factors as S ∈ R
d×m, which are used to

fit the QoS matrix R, i.e., R ≈ UTS. To avoid overfitting,
regularization terms that penalize the norms of the solutions
(i.e., U and S) are added. Thus we aim to minimize the
following loss function:

L =
1

2

n∑
i=1

m∑
j=1

Iij(Rij − UT
i Sj)

2
+

λU

2
‖U‖2F +

λS

2
‖S‖2F , (1)

321

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 11,2020 at 04:27:53 UTC from IEEE Xplore. Restrictions apply.

1.4 ? 1.1 0.7 ?

? 0.3 ? 0.7 0.5

0.4 0.3 ? ? 0.3

1.4 ? 1.2 ? 0.8

1u
2u
3u
4u

1s 2s 3s 4s 5s
2u 4u

2s 3s 4s 5s

3u1u

1s

TU
S 1.4 0.8 1.1 0.7 0.9

1.0 0.3 1.0 0.7 0.5

0.4 0.3 0.3 0.1 0.3

1.4 0.7 1.2 0.8 0.8

1u
2u
3u
4u

1s 2s 3s 4s 5s
0.8 0.6

0.9 0.1

0.1 0.3

0.9 0.5

1.0 0.2 1.0 0.8 0.4

1.0 1.0 0.5 0.1 0.9

(a) User-Service Invocation Graph (b) Observed QoS Matrix (d) Predicted QoS Matrix(c) Matrix Factorization

Fig. 4. An Example of QoS Prediction by Matrix Factorization

where Iij acts as an indicator that equals to 1 if Rij is ob-
served, and 0 otherwise (e.g., I11 = 1 and I12 = 0 in Fig. 4(b)).
‖·‖F denotes the Frobenius norm [21], and λU , λS are two
parameters to control the extent of regularization. Gradient
descent [21] is usually employed to derive the solutions U
and S, by iterating in the following form until convergence:

Ui ← Ui − η
∂L
∂Ui

, Sj ← Sj − η
∂L
∂Sj

, (2)

where η is the learning rate controlling how much change to
make at each iteration. After obtaining the latent factors U and
S, the unknown QoS values can then be predicted by their
corresponding inner products: R̂ij = UT

i Sj , where Ii,j = 0.

Although this conventional matrix factorization model per-
forms well for rating prediction problem in recommender sys-
tems, it is insufficient to address our QoS prediction problem
for service adaptation, due to the following limitations:

Limitation 1: Due to our observation on a real-world QoS
dataset, we find that different from the coherent value range of
ratings (e.g., 1∼5) in recommender systems, the QoS values
vary widely (e.g., 0∼20s for response time and 0∼7000kbps
for throughput). Moreover, the distributions of QoS data are
highly skewed with large variances (as shown in Fig. 7)
compared with the rating distribution, which mismatches with
the probabilistic assumption for matrix factorization [21].
Consequently, directly applying the original MF model to QoS
data may significantly degrade its prediction accuracy.

Limitation 2: Our QoS prediction problem differs from
recommender systems mainly in that QoS values are time-
varying while rating values keep unchanged once being rated.
In other words, existing QoS values will be continuously
updated with newly observed values, or become expired after
a time period without updating. However, conventional MF
model primarily works offline on collected data. Therefore, to
adapt to a newly observed QoS value, the MF model has to be
entirely retrained, which will incur large computation overhead
and make it infeasible to be performed online.

Limitation 3: Due to the dynamic nature of cloud environ-
ment, both users and services may continuously join or leave
the environment (i.e., churn occurs). However, the MF model
focuses on the user-service QoS matrix with a fixed size (w.r.t.
users and services), thus is not easily scalable to handle new
users and new services without retraining the whole model.

C. Adaptive Matrix Factorization

To address the above limitations, we propose our new
QoS prediction approach, adaptive matrix factorization (AMF),
which aims to be online, accurate, and scalable. To achieve
this goal, our AMF approach integrates three techniques: data
transformation, online learning, and adaptive weights.

1) Data Transformation

To address Limitation 1 (i.e., skewed QoS value distribu-
tions), we apply a classic data transformation method, Box-
Cox transformation [24], to QoS data. This technique is used
to stabilize data variance and make the data more normal
distribution-like in order to fit the matrix factorization assump-
tion. The transformation is rank-preserving and performed by
using a continuous power function defined as follows:

boxcox(x) =

{
(xα − 1)/α if α �= 0 ,

log(x) if α = 0,
(3)

where the parameter α controls the extent of the transforma-
tion. For simplicity, we denote R̃ij = boxcox(Rij). Note

that R̃max = boxcox(Rmax) and R̃min = boxcox(Rmin)
due to its monotonously nondecreasing property of Box-Cox
transformation. Rmax, Rmin are the maximal and minimal
QoS values respectively, which can be specified by users
(e.g., Rmax = 20s and Rmin = 0 for response time in our
experiments). Similarly, R̃max and R̃min are the maximal and
minimal values after data transformation. Then we map the
data into the range [0, 1] by linear normalization,

rij = (R̃ij − R̃min)
/
(R̃max − R̃min). (4)

Especially, when α = 1, the data transformation is relaxed to
a linear normalization, where the effect of Box-Cox transfor-
mation is masked.

To fit the normalized QoS data rij , we employ the sigmoid
function g(x) = 1/(1 + e−x) to map the value UT

i Sj into
the range of [0, 1], as described in [21]. Therefore, the loss
function in Equation 1 can be transferred to:

L =
1

2

n∑
i=1

m∑
j=1

Iij(rij − gij)
2 +

λU

2
‖U‖2F +

λS

2
‖S‖2F , (5)

where gij denotes g(UT
i Sj) for simplicity.

However, conventional matrix factorization model mini-
mizes the sum of squared errors and employs the absolute
error metrics (e.g., MAE as defined in Section V-B) to evaluate
the prediction results. In practice, absolute error metrics are
not suitable for evaluation of QoS prediction due to the large
value range of QoS values. For instance, given two services
with QoS values s1 = 1 and s2 = 100, the corresponding
thresholds for adaptation action are set to s1 > 5 and s2 < 90.
Suppose there are two sets of prediction results: (a) s1 = 8 and
s2 = 99, (b) s1 = 0.9 and s2 = 92, we would choose (a) with
smaller MAE if using the MAE metric. However, prediction
(a) will cause a wrong adaptation action due to s1 > 5, while
prediction (b) is more reasonable. Consequently, we propose to
employ relative error to evaluate the prediction results, where
the corresponding loss function is derived as follows:

322

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 11,2020 at 04:27:53 UTC from IEEE Xplore. Restrictions apply.

1.0 0.3 1.0 0.7

0.4 0.3 0.3 0.1

1.4 0.7 1.2 0.8

1.0 0.3 1.0 0.7

0.4 0.3 0.3 0.1

1.4 0.7 1.2 0.8

2u
2s

4s
1u

TU
S 1.4 0.8 1.1 0.7 0.9

1.0 0.3 1.0 0.7 0.5

0.4 0.3 0.3 0.1 0.3

1.4 0.7 1.2 0.8 0.8

1u
2u
3u
4u

1s 2s 3s 4s 5s

0.8 0.6

0.9 0.1

0.1 0.3

0.9 0.5

1.0 0.2 1.0 0.8 0.4

1.0 1.0 0.5 0.1 0.9

(a) User-Service Invocations (b) Observed QoS Data (d) Predicted QoS Matrix(c) Adaptive Matrix Factorization

1u 4s

0.61t

2t

3t

1u 2s1t

0.82u 4s2t

1.24s3t 1u

1t
2t

3t

1t
Online update:

2U2t
3t

4S
1U 2S

1U 4S

:
:
:

Fig. 5. An Example of QoS Prediction by Adaptive Matrix Factorization

L =
1

2

n∑
i=1

m∑
j=1

Iij
(rij − gij

rij

)2
+

λU

2
‖U‖2F +

λS

2
‖S‖2F , (6)

2) Online Learning

To address Limitation 2 (i.e., time-varying QoS values),
online learning algorithms are required to keep continuous
and incremental updating using the sequentially observed QoS
data. For this purpose, we employ a classic online learning
algorithm, stochastic gradient descent (SGD) [25] to train
our AMF model. For each QoS value observed by user ui

for invoking service sj , we have the following pairwise loss
function:

�(Ui, Sj) =
1

2
(
rij − gij

rij
)
2

+
λu

2
‖Ui‖22 +

λs

2
‖Sj‖22 , (7)

such that L =
∑n

i=1

∑m
j=1 Iij�(Ui, Sj). ‖·‖2 denotes the

Euclidean norm.

Instead of directly minimizing L, SGD relaxes to minimize
the pairwise loss function �(Ui, Sj). By replacing L with �
in Equation 2, we can derive the following update equations
regarding each data sample (ui, sj , Rij):

Ui ← Ui − η((gij − rij)g
′
ijSj

/
r2ij + λuUi), (8)

Sj ← Sj − η((gij − rij)g
′
ijUi

/
r2ij + λsSj), (9)

where g′ij denotes g′(UT
i Sj), and g′(x) = ex/(ex + 1)2 is the

derivative of g(x). η is the learning rate.

As illustrated in Fig. 5(a)(b), every time when a new data
sample is observed, online updating can be performed on its
corresponding factors using Equation 8 and 9. In other words,
at each iteration, user ui can take a small change on feature
vector Ui and service sj can have a small change on feature
vector Sj , given a newly observed data sample (ui, sj , Rij)
after user ui invoke service sj .

3) Adaptive Weights

To address Limitation 3 (i.e., scalability on new users
and services), we make use of the above online learning
algorithm, which can update the feature vectors incrementally
without retraining the whole model. However, the above online
learning algorithm may not perform well under the high
churning rate of users and services (i.e., continuously joining
or leaving the environment). The convergence is controlled
by the learning rate η, but a fixed η will lead to problems
for new users and services. For example, for a new user u1,
if its feature vector U1 is at its initial position, larger η is
needed to help it move quickly to its correct position. But for
an existing service s2 that user u1 invokes, its feature vector
S2 may have already been converged. Adjusting the feature
vector (S2) of service s2 according to the user u1 is likely to

increase prediction error rather than to decrease it, since user
u1 itself has large prediction error with its initial feature vector
(U1) not converged. Thus, our approach, if performed online,
need to be robust towards the churning of users and services.

To achieve this goal, we propose to employ adaptive
weights in our AMF model. Although the weighted matrix
factorization has also been studied in [26], our approach differs
from it in that we use adaptive weights instead of fixed weights
in the iteration process. Specifically, we design an adaptive
weight to control the step size at each iteration, depending on
the accuracy achieved by the corresponding user or service.
The goal is to mitigate the impact of new users or services
that have high errors with their feature vectors not converged.
Intuitively, an accurate user should not move much according
to an inaccurate service while an inaccurate user need to move
a lot with respect to an accurate service, and vice versa. For
example, if service s1 has an inaccuracy of 10% and service
s2 with inaccuracy 1%, when a user invokes both s1 and s2, it
should move less for its feature vector to service s1 compared
with service s2. As a result, we have two weights wui

and
wsj for user ui and service sj respectively. Then we derive
the following loss functions corresponding to Ui and Sj :

�w(Ui) =
1

2
wui(

rij − gij
rij

)
2

+
λu

2
‖Ui‖22 , (10)

�w(Sj) =
1

2
wsj (

rij − gij
rij

)
2

+
λs

2
‖Sj‖22 , (11)

where wui+ wsj= 1, such that �(Ui, Sj)=�w(Ui)+�w(Sj).

We denote the average error of user ui as eui
and the

average error of service sj as esj . Then we compute the
weights wui , wsj to control the credence between each other,
as follows:

wui = eui/(eui + esj), wsj = esj/(eui + esj). (12)

To update eui
, esj , we compute the exponential moving aver-

age [27] at each iteration, which is a weighted average with
more weight (controlling by β) given to the latest data.

eui = βwuieij + (1− βwui)eui , (13)

esj = βwsj eij + (1− βwsj)esj , (14)

where eij denotes the relative error between gij and rij :

eij = |rij − gij |
/
rij . (15)

We also find that similar weights have been used for controlling
the credence of node in network coordinate system [28], but
our approach is the first to incorporate such weights into matrix
factorization. After obtaining the updated weights wui and
wsj at each iteration, we can derive the following updating
equations by computing the gradients in Equation 10 and 11:

Ui ← Ui − ηwui((gij − rij)g
′
ijSj

/
r2ij + λuUi), (16)

Sj ← Sj − ηwsj ((gij − rij)g
′
ijUi

/
r2ij + λsSj), (17)

323

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 11,2020 at 04:27:53 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Adaptive Matrix Factorization Algorithm

Input: Sequentially observed QoS data samples: (tij , ui, sj , Rij),
and all the model parameters.

Output: QoS prediction results: R̂ij ← (Ui, Sj), where Iij = 0.
1 repeat /* Continuous and incremental updating */
2 Collect newly observed QoS data;
3 if receive a new data sample (tij , ui, sj , Rij) then
4 Iij ← 1;
5 if ui is a new user or sj is a new service then
6 Randomly initialize Ui ∈ R

d, or Sj ∈ R
d;

7 Initialize eui ← 1, or esj ← 1;

8 Update tij , Rij corresponding to ui, sj ;
9 OnlineUpdate(tij , ui, sj , Rij);

10 else
11 Randomly pick an existing data sample (tij , ui, sj , Rij);
12 if tnow − tij < TimeInterval then
13 OnlineUpdate(tij , ui, sj , Rij);
14 else
15 Existing data sample is obsolete: set Iij ← 0;

16 if converged then
17 Wait until observing new QoS data;

18 until forever;

19 OnlineUpdate(tij , ui, sj , Rij): /* Function */
20 Normalize Rij by Equation 3 and 4: rij ← Rij ;
21 Update wui , wsj by Equation 12:

wui ← (eui , esj), wsj ← (eui , esj);
22 Compute eij by Equation 15: eij ← (rij , gij);
23 Update eui , esj by Equation 13 and 14:

eui ← (wui , eij , eui), esj ← (wsj , eij , esj);
24 Update Ui, Sj simutaneously by Equation 16 and 17;

With Ui and Sj , we can predict the unknown QoS value
Rij (where Iij = 0) for the service invocation between user
ui and service sj . Finally, a backward data transformation of
g(UT

i Sj) is required, which can be computed according to the
inverse functions for Equation 3 and 4.

4) AMF Algorithm

After analyzing the ingredients of our AMF model, we
can have a big picture of the algorithm. Fig. 5 presents
an illustrative example for QoS prediction by using AMF.
Different with MF in Fig. 4, our AMF approach collects
each observed QoS value in a stream way (Fig. 5(a)(b)),
and keeps online updating accordingly (Fig. 5(c)). Then the
current QoS valuse can be predicted using the updated model
(Fig. 5(d)). The pseudo code of our online updating algorithm
for AMF is provided in Algorithm 1. Specifically, at each
iteration, the newly observed QoS data are collected to update
the model (Line 2 ∼ 9), or else existing data are randomly
selected for model updating (Line 11 ∼ 15) until convergence.
Especially, the online updating operations are defined as a
function OnlineUpdate(tij , ui, sj , Rij) given a data sample
(tij , ui, sj , Rij), according to the steps described in 1) ∼ 3).
Note that for a newly observed data sample, we first check
whether the corresponding user or service is new, so that we
can add it to our model (Line 5 ∼ 7) and keep updating
its feature vector using more observed data on this user or
service (Line 8 ∼ 9). As such, our model can scale to new
users and services without retraining the whole model. Another
important point is that we check whether an existing QoS value
has become expired (Line 12), and if so, discard this value (i.e.,
in Line 15, set Iij = 0). In our experiment, for example, we
set the expiration time interval to 15 minutes.

Statistics Values
#Users 142

#Services 4,500

#Time slices 64

#Time interval 15min
RT range 0 ∼ 20s
RT average 1.33s
TP range 0 ∼ 7000kbps
TP average 11.35kbps

Fig. 6. Data Statistics

0 2 4 6 8 10
0

0.1
0.2
0.3
0.4

D
en

si
ty

Response Time (sec)

0 50 100 150
0

0.2
0.4
0.6
0.8

D
en

si
ty

Throughput (kbps)

Fig. 7. Data Distribution

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

D
en

si
ty

Response Time (sec)

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

D
en

si
ty

Throughput (kbps)

Fig. 8.Transformed Data Distribution

10 20 30 40 500

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 S
in

gu
la

r V
al

ue

ID of Singular Values

 Response Time
 Throughput

Fig. 9. Sorted Singular Values

V. EVALUATION

In this section, we conduct a set of experiments based on
a real-world Web service QoS dataset to evaluate our AMF
approach from various aspects, including accuracy compari-
son, impact of parameters, efficiency analysis, and scalability
analysis. All the experiments were conducted on a machine
with a 3.2 GHz Intel CPU and 4 GB RAM, running Win7.

A. Data Description

In our experiments, we focus primarily on two QoS at-
tributes: response time (RT) and throughput (TP). Response
time stands for the time duration between user sending out a
request and receiving a response, while throughput denotes the
data transmission rate (e.g., kbps) of a user invoking a service.

The data used in our experiment are extracted from a real-
world Web service QoS dataset [29], including both response
time and throughput values. These QoS values are collected
by 142 users invoking 4,500 Web services for 64 consecutive
time slices, at an interval of 15 minutes. The users are 142
machines (PlanetLab nodes) located in 22 countries, and the
services are 4,500 publicly available real-world Web services
from 57 countries [29]. The table in Fig. 6 provides some basic
statistics of our data. For example, the range of response time is
0∼20s, and the throughput 0∼7000kbps. Furthermore, we plot
the data distributions of response time and throughput in Fig. 7.
For better visualization, we cut off the response time beyond
10s and the throughput more than 150kbps. It is shown that
the data distributions are highly skewed. In contrast, as shown
in Fig. 8, we obtain more normal data distributions through
our data transformation in Section IV-C.

In addition, we investigate the singular values of the data
matrices of response time and throughput between users and
services. The singular values are computed by a singular value
decomposition (SVD) [30] and then normalized so that the
largest singular value is equal to 1, as illustrated in Fig. 9. We
can observe that except the first few largest singular values,
most of them are close to 0. This observation indicates that

324

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 11,2020 at 04:27:53 UTC from IEEE Xplore. Restrictions apply.

TABLE I. ACCURACY COMPARISON (A SMALLER MAE, MRE OR NPRE VALUE MEANS BETTER ACCURACY)

Density = 10% Density = 20% Density = 30% Density = 40% Density = 50%
QoS Approach

MAE MRE NPRE MAE MRE NPRE MAE MRE NPRE MAE MRE NPRE MAE MRE NPRE

UPCC 1.224 0.769 7.842 1.076 0.611 5.893 1.006 0.557 4.943 0.967 0.529 4.547 0.940 0.511 4.332

IPCC 1.273 0.776 6.650 1.218 0.779 6.354 1.144 0.736 5.768 1.070 0.680 5.192 1.020 0.647 4.826

UIPCC 1.215 0.764 7.489 1.076 0.610 5.889 1.005 0.558 4.977 0.962 0.530 4.571 0.932 0.524 4.383

PMF 1.104 0.593 3.017 1.030 0.596 3.414 0.982 0.581 3.390 0.948 0.564 3.294 0.928 0.546 3.198

AMF 1.076 0.478 1.765 1.007 0.386 1.080 0.974 0.356 0.968 0.950 0.344 0.929 0.921 0.334 0.914

RT

Improve.(%) 2.5% 19.4% 41.5% 2.2% 35.2% 68.4% 0.8% 38.7% 71.5% -0.2% 39.0% 71.8% 0.8% 38.8% 71.4%

UPCC 9.019 2.179 26.176 8.237 1.900 25.091 7.691 1.697 23.830 7.382 1.624 24.134 7.131 1.537 23.850

IPCC 8.744 0.833 12.816 8.434 0.832 12.750 7.960 0.789 11.830 7.452 0.729 10.438 7.127 0.699 9.748

UIPCC 8.596 1.534 17.982 8.048 1.842 21.250 7.501 1.694 20.499 7.074 1.511 18.804 6.764 1.390 17.667

PMF 6.894 0.567 2.899 6.474 0.525 2.929 6.235 0.488 2.847 5.960 0.459 2.764 5.668 0.436 2.657

AMF 6.303 0.513 2.148 5.920 0.414 1.424 5.742 0.385 1.170 5.694 0.368 1.042 5.621 0.356 0.983

TP

Improve.(%) 8.6% 9.5% 25.9% 8.6% 21.1% 51.4% 7.9% 21.1% 58.9% 4.5% 19.8% 62.3% 0.8% 18.6% 63.0%

both data matrices are approximately low-rank, which con-
forms to the our low-rank assumption of matrix factorization.
In our experiment, we set rank d = 10 (i.e., the dimensionality
of Ui, Sj).

B. Evaluation Metrics

We evaluate the prediction accuracy of our proposed ap-
proach in comparison with other existing approaches by using
the following metrics.

• MAE (Mean Absolute Error). MAE is widely em-
ployed to measure the average prediction accuracy in
recommender systems, defined as follows:

MAE =
∑
Iij=0

∣∣∣R̂ij −Rij

∣∣∣/N, (18)

where Rij is the measured value and R̂ij is the
corresponding predicted value. N is the number of
samples that satisfy Iij = 0.

• MRE (Median Relative Error). MRE takes the median
value of all the pairwise relative errors:

MRE = median
Iij=0

∣∣∣R̂ij −Rij

∣∣∣/Rij . (19)

• NPRE (Ninety-Percentile Relative Error). NPRE takes
the 90th percentile of all the pairwise relative errors.

Due to the large variance of QoS values, in this paper, we
focus more on relative error metrics, i.e., MRE and NPRE,
which are more appropriate for QoS prediction evaluation.
Many papers report on MAE, so it is also included for
comparison purpose. Nevertheless, our optimization efforts are
not focused on MAE.

C. Accuracy Comparison

In order to evaluate the prediction accuracy, we compare
our AMF approach with the following approaches that have
been introduced for QoS prediction [17], [23]. It is worth
noting that although these approaches are included for compar-
ison purpose, they cannot be directly used for runtime service
adaptation in practice, due to the aforementioned limitations.

• UPCC: This is a user-based collaborative filtering
approach [17] that employs the similarity between
users to predict the QoS values.

• IPCC: This is an item-based collaborative filtering
approach [17] that employs the similarity between
services to predict the QoS values.

• UIPCC: This is a hybrid approach proposed in [17],
by combing both UPCC and IPCC approaches to
make full use of the similarity between users and the
similarity between services for QoS prediction.

• PMF: This is a widely-used implementation of matrix
factorization model [21], which we have introduced in
Section IV-B.

As we mentioned before, the available QoS data matrix
is sparse in practice, because each user typically only uses
a small number of candidate services out of all of them. To
simulate the sparse situation, we randomly remove entries from
the data matrix at each time slice so that each user only
keeps a few available historical values. In this way, we vary
the matrix density from 10% to 50% at a step increase of
10%. Matrix density = 10%, for example, indicates that each
user invokes 10% (i.e. about 450) of the services, and each
service is invoked by 10% (i.e. about 14) of the users. For
AMF approach, the preserved data entries are randomized as
a QoS data stream for training. Then the removed entries are
used as the testing data to evaluate the prediction accuracy.
In the sequel, for simplicity, we set λu = λs = λ for AMF.
Specifically, in this experiment, we set d = 10, λ = 0.001,
β = 0.3, η = 0.8, α = −0.007 for RT, and α = −0.05 for
TP. Note that the parameters of the other approaches are also
optimized accordingly to achieve their optimal accuracy.

At each time slice, each approach is performed 20 times
for each matrix density (with different random seeds). Then
the results on average prediction accuracy over the first time
slice are reported (The full results over all the time slices are
reported in the supplementary report [31]). Table I provides
the comparison results over three metrics, but we focus more
on relative error metrics, i.e., MRE and NPRE. As we can
observe, our AMF approach significantly outperforms the
other approaches over MRE and NPRE, while still achieving
comparable (or best) results on MAE. Concretely, for response
time (RT) data, AMF achieves 19.4%∼39.0% improvement on
MRE and 41.5%∼71.8% improvement on NPRE at different
matrix densities. Similarly, for throughput (TP) data, AMF has
9.5%∼21.1% MRE improvement and 25.9%∼63.0% NPRE
improvement. Note that all improvements are computed as
the percentage of how much AMF outperforms the other
most competitive approach. We also find that although UIPCC

325

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 11,2020 at 04:27:53 UTC from IEEE Xplore. Restrictions apply.

−3 −2 −1 0 1 2 30

0.05

0.1

0.15

0.2

0.25

D
is

tri
bu

tio
n

Prediction Error (sec)

 UIPCC
 PMF
 AMF

(a) Response Time

−3 −2 −1 0 1 2 30

0.02

0.04

0.06

0.08

D
is

tri
bu

tio
n

Prediction Error (sec)

 UIPCC
 PMF
 AMF

(b) Throughput

Fig. 10. Distribution of Prediction Errors

10% 20% 30% 40% 50%
0.3

0.4

0.5

0.6

0.7

M
R

E

Matrix Density

 PMF AMF(α = 1) AMF

(a) Response Time

10% 20% 30% 40% 50%
0.3

0.4

0.5

0.6

0.7

M
R

E

Matrix Density

 PMF AMF(α = 1) AMF

(b) Throughput

Fig. 11. Impact of Data Transformation

achieves higher accuracy over MAE than UPCC and IPCC
as reported in [17], and PMF achieves better performance
compared with the first three approaches as reported in [23], all
these approaches have large errors over MRE and NPRE. Thus,
only minimizing the absolute error may lead to large relative
error, which is not suitable for QoS prediction problem.

To further analyze the benefit of our AMF approach, we
plot the distributions of prediction errors in Fig. 10. We can
observe that AMF achieves denser distribution around the
center 0, while UIPCC and PMF have flat error distributions,
which indicates the better performance of AMF.

D. Impact of Data Transformation

The effect of data transformation on data distributions has
been illustrated in Fig. 8. To further evaluate the impact of
data transformation on prediction accuracy, we compare the
prediction accuracy among three approaches, including PMF,
AMF(α = 1), and AMF. In AMF(α = 1), α = 1 indicates
that the data transformation is relaxed to a linear normal-
ization procedure, since the effect of the function boxcox(x)
is masked. In contrast, AMF is our approach with a well-
tuned α (e.g., α = −0.007 for response time and α = −0.05
for throughput). In this experiment, we also vary the matrix
density and then compute the corresponding MRE values. The
results are illustrated in Fig. 11. We can observe that the data
transformation method has a significant impact on improving
prediction accuracy over MRE. Especially, the PMF approach
aggressively minimizes the absolute error, resulting in large
MRE as shown in Fig. 11. Besides, AMF improves a lot in
MRE compared with AMF(α = 1) due to the effect of Box-
Cox transformation on QoS data distributions.

E. Impact of Matrix Density

To present a comprehensive evaluation on the impact of the
matrix density, we vary the matrix density from 5% to 50%
at a step increase of 5%. Besides, we set the other parameters

10% 20% 30% 40% 50%0

0.5

1

1.5

2

2.5

3

3.5

E
rr

or

Matrix Density

 MAE
 MRE
 NPRE

(a) Response Time

10% 20% 30% 40% 50%0
1
2
3
4
5
6
7
8

E
rr

or

Matrix Density

 MAE
 MRE
 NPRE

(b) Throughput

Fig. 12. Impact of Matrix Density

0 8 16 24 32 40 48 56 64
0

10

20

30

40

50

C
on

ve
rg

en
ce

 T
im

e
(s

ec
)

Time Slice

 UIPCC
 PMF
 AMF

Fig. 13. Efficiency Result

as in Section V-C. Fig. 12 illustrates the evaluation results.
We can observe that as the matrix density increases, better
prediction accuracy can be achieved. In particular, the error
decreases dramatically with the increase of matrix density,
when the QoS matrix is excessively sparse (e.g., matrix density
= 5%). It shows that the model can fall into the overfitting
problem due to data sparsity. With more data collected, the
overfitting problem can be alleviated, thus further improving
QoS prediction accuracy.

F. Efficiency Analysis

To evaluate the efficiency of our approach, we compare
the convergence time of AMF with two other approaches,
UIPCC and PMF. As we can see in Fig. 13, despite the long
convergence time for the first time slice, our AMF approach
becomes quite fast in the following time slices because AMF
incrementally updates the model by online learning using
sequentially observed data samples. In contrast, UIPCC and
PMF are more computationally expensive, since they need to
re-train the whole model at each time slice, which incurs high
computational overhead compared to our online algorithm.
Thus, they are more appropriate for one-time training as used
in traditional recommender system.

G. Scalability Analysis

To analyze the scalability of our AMF model on new
users and services, we evaluate the prediction accuracy on
these new users and services, as well as the robustness of
the prediction results. For this purpose, we simulate the new
users and services from our dataset. Specifically, we randomly
select 80% of users and services from our dataset at time
slice 1 as existing users and services, and then train the AMF
model using their data. After the model converges, we add
the remaining 20% of users and services into the model at
time t = 400s. Ideally, by using our algorithm 1, AMF can
scale well to the new users and services, and perform robustly
by keeping updating the feature vectors of existing users and

326

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 11,2020 at 04:27:53 UTC from IEEE Xplore. Restrictions apply.

0 100 200 300 400 500 600 700 800

0.5

1

1.5

2
M

R
E

Time (sec)

 Existing Users and Services before t = 400s
 Existing Users and Services after t = 400s
 New Users and Services

Fig. 14. Scalability Result

services with small weights, and the feature vectors of new
users and services with large weights. Fig. 14 presents the
results, where we can see that the MRE for the new users
and services rapidly decreases after their joining. However, the
MRE for existing users and services still keep stable, which
indicates the robustness of our model under the churning of
users and services. Therefore, our AMF approach shows good
scalability on new users and services.

VI. CONCLUSION

This is the first work to study the problem of QoS pre-
diction on candidate services for service adaptation. Towards
this end, we propose adaptive matrix factorization (AMF) to
address the online QoS prediction problem that is fundamental
for runtime service adaptation. AMF formulates the QoS
prediction problem as a collaborative filtering problem inspired
from recommender systems, and extends the traditional matrix
factorization model with techniques of data transformation,
online learning, and adaptive weights, in order to address
the unique challenges faced in runtime service adaptation.
Comprehensive experiments based on a real-world QoS dataset
have been conducted to evaluate our AMF approach, which
demonstrates its good performance in achieving accuracy,
efficiency, and scalability.

ACKNOWLEDGMENT

The work described in this paper was supported by the
National Basic Research Program of China (973 Project No.
2011CB302603), the National Natural Science Foundation of
China (Project No. 61332010 and Project No. 61100078),
and the Research Grants Council of the Hong Kong Special
Administrative Region, China (No. N CUHK405/11 of the
NSFC/RGC Joint Research Scheme and No. 415212 of the
General Research Fund).

REFERENCES

[1] Q. Zhang, Q. Zhu, M. F. Zhani, and R. Boutaba, “Dynamic service
placement in geographically distributed clouds,” in Proc. of IEEE
ICDCS, 2012, pp. 526–535.

[2] V. Nallur and R. Bahsoon, “A decentralized self-adaptation mechanism
for service-based applications in the cloud,” IEEE Trans. Software Eng.,
vol. 39, no. 5, pp. 591–612, 2013.

[3] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
amazon’s highly available key-value store,” in Proc. of ACM SOSP,
2007, pp. 205–220.

[4] O. Moser, F. Rosenberg, and S. Dustdar, “Non-intrusive monitoring and
service adaptation for ws-bpel,” in Proc. of ACM WWW, 2008.

[5] L. Zhang, J. Zhang, and H. Cai, Services Computing: Core Enabling
Technology of the Modern Services Industry. Tsinghua University
Press, 2007.

[6] C. Wang and J.-L. Pazat, “A two-phase online prediction approach for
accurate and timely adaptation decision,” in Proc. of IEEE SCC, 2012,
pp. 218–225.

[7] P. Leitner, A. Michlmayr, F. Rosenberg, and S. Dustdar, “Monitoring,
prediction and prevention of SLA violations in composite services,” in
Proc. of IEEE ICWS, 2010, pp. 369–376.

[8] A. Amin, L. Grunske, and A. Colman, “An automated approach to
forecasting qos attributes based on linear and non-linear time series
modeling,” in Proc. of IEEE/ACM ASE, 2012, pp. 130–139.

[9] V. Cardellini, E. Casalicchio, V. Grassi, S. Iannucci, F. L. Presti,
and R. Mirandola, “MOSES: A framework for QoS driven runtime
adaptation of service-oriented systems,” IEEE Trans. Software Eng.,
vol. 38, no. 5, pp. 1138–1159, 2012.

[10] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and
research challenges,” ACM Trans. Auton. Adapt. Syst., vol. 4, no. 2, pp.
14:1–14:42, 2009.

[11] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalagnanam,
and H. Chang, “QoS-aware middleware for web services composition,”
IEEE Trans. Software Eng., vol. 30, no. 5, pp. 311–327, 2004.

[12] L. Baresi and S. Guinea, “Self-supervising bpel processes,” IEEE Trans.
Software Eng., vol. 37, no. 2, pp. 247–263, 2011.

[13] X. Bu, J. Rao, and C.-Z. Xu, “A reinforcement learning approach to
online web systems auto-configuration,” in Proc. of IEEE ICDCS, 2009,
pp. 2–11.

[14] A. Metzger, C.-H. Chi, Y. Engel, and A. Marconi, “Research challenges
on online service quality prediction for proactive adaptation,” in Proc.
of the 2012 Workshop on European Software Services and Systems
Research - Results and Challenges (S-Cube), 2012, pp. 51–57.

[15] B. Jiang, W. K. Chan, Z. Zhang, and T. H. Tse, “Where to adapt
dynamic service compositions,” in Proc. of ACM WWW, 2009.

[16] X. Su and T. M. Khoshgoftaar, “A survey of collaborative filtering
techniques,” Adv. Artificial Intellegence, 2009.

[17] Z. Zheng, H. Ma, M. R. Lyu, and I. King, “Qos-aware web service rec-
ommendation by collaborative filtering,” IEEE T. Services Computing,
vol. 4, no. 2, pp. 140–152, 2011.

[18] W. Lo, J. Yin, S. Deng, Y. Li, and Z. Wu, “An extended matrix
factorization approach for qos prediction in service selection,” in Proc.
of IEEE SCC, 2012.

[19] Z. Zheng and M. R. Lyu, “Collaborative reliability prediction of service-
oriented systems,” in Proc. of ACM/IEEE ICSE, 2010, pp. 35–44.

[20] C. Delimitrou and C. Kozyrakis, “Paragon: Qos-aware scheduling for
heterogeneous datacenters,” in Proc. of ACM ASPLOS, 2013.

[21] R. Salakhutdinov and A. Mnih, “Probabilistic matrix factorization,” in
Proc. of NIPS, 2007.

[22] J. Zhu, Z. Zheng, and M. R. Lyu, “DR2: Dynamic request routing for
tolerating latency variability in online cloud applications,” in Proc. of
IEEE CLOUD, 2013, pp. 589–596.

[23] Z. Zheng, H. Ma, M. R. Lyu, and I. King, “Collaborative web service
qos prediction via neighborhood integrated matrix factorization,” IEEE
T. Services Computing, vol. 6, no. 3, pp. 289–299, 2013.

[24] R. M. Sakia, “The box-cox transformation technique: A review,” Jour-
nal of the Royal Statistical Society. Series D (The Statistician), vol. 41,
no. 2, pp. 169–178, 1992.

[25] A. Shapiro and Y. Wardi, “Convergence analysis of gradient descent s-
tochastic algorithms,” Journal of Optimization Theory and Applications,
pp. 45–4, 1996.

[26] N. Srebro and T. Jaakkola, “Weighted low-rank approximations,” in
Proc. of ICML, 2003, pp. 720–727.

[27] “Exponential moving average,” http://en.wikipedia.org/wiki/Moving
average, [Accessed: 5-Apr-2014].

[28] F. Dabek, R. Cox, M. F. Kaashoek, and R. Morris, “Vivaldi: a decentral-
ized network coordinate system,” in Proc. of ACM SIGCOMM, 2004,
pp. 15–26.

[29] Y. Zhang, Z. Zheng, and M. R. Lyu, “WSPred: A time-aware person-
alized qos prediction framework for web services,” in Proc. of IEEE
ISSRE, 2011.

[30] “Singular value decomposition (SVD),” http://en.wikipedia.org/wiki/
Singular value decomposition, [Accessed: 5-Apr-2014].

[31] J. Zhu, P. He, Z. Zheng, and M. R. Lyu, “Towards online, accurate,
and scalable QoS prediction for runtime service adaptation (supple-
mentary),” in Supplementary Report, 2014, [Available at: http://rmblab.
github.io/icdcs2014 AMF.html].

327

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 11,2020 at 04:27:53 UTC from IEEE Xplore. Restrictions apply.

