
Towards An Open Data Set for Trace-Oriented Monitoring

Jingwen Zhou∗†, Zhenbang Chen∗†, Ji Wang∗†, Zibin Zheng‡§, and Michael R. Lyu†‡§
∗Science and Technology on Parallel and Distributed Processing Laboratory

National University of Defense Technology, Changsha, China
†College of Computer, National University of Defense Technology, Changsha, China

‡Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
§Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China

Email: {jwzhou, zbchen}@nudt.edu.cn

Abstract—Trace-oriented monitoring is one of the main
methods for monitoring cloud systems. However, there is no
free trace data set available, which hinders the development
of trace-oriented monitoring. Therefore, we want to collect a
trace data set in a real environment and make it free. During
collection, many aspects are considered, including cluster sizes,
user requests, workload speeds, injected faults, etc., to simulate
different situations. The structure of this data set is well-
designed. We believe that this data set will be helpful for the
research of trace-oriented monitoring.

Keywords-tracing; data set; workload generation; fault in-
jection; cloud computing

I. INTRODUCTION

As the increasing of cluster scale and system complexity,

problems happen more and more often in cloud systems and

usually cause enormous loss. For example, on 16 August

2013, many of Google websites suffered a meltdown, in

which Google lost 550, 000 dollars in less than 5 minutes,

and the global internet traffic dropped 40% [1]. Therefore,

how to improve the reliability of cloud systems is a very

important problem.

Trace-oriented monitoring, or called tracing, is one of

the methods to improve system reliability at runtime. With

the data recorded by tracing systems, namely trace, many

activities can be carried out, such as fault detection, fault

diagnosis, and even remediation. However, to our best

knowledge, there is no freely available trace set existing in

academia and industry. As a result, before starting a certain

trace-based research, plenty of work need to be done first,

including choosing or even implementing a tracing system,

instrumenting a target system, deploying the instrumented

system, collecting different kinds of traces, and so on,

which is a tedious and time-consuming process. Actually,

the lack of trace data hinders the development of trace-based

research, which also motivates our work.

We are collecting a trace data set for supporting trace-

based research. Traces in this data set are collected from a

Hadoop Distributed File System (HDFS) [4] deployed in a

real environment, and record the processes of handling user

requests in HDFS. During collection, we consider different

cluster sizes, user requests, workload speeds, injected faults,

etc., to simulate real situations. In our plan, this data set

consists of three classes, where the Normal class and the

Abnormal class are collected during the HDFS running nor-

mally and abnormally, respectively, while the Combination
class is collected by randomly injecting faults and later

recovering the system. Since the structure is well-designed

and the scenarios are close to reality, we believe this data

set will be helpful for trace-based research. For example, in

fault detection, the Normal class and Abnormal class can be

used to learn the features of normal behaviors and abnormal

behaviors, while the Combination class can be used to test

the effectiveness of fault detection algorithms.

II. STRUCTURE OF DATA SET

Each element in our data set is a trace, which records

the execution path of a user request. A trace consists of the

events and the relationships, where each event records the

context of a request step, such as function name and latency,

and a relationship records the casual relation between two

events, like local and remote function calls. According to

the events and the relationships, a trace can be constructed

to a trace tree, in which the nodes correspond to the events

and the edges correspond to the relationships. More details

can be referred to [2].

In our plan, this data set consists of three classes: Normal ,

Abnormal and Combination, and each class includes several

types. When collecting the traces of each type, we consider

different requests, workloads, faults, etc., to simulate various

scenarios. Thus, each type contains many trace files, each

of which contains the traces collected in a scenario.

The traces in the Normal class are collected when the

monitored HDFS system is running normally. There will be

two types in this class: Workload type and Datanode type.

Different trace files in the Workload type are collected under

different workload speeds, while the Datanode type mainly

considers various cluster sizes decided by the number of

the datanodes in the HDFS system. Besides, different user

requests, including read, write and RPC (Remote Process

Call), are also introduced in both types. Therefore, the

Normal class records the behaviors of the HDFS when

2014 IEEE International Conference on Cloud Computing

978-1-4799-5063-8/14 $31.00 © 2014 IEEE

DOI 10.1109/CLOUD.2014.126

922

2014 IEEE International Conference on Cloud Computing

978-1-4799-5063-8/14 $31.00 © 2014 IEEE

DOI 10.1109/CLOUD.2014.126

922

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 11,2020 at 04:27:39 UTC from IEEE Xplore. Restrictions apply.

Table I
INJECTED FAULTS

Type Fault
Process killDN, suspendDN
Network disconnectDN, slowHDFS, slowDN

Data
corruptBlk, corruptMeta, lossBlk,lossMeta,
cutBlk, cutMeta

System panicDN, deadDN, readOnlyDN

handling different user requests under different speeds with

different cluster sizes.

When collecting a trace file in the Abnormal class, a fault

is injected into HDFS and holds during the whole collection.

The Abnormal class consists of four types according to the

fault types, shown in Table I. The Process faults affect the

processes on HDFS nodes, while the Data faults introduce

errors in the data on datanodes, and the faults in the Network
type and the System type bring anarchies to the network in

the cluster and the OSs of the HDFS nodes, respectively.

During collecting a trace file in the Combination class,

faults are randomly chosen and randomly injected into

HDFS, and the sysetm is recovered automatically after a

while. According to whether faults are picked from a single

fault type or all the four types, the Combination class can

be divided into the Single type and the All type. In addition,

together with a trace file in this class, a description file is also

given, describing the details of injected faults, including the

fault name, the related parameters, the injection and recovery

time stamps, etc.

III. DETAILS IN COLLECTION

We employ an effective tracing system, called MTracer

[2], developed by us to collect the traces in the HDFS, de-

ployed on a real environment composed by virtual machines.

Figure 1 illustrates the architecture of trace collection.

The HDFS system, containing one namenode and many

datanodes, handles user requests. Clients, simulating real

users, generate different requests to HDFS. The MTracer

server tracks the process of handling requests and collects

the traces. The controller controls the collection process and

injects faults. The Ganglia server [3] monitors all nodes and

the whole process. By the way, in our collection, we have

50 datanodes and 50 clients in maximum.

When starting a trace collection, we first start the MTracer

server and the HDFS system with a certain cluster size, and

then launch bash scripts concurrently on some clients to

generate workload. After finishing the collection, workload

terminates first, and the HDFS system and the MTracer ser-

ver stop after finishing all requests. When collecting a trace

file in the Abnormal class, faults are injected before starting

workload, and the system is recovered after finishing all

requests, which makes sure the HDFS is running abnormally

during collection. While in the Combination class, faults are

randomly injected after starting workload, then the system

��������	 ��������
 �������

�������

���

���������	

	
��

������������
 ��������

��������

������������������������ ��������������

������

������

������

�������

�������

����

����
�������

�������

	
�����������

������
������������

Figure 1. The architecture of trace collection.

is recovered after an interval, and the next fault is carried

out in a same way, which simulates occasionally happened

faults.

IV. THREADS TO INVALIDITY

We collect traces only on a HDFS system, because HDFS

is a widely used system in academia and industry, and

many mechanisms and procedures in dealing user requests

in HDFS are shared by other systems. Thus, the traces from

HDFS are representative.

During collection, the HDFS system maximumly contains

50 datanodes, which is smaller than production systems.

However, the traces are collected in different scenarios,

which is enough for exhibiting various features of HDFS.

Besides the faults we introduce, many others exist. Never-

theless, the faults we inject contain different fault types,

which cover the most frequent and representative faults in

real systems.

V. CONCLUSION

We plan to collect an open trace data set in a real

environment, considering many aspects during collection.

The data set has a well-designed structure and is deemed

to be helpful for trace-oriented monitoring.

ACKNOWLEDGMENT

This work is supported by the National 973 Program of

China under the Grant No.2011CB302603, the NSFC under

the Grant No. 61161160565 and No. 61303064, and the

SRFDP under the Grant No. 20114307120015.

REFERENCES

[1] J. Garside, “Nasdaq crash triggers fear of data meltdown,”
http://www.theguardian.com/technology/2013/aug/23/nasdaq-crash-
data, 2013.

[2] J. Zhou, Z. Chen, H. Mi, and J. Wang, “MTracer: a trace-oriented
monitoring framework for medium-scale distributed systems,” In Proc.
of SOSE 2014, 2014, pp. 266–271.

[3] M. L. Massie, B. N. Chun., and D. E. Culler, “The Ganglia distributed
monitoring system: design, implementation, and experience,” Elsevier
PARCO, vol. 30, no. 7, pp. 817–840, 2004.

[4] Apache, “Hadoop,” http://hadoop.apache.org/, 2014.

923923

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 11,2020 at 04:27:39 UTC from IEEE Xplore. Restrictions apply.

