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Abstract—User request trace-oriented monitoring is an effec-
tive method to improve the reliability of cloud systems. How-
ever, there are some difficulties in getting traces in practice,
which hinder the development of trace-oriented monitoring
research. In this paper, we release a fine-grained user request-
centric open trace data set, called TraceBench1, collected
on a real world cloud storage system deployed in a real
environment. During collecting, many aspects are considered
to simulate different scenarios, including cluster size, request
type, workload speed, etc. Besides recording the traces when
the monitored system is running normally, we also collect the
traces under the situation with faults injected. With a mature
injection tool, 14 faults are introduced, including function
faults and performance faults. The traces in TraceBench are
clustered in different files, where each file corresponds to a
certain scenario. The whole collection work lasted for more
than half a year, resulting in more than 360, 000 traces in 361
files. In addition, we also employ several applications based on
TraceBench, which validate the helpfulness of TraceBench for
the field of trace-oriented monitoring.

Keywords-data set; trace-oriented monitoring; workload
generation; fault injection; cloud computing

I. INTRODUCTION

As an effective method to improve the reliability of cloud

systems, trace-oriented monitoring systems [1]–[3] track the

processes of handling user requests and record the contexts

of each step, in the form of user request traces, or simply

called traces. The traces naturally reflect the behaviors of the

cloud systems under monitoring and can be used for failure

detection, fault diagnosis, system recovery, etc.

Currently, more and more attentions are paid to the

research topic of trace-oriented monitoring. However, it is

not easy to get traces from real cloud systems, which provide

necessary data for conducting related research. First, collect-

ing traces by hand is a tedious and time-consuming process,

involving instrumenting a target system, redeploying the

instrumented system, setting up the workloads, injecting

faults if needed, etc. Moreover, one needs to repeat these

steps if the collected traces are insufficient. Second, for

safety or other considerations, companies do not want to

release the data of traces that record the internal details

1TraceBench is freely available at: http://mtracer.github.io/TraceBench/

of their systems. Also, there are few freely available data

sets of traces existing in academia and industry. Finally, the

manually synthesized traces are weak in authenticity, which

influences the usability. Actually, all these difficulties hin-

der the development of trace-oriented monitoring research,

which also motivate this paper.

To address this challenge, we release a fine-grained user

request-centric open trace data set, called TraceBench, for

supporting trace-oriented monitoring research. TraceBench

is collected with a trace-oriented monitoring tool we deve-

loped, called MTracer [4], by monitoring the Hadoop Dis-

tributed File System (HDFS) [23]. The cluster is deployed on

a real environment, containing 50 datanodes, 50 clients and

some other nodes. The whole size of TraceBench is about

3.2GB, recording more than 360, 000 traces stored in 361
files. The whole collection work lasted for more than half

a year. TraceBench consists of three classes: (1) Normal: in

this class, the traces are collected when the HDFS is running

normally in different cluster sizes and responding to various

kinds of user requests in multiple speeds; (2) Abnormal: we

inject permanent faults into the HDFS during the collection,

which result in function and performance exceptions, such as

data block missing and network slowdown; (3) Combination:

we randomly inject faults during HDFS running and then

perform the recovery, so that the traces record both the

normal and abnormal system behaviors.

TraceBench is a well-designed trace data set, considering

different user requests, various speeds of workloads, multiple

scales of clusters, many types of injected faults, and so

on, which is helpful for many trace-based research topics.

Take the fault diagnosis as an example, the Normal class

and Abnormal class can be treated as knowledge bases

for training the algorithms to learn the features of normal

behaviors and abnormal behaviors, respectively, and the

Combination class can be employed as a test set for validat-

ing the effectiveness of the algorithms. Since TraceBench is

collected in a real environment, other research topics, such

as system understanding, feature extracting and bug finding,

would also benefit from this data set.

The rest of this paper is structured as follows. Sec-

tion II introduces the traces in TraceBench and Section
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Figure 1. A trace sample

III describes the details. In Section IV, we introduce the

collection process. Section V gives some applications based

on TraceBench. In Section VI, we discuss the invalidities.

Section VII reviews the related work and Section VIII

concludes the paper.

II. TRACES IN TRACEBENCH

A trace in the field of this paper records the execution

path of a user request. For example, Figure 1 is a trace

sample that sketches the process of uploading a file from

a client to an HDFS service, involving 5 hosts: one client,

one namenode and three datanodes. When receiving a user

request of uploading, the client first asks the namenode

where to store using the Remote Procedure Calls (RPCs),

then uploads the file to datanodes in a pipe-like style, and

finally notifies the namenode after completion. The trace, in

the form of a tree, clearly illustrates the whole process.

Generally speaking, a trace can be formalized as (E,R)
[6], where E and R are the set of events and the set of

the relationships between the events, respectively. An event

records the context of a request step, where a step stands for

the execution process of a function or a routine. An event e
is a triple (tid, eid, I). The first element tid is the identity

of the trace, which means all the events with the same tid
belonging to the same trace. Each event has a unique eid
for distinguishing from each other in a trace. I records the

detailed information of the step, such as function name and

execution latency. On the other hand, a relationship records

the causality between two events, and can be expressed

in a quadruple (tid, feid, ceid, T ), which means the event

identified by feid is the father of the event identified by

ceid, in the trace identified by tid. T indicates the type of the

relationship, such as a local or remote function call. Using

the events and the relationships, a trace can be reconstructed

as a trace tree, where the nodes in the tree correspond to the

events, and the edges correspond to the relationships.

Traces in TraceBench are collected by MTracer [4], which

is a lightweight efficient trace-oriented monitoring platform

for medium-scale distributed systems. In MTracer, the de-

tailed information I of an event is (name, ip, st, et, d,O),
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Figure 2. A sample of trace reconstruction in MTracer [4]

representing the event name, IP address, start time stamp,

end time stamp, description and other information, respec-

tively. For the efficiency and overhead consideration, MTrac-

er introduces nid rather than eid for an event, inspired by

P-Tracer [5]. Each time the local node communicates with

a remote node, a new nid is generated in the remote node.

So, an nid can be understood as a temporary node ID. Each

event can be identified by nid and st, i.e., eid = (nid, st),
since the events with the same nid are generated on the

same node. A special strategy is employed to record the

relationships between events. If a father event and a child

event are generated on the same node, the two events have

the same nid and their relationship is not recorded explicitly.

Actually, the relationship can be calculated using the start

and end time stamps. If a father event and a child event be-

long to different nodes, the relationship is recorded explicitly

in the form of an edge, i.e., (tid, (fnid, fst), cnid), where

(fnid, fst) identifies the father event and cnid indicates

the child events. This strategy saves much of the time

for generating random IDs, which is a time-consuming

operation [4], thus reducing the overhead on the monitored

systems. Additionally, this strategy avoids using the global

clock and generates accurate traces.

As Figure 2 illustrates, a trace can be reconstructed to a

trace tree in four steps using the events and edges recorded

by MTracer: (a) pick out all the events and edges with the

same tid identifying the trace; (b) classify the picked events

into classes using nid, which means all the events in the

same class are generated on the same node; (c) calculate

the relationships in each class using the start and end time

stamps (e.g., F1 is the father of F2, since F1 starts earlier

and finishes later than F2 and there is no other ancestors

of F2); (d) construct the relationships between classes using

edges, where the event identified by (fnid, fst) is the father

of all the root nodes in the class identified by cnid.

III. INTRODUCTION OF TRACEBENCH

Using MTracer, we collected the traces in TraceBench on

an HDFS cluster [23], deployed in a real environment, which

consists of virtual machines (VMs) hosted on our private
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Table I
OVERVIEW OF TRACEBENCH

Class Type Fault Workload Variablea #File Collection
Time(min) #Trace #Event #Edge

Normal
Workload - r/w/rw/rpc/rwrpc 1,5i Clients 55 2, 761 209, 326 3, 848, 191 1, 963, 129
Datanode - r/w/rw 1,5i DNs 33 1, 980 17, 440 2, 310, 699 941, 681

Abnormal

Process
killDN r/w 0,1,2,3,4,5i FDNs 30 600 6, 469 682, 595 240, 668
suspendDN r/w 1,2,3,4,5i FDNs 28 515 2, 754 317, 498 124, 630

Network
disconnectDN r/w 1,2,3,4,5i FDNs 28 560 5, 189 536, 810 192, 276
slowHDFS r/w/rpc 0,10i/2i/100i ms 33 506 41, 200 669, 692 348, 912
slowDN r/w 1,2,3,4,5i FDNs 28 560 4, 395 575, 425 232, 270

Data

corruptBlk r 0,1,2,3,4,5i FDNs 15 300 5, 354 636, 023 244, 296
corruptMeta r 0,1,2,3,4,5i FDNs 15 300 5, 285 671, 185 214, 446
lossBlk r 1,2,3,4,5i FDNs 14 280 4, 920 573, 148 186, 554
lossMeta r 1,2,3,4,5i FDNs 14 280 4, 789 590, 902 256, 211
cutBlk r 1,2,3,4,5i FDNs 14 280 4, 982 619, 235 194, 904
cutMeta r 1,2,3,4,5i FDNs 14 280 5, 020 595, 579 188, 863

System
panicDN r/w 1,2,3,4,5 FDNs 10 150 1, 977 260, 660 103, 155
deadDN r/w 1,2,3,4,5 FDNs 10 150 1, 751 228, 550 90, 693
readOnlyDN w 1,2,3,4,5 FDNs 5 75 368 61, 944 27, 820

Combi-
nation

Single

Process rwrpc - 3 210 7, 037 237, 338 111, 247
Network rwrpc - 3 210 6, 539 219, 692 103, 192
Data rwrpc - 3 210 7, 392 251, 902 117, 475
System rwrpc - 3 210 7, 056 235, 379 110, 519

Multiple All rwrpc - 3 480 17, 244 602, 512 280, 556
Total - 14 faults 5 workloads - 361 10,897 366,487 14,724,959 6,273,497

a. i = 1, 2, ..., 10

IaaS platform [24]. Our environment contains 50 clients for

generating user requests, an HDFS cluster with 50 datanodes

and one namenode for processing the requests from clients,

and other nodes. The whole size of TraceBench is about

3.2GB and the total effective collection time is 10, 897
minutes. TraceBench consists of 361 files in which 97 files

contain failed user requests, 366, 487 traces, 14, 724, 959
events, and 6, 273, 497 edges. In TraceBench, the number

of contained events of a trace, or say trace length, spreads

from 5 to 420, and the number of involved nodes in a trace

spans from 2 to 44. Different aspects are considered during

collection, like workloads and faults, to simulate various

scenarios and to collect different behaviors of HDFS. In this

section, we first describe the structure of TraceBench, and

then introduce the workloads and faults.

A. Stucture

As shown in Table I, TraceBench includes three classes:

Normal (NM), Abnormal (AN) and Combination (COM),

and each trace class consists of different types. When col-

lecting a trace type, we introduce different faults, workloads

and variables, showing in the column Fault, Workload and

Variable, respectively. For example, when collecting traces

in Workload type of Normal class, we introduce 5 workloads,

and in each workload we respectively set the client number

to be 1, 5, 10, ..., 50, to simulate various requests at different

speeds. According to the fault, workload and variable, a trace

type contains many trace files. The traces in a file are stored

in the form of events and edges, introduced in the previous

section. Note that, the latency of an event can be calculated

with st and et, and the description d depicts the result of the

execution, including exception information. In this paper,

we name a set of traces according to the context in Table I,

e.g., the trace set named as Normal Workload r 1Client, or

NM WL r 1C for short, contains the traces collected under

a workload of file read and with one client in the Workload
type of Normal class.

The traces in the Normal class record the request paths

when the HDFS system is running normally, without inject-

ing any faults. The Normal class consists of Workload (WL)

type and Datanode (DN) type. The Workload type takes the

speed of workloads as the variable, and can be used to study

the capacities of the HDFS system in dealing with different

workloads in a certain scale (i.e., 50 datanodes). Since each

client generates the workload in the same speed, we use the

number of valid clients to represent the total workload speed

in Table I. “1, 5i Clients” means setting the number of valid

clients to be 1, 5, 10, ..., 50, respectively. In contrast, the

Datanode type fixes the speed of workload (i.e., 30 clients)

and changes the number of valid datanodes, to study the

behaviors with different system scales.

The traces in the Abnormal class are collected when a

permanent fault is injected into the HDFS system with a

fixed scale (i.e., 50 datanodes) and a fixed workload speed

(i.e., 30 clients). The trace files contain the information about

function and performance faults, and can be used to study the

behaviors when the system is running abnormally. According

to the types of faults, the Abnormal class can be divided into

four types, i.e., Process (Proc), Network (Net), Data and

System (Sys), which will be discussed later. Except the fault

slowHDFS affects on the whole network, all the faults are

injected into datanode(s), e.g., the fault lossBlk deletes all

the data blocks on some datanodes. So, the FDN in Table I

represents the datanodes with a fault injected.

521521
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When collecting the traces in Combination class, faults

are randomly picked and injected into the HDFS system,

and then recovered automatically or manually. Thus, the

Combination class contains the traces collected both when

the system is running normally and abnormally. In this class,

together with a trace file, a text file is also given, recording

the information about injected faults, including the fault

name, injection time, recovery time, etc. The Combination
class consists of the Single type, in which faults are chosen

from only one fault type, and the Multiple type, in which

faults are selected from all the four fault types.

B. Workloads

There are about 30 different requests in HDFS, such

as rm, copyFromLocal and mkdir, which can be basically

divided into three kinds: file read, file write and RPC. A

read request downloads a file from HDFS to local, like

copyToLocal, while a write request uploads a file from local

to HDFS, like copyFromLocal. Both of them involve the

communications with the namenode to get the information

of data blocks, and the communications with some datanodes

to download or upload data blocks. The RPC requests only

include RPC operations with the namenode and without

data block accessing, such as rm and ls. The workloads

containing only read, write or RPC requests are indicated

as r, w and rpc, respectively. We also introduce two other

workloads: rw, containing both read and write requests, and

rwrpc, containing all the three. When collecting the traces

in each trace type, we introduce different workloads as

needed. For example, since the faults in the Data type do not

influence write requests, the workload w is not introduced

in the AN Data set.

C. Faults

During trace collection, we introduce 14 faults of 4 types,

showing in the row Abnormal and the column Type and

Fault in Table I. The faults in the Process type affect the

HDFS processes on HDFS nodes. The fault killDN kills

the HDFS processes on some datanodes, while suspendDN
suspends some processes. Network faults bring anarchies to

the network in the cluster, such as slowHDFS slows the

whole network by milliseconds, and slowDN decreases the

speeds of sending and receiving packets on some datanodes.

The faults in Data introduce errors in the data blocks or

the metadata files on some datanodes. Such as corruptMeta
changes the values of some bits in the metadata files, and

cutBlk removes parts of bits in the data blocks. The System
faults introduce problems to the OSs of the HDFS nodes,

such as making OSs to be panic, dead or read-only. Some

of these faults bring function exceptions when handling

requests, e.g., killDN may cause a failure of reading a file,

while others may introduce performance exceptions, e.g.,
slowHDFS increases the latency of data exchanging.
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Figure 3. The architecture of trace collection

There are some other aspects need to be pointed out. First,

except the fault slowHDFS making the namenode slowdown,

all the rest faults only affect the datanodes. The reason is that

the whole HDFS system would crash in case some problems

happen on the namenode, such as the HDFS process is killed

and the OS is panic. In this situation, the data collected

is meaningless. Second, injecting Data faults should be

carried out at datanode level rather than the files inside a

datanode, because the exceptions caused by these faults have

a probability to happen. For example, if the fault lossBlk
only deletes one data block rather than all data blocks on

a datanode and the requests do not involve this block, no

exception will occur. Finally, most of the variables in the

Abnormal class are the number of FDNs. The purpose is

to make the trace files more usable for studying the HDFS

features with different numbers of abnormal datanodes, e.g.,
to know how many requests will fail when 20% of HDFS

processes are killed on datanodes.

IV. DETAILS OF TRACE COLLECTION

To collect the traces in HDFS, we instrumented the source

code using the interfaces provided by MTracer, and then

deployed the modified HDFS and MTracer in a real environ-

ment [24] composed of more than 100 VMs. The workloads

are generated with bash scripts on clients, and the faults are

injected using AnarchyApe [25]. This section introduces the

architecture and the process of trace collection.

A. Architecture

Figure 3 shows the architecture of trace collection, involv-

ing the following components:

• HDFS, the instrumented HDFS system used to process

different user requests, containing many datanodes and

one namenode.

• Clients, used to generate workloads for simulating the

real usages of HDFS, containing many client nodes.

• MTracer Server, the server of MTracer which is in

charge of receiving, storing and visualizing traces.

• Controller, the node which controls the whole process

of collection and is also in charge of injecting faults.

522522
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• Ganglia Server, the server of Ganglia [7], monitoring

the whole environment to ensure no unexpected issues

happen during collection.

The MTracer Server is deployed on a VM with 4GB

memory and 8 × 1GHz CPU, while all the rest nodes are

deployed on the VMs with 2GB memory and 4 × 1GHz

CPU, and the OS that all the nodes use is CentOS 6.3.

B. Process of Collecting Traces

Bash scripts are employed on each client for generat-

ing workloads. Each script takes charge in one kind of

workload, e.g., rpc.sh produces the rpc workload. Using a

loop, requests are sent to the HDFS service continuously

by a client. All the requests from the clients form the

global workload. Intervals are introduced between neighbour

requests generated by a script, i.e., after finishing a request,

a script waits for a moment and then starts the next one, to

control the speeds of requests.

During collecting the traces in a trace file, we first start

the MTracer server and the HDFS service with a certain

number of datanodes, and then launch the workload on some

clients concurrently. When finishing the collection, workload

is stopped first. Then, the HDFS service and the MTracer

server are shut down after waiting for a few minutes, to

guarantee that all requests are finished smoothly and no

fragmentary traces are collected. Therefore, in Table I, the

values of the column Collection Time are composed of the

running time of clients and the waiting time. Moreover, when

collecting a trace file in Abnormal class, a fault is injected

before starting the workload, and the recovery will be done

after handling all the requests, to ensure all the traces are

collected when the system is running abnormally. In contrast,

when collecting a trace file in Combination class, a randomly

chosen fault is injected after starting the workload and the

system is later recovered, and the next fault acts in the same

way after an interval, to simulate the occasionally occuring

faults in the system.

In addition, some parameters should be clarified. First,

except the NM DN set, the datanode number is set to

50, corresponding to the maximal capability of the HDFS

system in our environment. Except the NM WL set, the

client number is fixed to 30, which generates plenty of

requests that can be processed in time. Second, the collection

time of trace files in Normal class is 60 minutes, which

is enough for collecting plenty of traces to reflect related

statistical features. The collection time of trace files in

Abnormal class is 20 minutes, since the number of the faulty

traces may significantly reduce after 20 minutes due to the

mechanisms in HDFS for detecting and avoiding faults, like

the heart-beating protocol. Third, most step sizes of variables

are set to 5, i.e., changing 10% each time comparing to 50,

which balances between reflecting statistical features and

controlling the number of trace files. Finally, we choose 8
regular RPC requests for the rpc workload, involving file
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Figure 4. Analysing the fault influence

directory creating, modifying, querying and removing, which

cover the most frequently used RPC operations in HDFS.

V. APPLICATIONS

To validate the usability and authenticity, we carried out

extensive data analyses on TraceBench and employed it in

several scenarios, including failed requests detection, tempo-

ral invariants mining and performance anomalies diagnosis.

A. Data Analyses

Based on TraceBench, we analysed the behaviors of

HDFS on the aspects of request handling, workload balanc-

ing, fault influence, etc. Figure 4 is a sample of analysing

the influence of the fault slowHDFS. The figure shows the

average processing time of reading a block, writing a block

and handling an RPC, with different slowdowns introduced

into the network of the HDFS cluster. The processing time

of each operation increases as the network becomes slower.

The slope of each curve reflects the sensitivity of the corres-

ponding operation to this fault. Because requiring plenty

of network communications, writing a block is the most

sensitive operation, whose slowdown is about 1, 000 times

of the network slowdown, i.e., one millisecond slowdown in

network results in one second increase in writing a block.

Since only a few network interactions are required, RPC

is the least sensitive one, where one millisecond slowdown

results in one millisecond increase.

B. Detecting failed requests

The same kind of user requests usually result in the traces

with similar topologies. The similarities can be extracted

as properties, which are useful in failure detection, fault

diagnosis and other fields. For example, when reading a

file, the client downloads the data blocks of the file from

HDFS one by one, where downloading a data block starts

with invoking the function “blockSeekTo” (short for B),

and ends with calling “checksumOk” (K) if success. If

any data block fails to be downloaded after some retries,

the whole request aborts and fails. In other words, in a

successfully handled read request, the last data block should

be downloaded successfully, which can be expressed by the

523523
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Table II
RESULTS OF TEMPORAL INVARIANTS MINING

Log Type Trace Set → ← �→ Total

TO
NM WL r 1C 123 120 42 285
NM WL w 1C 136 120 91 347
NM WL rpc 1C 50 68 697 815

PO
NM WL r 1C 899 2, 103 7, 368 10, 370
NM WL w 1C 263 1, 551 6, 002 7, 816
NM WL rpc 1C 49 58 688 795

Linear Temporal Logic (LTL) [8] as the following property,

where the operators �, �, © represent for Always, Exist
and Next, respectively. If a trace of read request violates the

following property, we say a failure happens.

�B ∧ (�((B →©(�¬B))→©(�K)))

Similarly, we also extracted the properties for write and

RPC requests. To validate these properties, we checked the

traces in the AN set in the form of SQL queries to detect

failures. All of the failed requests are picked out correctly.

Besides the properties for detecting failures, we have also

extracted many properties for diagnosing various faults, such

as datanode invalid, data block missing, operation latency

anomaly, etc. All of these properties can be in turn used to

monitor an HDFS system with different methods, e.g., the

techniques in runtime verification (RV) [9], which is part of

our future work.

C. Mining temporal invariants

As an important respect of system features, temporal

invariants record the rules of the orders obeyed by system

operations, which can be obtained by mining system logs

and can be used to understand systems, detect abnormal

behaviors, diagnose deadlocks, infer higher-level properties,

etc. Ref. [10] defines 5 types of invariants, including a→ b
(Always followed by), a← b (Always precedes of), a �→ b
(Never followed by), a ‖ b (Always concurrent with), and

a �‖ b (Never concurrent with), and gives three algorithms

for mining, called transitive closure algorithm, co-occurrence

counting v1 algorithm and co-occurrence counting v2 algo-

rithm, respectively. In this subsection, we first mine temporal

invariants in TraceBench with the corresponding tool Synop-

tic [11] (revision id: cc864f389c71), and then compare the

mining speeds of these three algorithms.

After formatting the traces both into the totally ordered

(TO) format and the partially ordered (PO) format, we

mined plenty of invariants in different trace sets with various

request kinds in the NM WL set. Table II shows the numbers

of mined invariants, where we are interested in →, ← and

�→. Both TO logs and PO logs imply useful invariants,

e.g., INITIAL → blockSeekTo and blockSeekTo →
checksumOk mined from the NM WL r 1C set, respec-

tively mean every read request contains at least one data

block reading operation and each successfully handled read-

ing operation invokes “checksumOk”, which coincide to the
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Figure 5. Results of comparing mining algorithms in [10]

property introduced in previous subsection. Actually, many

properties can be inferred from these invariants.

When dealing with PO logs, Synoptic treats the same

kind of events generated from different nodes as different

events, which makes it possible to mine more useful invari-

ants for concurrent systems. However, this also has several

limitations. First, too many invariants are generated due to

the massive event types, e.g., more than ten thousand in

the NM WL r 1C set, which makes it difficult to search

desirable features. Second, since the occasionally happened

or occasionally not happened event combinations are treated

as inherent system features, some false invariants arise.

For example, the invariant receiveBlockdatanode001 �→
receiveBlockdatanode006 mined from the NM WL w 1C
set, where the function “receiveBlock” running on data-

nodes receives a copy of data block from the clien-

t, represents that there does not exist the situation in

the NM WL w 1C set that HDFS stores a data block

on datanode006 after storing on datanode001, which is

still possible in other executions. Third, many invariants

contain the same information. For example, the invari-

ants Conndatanode001 → receiveBlockdatanode001, ...,
Conndatanode050 → receiveBlockdatanode050 mined from

the NM WL w 1C set, where “Conn” is short for “OP:

connect next Datanode”, all mean that when receiving a copy

of data block, the related datanode first builds connection

with the client and then receives the copy. To summarize,

when mining temporal invariants in PO logs, Synoptic seems

to be more suitable for the systems with few nodes.

In addition, the experiments in [10], which vary a cer-

tain dimension and keep others, can be well supported by

TraceBench, such as choosing the traces with different data-

nodes to vary the node numbers, selecting different amounts

of traces to change the execution lengths. To synthetically

compare the aforementioned three algorithms, we redo the

experiments with the traces in the NM WL r set, which

mainly varies the number of traces (or called executions as

in [10]) and the number of nodes, on a VM with 8×1 GHz

CPU and 4GB memory, by running each algorithm 5 times
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Table III
RESULTS OF PERFORMANCE ANOMALIES DIAGNOSING

#Trace 100 200 300 400 500
Time (ms) 31 65 95 130 154
#Anomaly 12/12/0 17/17/0 19/2/0 30/1/0 30/1/0

#Event 33 66 99 134 167
Time (ms) 84 1, 413 8, 359 35, 269 100, 023
#Anomaly 0/0/0 1/1/0 1/1/0 1/1/0 0/0/0

on each trace file and reporting the average values. Figure

5 shows the results, which indicates the improvements in

the efficiency of the two co-occurrence counting algorithms,

and the results are more convincing than the results in [10].

D. Diagnosing performance anomalies

We also implemented a principal component analysis

(PCA) based performance anomalies diagnosing algorithm

in [12], [13], which finds the traces with abnormal latencies

and locates the faulty events as root causes. We evaluated it

with different trace sets selected from the COM All rwrpc
set. Since this algorithm can only process the traces with a

same topology, we divided the experiment into two parts,

i.e., with trace sets of rmr requests, which fixes the trace

length to 7 and varies the trace amount, and with trace

sets of copyToLocal requests, which sets the trace amount

to 7 and changes the trace length. The two parts of Table

III respectively record the results of the two dimensions

of the experiment, where #Trace and #Event respectively

represent the trace amount and the trace length, the row

Time shows the handling time of each trace sets, and the

items in row #Anomaly are expressed as the form of (total

anomalies)/(found anomalies)/(incorrectly found anomalies).

In addition, the handling time on a trace set is again the

average value of 5 executions, and the machine employed is

the same as that in the last subsection.

This algorithm finds all anomalies in some cases, and

however sometimes only a small part. Actually, the results

depend on the features of data, since only some outliers

exceeding the related thresholds are reported as anomalies.

So, when some very abnormal traces exist, other less ab-

normal ones would be ignored. For example, only 1 of 30
anomalies is found when the trace length is 400 in Table

III, and after removing this one, another 27 anomalies can

be correctly picked out. In addition, this algorithm is pretty

accurate with no false alarm in our experiments.

On the other hand, the analysis time increases very fast

when increasing the trace length, but slowly when growing

the trace amount, which indicates that this algorithm is

more sensitive to trace length rather than trace amount.

The primary cause is the process of calculating eigenvalues

and eigenvectors of a square matrix for getting principal

components, where the calculating time is mainly related to

the matrix size that exactly equals to the trace length and has

no relation with the trace amount. Therefore, this algorithm

is maybe more feasible for short traces.

VI. THREATS TO VALIDITY

Some aspects may threaten the validity of TraceBench,

such as the monitored system, the cluster size and the

injected faults. We discuss these aspects in this section.

We collected our traces only on HDFS. However, the

HDFS system is a widely used cloud storage system in

academia and industry, and many mechanisms in HDFS,

like RPC, are commonly used in other systems. Therefore,

TraceBench is representative and we believe TraceBench is

helpful for the research of trace-oriented monitoring.

The traces mainly record the communications between

nodes, which may make TraceBench unsuitable for the

scenarios concerning concurrent operations within one node.

However, for a multi-threads program in one node, MTracer

can also be used to record the causal relations.

The scale of our HDFS cluster is smaller than real

production systems. However, it is enough to exhibit the

different features of HDFS for research purpose since a user

request in HDFS always involves limited nodes. Moreover,

it is really difficult for academic to deploy very large-scale

clusters in practice. In addition, the clients can be configured

to send requests in a batch mode, which simulates multiple

users in one client node.

Regarding fault injection, indeed besides the faults we

introduce, many others exist in real systems, like dropping

packets in network. Nevertheless, the faults we use are from

a mature injection tool of HDFS and we have injected all

the types of faults in this tool. Hence, we believe that the

faults we inject are representative.

Lastly, there are no explicit tags exist in traces for

indicating whether the trace is normal or not. However, we

always can exactly estimate a trace from the trace topology,

the corresponding text file which describes the injected faults

and the logged information in events, such as description

field and latency field.

VII. RELATED WORK

TraceBench records the fine-grained information of hand-

ling user requests, i.e., the details and casual relations of

function calls among multiple nodes, and hence is user

request-centric. The traces in TraceBench supply more de-

tailed information than some other approaches, such as job-

centric and resource-centric. To the best of our knowledge,

TraceBench is the first fine-grained user request-centric open

trace data set. Following, we introduce some related public

data sets in other categories.

Resouce-centric data sets record the availability of nodes

and components or the usages of resouces, focusing on ex-

ternal, rather than internal, information of system programs.

For example, the Failure Trace Archive (FTA) [14], collected

from parallel and distributed systems, records the times of

resource failures; the Computer Failure Data Repository

(CFDR) [15] provides the failure data in supercomputers

and clusters, e.g., the storage failure data; and the Repository
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of Availability Traces [16] contains the events that indicate

whether and when a node is available.

Job-centric data sets give a coarse-grained view of system

running, such as when a job starts and ends, which nodes

involve, without the details about how a job works. For

example, the Grid Observatory (GO) [17], collected on a

grid infrastructure, includes many data sets and records the

information around jobs, e.g., jobs lifecycle; the Parallel

Workloads Archive (PWA) [18] provides job-level usage

data and is widely used in the research of job scheduling

strategies for parallel systems; the Google Cluster Data [19]

describes hundreds of thousands of jobs, composed by lots

of tasks, together with the task resource usages.

Additionally, TraceBench also exceeds some data sets in

certain aspects. For example, the PWA lacks failure informa-

tion, where the same problem exists in the Grid Workloads

Archive (GWA) [20] and the Game Trace Archive (GTA)

[21], while the FTA and the CFDR are weak in the aspect

of normal data, and the Repository of Availability Traces

has limited information besides availability.

VIII. CONCLUSION

In this paper, we provide a fine-grained user request-

centric open trace data set, called TraceBench, collected

with a trace-oriented monitoring platform we developed.

Our traces are collected in a real environment considering

different scales, including the size of the monitored system,

workload type, injected fault, and so on. Since TraceBench

is collected in a real environment, where the usability

and authenticity of this data set are validated by several

applications, it would be helpful to user request tracing-

oriented monitoring research, such as online fault detection

and localization. A lot of other related research, such as

system understanding, feature extraction and bug finding,

can also employ our data set.

In the future, we plan to study several trace-based tech-

nologies based on TraceBench, to improve the reliability of

cloud systems, like fault tolerant [22].
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