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Abstract

Deep neural networks have achieved unprecedented suc-
cess on diverse vision tasks. However, they are vulnerable to
adversarial noise that is imperceptible to humans. This phe-
nomenon negatively affects their deployment in real-world
scenarios, especially security-related ones. To evaluate the
robustness of a target model in practice, transfer-based at-
tacks craft adversarial samples with a local model and have
attracted increasing attention from researchers due to their
high efficiency. The state-of-the-art transfer-based attacks
are generally based on data augmentation, which typically
augments multiple training images from a linear path when
learning adversarial samples. However, such methods se-
lected the image augmentation path heuristically and may
augment images that are semantics-inconsistent with the
target images, which harms the transferability of the gen-
erated adversarial samples. To overcome the pitfall, we
propose the Path-Augmented Method (PAM). Specifically,
PAM first constructs a candidate augmentation path pool.
It then settles the employed augmentation paths during ad-
versarial sample generation with greedy search. Further-
more, to avoid augmenting semantics-inconsistent images,
we train a Semantics Predictor (SP) to constrain the length
of the augmentation path. Extensive experiments confirm
that PAM can achieve an improvement of over 4.8% on av-
erage compared with the state-of-the-art baselines in terms
of the attack success rates.

1. Introduction

Deep neural networks (DNNs) appear to be the state-

of-the-art solutions for a wide variety of vision tasks [21,

*Corresponding author.

Figure 1. Illustration of how SIM and our PAM augment images

(red dots) during the generation of adversarial samples. SIM only

considers one linear path from the target image X to a baseline

imageX ′. Besides, SIM may augment images that are semantics-

inconsistent with the target image. In contrast, our PAM augments

images along multiple augmentation paths. We also constrain the

length of the path to avoid augmenting images that are semantics-

inconsistent with the target one.

28]. However, DNNs are vulnerable to adversarial sam-

ples [47], which are elaborately designed by adding human-

imperceptible noise to the clean image to mislead DNNs

into wrong predictions. The existence of adversarial sam-

ples causes negative effects on security-sensitive DNN-

based applications, such as self-driving [27] and medical

diagnosis [6, 7]. Therefore, it is necessary to understand

the DNNs [15, 32, 33, 40] and enhance attack algorithms

to better identify the DNN model’s vulnerability, which is

the first step to improve their robustness against adversarial

samples [23, 24, 42].

There are generally two kinds of attacks in the litera-

ture [9]. One is the white-box attacks, which consider the

white-box setting where attackers can access the architec-

tures and parameters of the victim models. The other is

the black-box attacks, which focus on the black-box situ-

ation where attackers fail to get access to the specifics of
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the victim models [10, 39]. Black-box attacks are more ap-

plicable than the white-box counterparts to real-world sys-

tems. There are two basic black-box attack methodolo-

gies: the query-based [1, 2, 37] and the transfer-based at-

tacks [38, 41]. Query-based attacks interact with the victim

model to generate adversarial samples, but they may incur

excessive queries. In contrast, transfer-based attacks craft

adversarial samples with a local source model and do not

need to query the victim model. Therefore, transfer-based

attacks have attracted more attention recently because of

their high efficiency [10, 39].

However, transfer-based attacks generally craft adversar-

ial samples by employing white-box strategies like the Fast

Gradient Sign Method (FGSM) [11] to attack a local model,

which often leads to limited transferability due to overfit-

ting to the employed local model. Most existing solutions

address the overfitting issue from the perspective of opti-

mization and generalization, which regards the local model

and the target image as the training data of the adversar-

ial sample. Therefore, the transferability of the learned

adversarial sample corresponds to its generalization abil-

ity across attacking different models [20]. Such method-

ologies to improve adversarial transferability can be cate-

gorized into two groups. One is the optimizer-based ap-

proaches [9, 20, 34, 36], which adopt more advanced opti-

mizers to escape from poor local optima during the genera-

tion of adversarial samples. The other is the augmentation-

based methods [10,20,35,44], which resort to data augmen-

tation and exploit multiple training images to learn a more

transferable adversarial sample.

Current state-of-the-art augmentation-based attacks gen-

erally apply a heuristics-based augmentation method. For

example, the Scale-Invariant attack Method (SIM) [20] aug-

ments multiple scale copies of the target image, while Ad-

mix [35] augments multiple scale copies of the mixtures of

the target image and the images from other categories. SIM

exponentially augments images along a linear path from the

target image to a baseline image, which is the origin. Ad-

mix, in contrast, first augments the target image with the

mixture of the target image and the images from other cate-

gories. Then it also exponentially augments images along a

linear path from the mixture image to the origin. Therefore,

such methods only consider the image augmentation path to

one baseline image, i.e., the origin. Besides, although they

attempt to augment images that are semantics-consistent to

the target image [20,35], they fail to constrain the length of

the image augmentation path, which may result in augment-

ing semantics-inconsistent images.

To overcome the pitfalls of existing augmentation-based

attacks, we propose a transfer-based attack called Path-

Augmented Method (PAM). PAM proposes to augment im-

ages from multiple image augmentation paths to improve

the transferability of the learned adversarial sample. How-

ever, due to the continuous space of images, the possible

image augmentation paths starting from the target image

are countless. In order to cope with the efficiency prob-

lem, we first select representative path directions to con-

struct a candidate augmentation path pool. Then we settle

the employed augmentation paths during adversarial sam-

ple generation with greedy search. Furthermore, to avoid

augmenting semantics-inconsistent images, we train a Se-

mantics Predictor, which is a lightweight neural network, to

constrain the length of each augmentation path.

The difference between our PAM and SIM is illustrated

in Figure 1. During the generation of adversarial samples,

PAM augments images along multiple image augmentation

paths from the target image to different baseline images,

while SIM only augments images along a single image aug-

mentation path from the target image to the origin. Be-

sides, PAM constrains the length of the image augmenta-

tion path to avoid augmenting images that are far away from

the target image and preserve the semantic meaning of the

target image. In contrast, SIM may augment images that

are semantics-inconsistent with the target image due to the

overlong image augmentation path.

To confirm the superiority of our PAM, we conduct ex-

tensive experiments against both undefended and defended

models on the ImageNet dataset. Experimental results show

that our PAM can achieve an improvement of over 3.7%

on average compared with the state-of-the-art baselines in

terms of the attack success rates. We also evaluate the per-

formance of the combination of PAMwith other compatible

attack methods. Again, experimental results confirm that

our method can significantly outperform the state-of-the-art

baselines by about 7.2% on average.

In summary, our contributions in this paper are threefold:

• We discover that the state-of-the-art augmentation-

based attacks (SIM and Admix) actually augment

training images from a linear path for learning adver-

sarial samples. We argue that they suffer from limited

and overlong augmentation paths.

• To address their pitfalls, We propose the Path-

Augmented Method (PAM). PAM augments images

from multiple augmentation paths during the genera-

tion of adversarial samples. Besides, to make the aug-

mented images preserve the semantic meaning of the

target image, we train a Semantics Predictor (SP) to

constrain the length of each augmentation path.

• We conduct extensive experiments to validate the ef-

fectiveness of our methodologies. Experimental re-

sults confirm that our approaches can outperform the

state-of-the-art baselines by a margin of over 3.7% on

average. Besides, when combined with other compati-

ble strategies, our method can significantly surpass the

state-of-the-art baselines by 7.2% on average.
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2. Related Work

2.1. Adversarial Attack Method

According to the knowledge of the attacker, there are two

categories of attacks in general: white-box and black-box

attacks [4]. White-box attacks assume the white-box set-

ting, where attackers have full access to the victim model,

including the model structures and parameters. Fast Gra-

dient Sign Method (FGSM) [11] is the first white-box at-

tack that utilizes the sign of the input gradient to maximize

the classification loss to generate adversarial samples in one

step. Basic Iterative Method (BIM) [18] deploys FGSM

to iteratively perturb images to improve the attack perfor-

mance. Project Gradient Descent (PGD) [25] extends BIM

with random start to generate diverse adversarial samples.

Current white-box attacks can achieve nearly 100% attack

success rates in white-box settings. However, they cannot

handle black-box situations, where the model structures and

parameters are unseen.

As a result, black-box attacks have attracted increas-

ing attention from researchers recently, which can work

in the black-box setting. There are generally two cate-

gories of black-box attacks. One is the query-based at-

tacks [2,3,12,26], and the other is the transfer-based attacks

[9, 46]. Query-based attacks generally determine the sus-

ceptible direction of the victim model through querying it

with deliberately designed inputs [2,3,12]. However, query-

based attacks may incur prohibitive query costs, hindering

their practical application. Transfer-based attacks exploit

the transferability of adversarial samples, which means that

the adversarial samples generated by a local source model

can also mislead a different target model. Due to their high

efficiency, transfer-based attacks are a research hot spot.

However, adversarial samples crafted by white-box attacks

generally possess limited transferability.

There are mainly two methodologies to improve the

transferability of white-box attacks. The first one is the

optimizer-based approach, which aims to escape from poor

local optima by adjusting the employment of vanilla gra-

dients during the generation of adversarial samples. For

example, Momentum Iterative Fast Gradient Sign Method

(MI-FGSM) [9] integrates the momentum term into BIM to

improve its adversarial transferability.

The other one is the augmentation-based method, which

can be further categorized into two lines. The first one ac-

tually augments images from a linear path. For example,

Scale Invariant Method (SIM) [20] exponentially augments

images along the linear path from the target image to the

origin. Admix [35] follows a similar image augmentation

path while modifying the starting points as the mixture of

the target image and the images from other classes. The

other line banks on affine transformations to augment im-

ages. For example, the Diverse Input Method (DIM) [44]

applies random resizing and padding, while Translation In-

variant Method (TIM) [10] employs shifting. Since affine

transformations focus on changing the pixel positions of an

image, the augmented images are less diverse than those

from a linear path, leading to inferior transferability [35].

Unfortunately, state-of-the-art augmentation-based at-

tacks, like SIM and Admix, only consider the image aug-

mentation path to one baseline image, i.e., the origin. Be-

sides, they fail to constrain the length of the image aug-

mentation path, which may be overlong and result in aug-

menting images that are far away from and semantics-

inconsistent with the target image. To overcome the defi-

ciencies of such augmentation-based attacks, we propose

the Path-Augmented Method (PAM). To make the aug-

mented images more diverse, we propose to augment im-

ages from multiple augmentation paths during the gener-

ation of adversarial samples. Besides, to make the aug-

mented images preserve the semantic meaning of the tar-

get image, we train a Semantics Predictor (SP) to constrain

the length of each augmentation path. As a result, our

scheme can achieve superior performance over state-of-the-

art transfer-based attacks.

2.2. Adversarial Defense

Many adversarial defense methods have been proposed

to alleviate the threat of adversarial samples, which can be

generally grouped into two categories. The first category

is adversarial training, which keeps the state-of-the-art de-

fense methods [18, 31]. Adversarial training retrains the

model by injecting the adversarial samples into the train-

ing data to improve its robustness [11]. Ensemble adversar-

ial training augments the training data with perturbations

transferred from several other models to defend against

transfer-based attacks [18]. The other category is to pu-

rify the adversarial samples. They rectify adversarial per-

turbations by pre-processing inputs without losing classifi-

cation performance on benign images. The state-of-the-art

defense methods in this category include utilizing a high-

level representation guided denoiser [19], random resiz-

ing and padding [43], a JPEG-based defensive compression

framework [22], a compression module [16], and random-

ized smoothing [8]. In this paper, we exploit these state-of-

the-art defenses to evaluate the effectiveness of our attack

against defended models.

3. Method

In this section, we first describe the state-of-the-art

augmentation-based attacks (SIM and Admix). Then we an-

alyze the limitation of such approaches. We finally present

our Path-Augmented Method (PAM) to overcome the pit-

falls of such attacks.
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3.1. Augmentation-based Attacks

We first set up some notations. We denote the benign in-

put image as x and the corresponding true label as y. We

represent the output of a DNN classifier by f(x). J(x, y)
stands for the classification loss function of the classifier,

which is usually the cross-entropy loss. Given the target

image x, adversarial attacks aim to find an adversarial sam-

ple xadv , which can mislead the classifier, i.e., f(xadv) �=
f(x), while it is human-imperceptible, i.e., satisfying the

constraint
∥∥x− xadv

∥∥
p
< ε. ‖·‖p represents the Lp norm,

and we focus on the L∞ norm here to align with previous

papers [9, 20].

Prevailing white-box attacks like FGSM [11] usually

craft adversarial samples by solving the following con-

strained maximization problem:

max
xadv

J(xadv, y) s.t.
∥∥x− xadv

∥∥
∞ < ε.

Scale Invariant Method (SIM) first computes the aver-
age gradient ḡ of the classification loss with respect to m
scaled copies of the target image. Then it updates the target

image with the sign of ḡ by a small step size ε′ = ε
T in each

iteration, where T is the iteration number. The update rule

is formulated below:

ḡt+1 =
1

m

m−1∑

i=0

∇xadv
t

J(
1

2i
· xadv

t , y),

xadv
t+1 = xadv

t + ε′ · sgn{ḡt+1}.
(1)

Admix first replaces the target image with m2 mixtures

of the target image and the images from other categories

(x′ ∈ X ′). Then it follows SIM by usingm1 scale copies of

the mixed images. Therefore, Admix computes the update

gradient as follows:

ḡt+1 =

1

m1 ·m2

∑

x′∈X′

m1−1∑

i=0

∇xadv
t

J(
1

2i
· (xadv

t + η · (x′)), y),

where η is the strength of x′ in the mixture image.

3.2. Analysis

After pre-processing, the pixel value of an image will

be normalized. We denote the image with pixel values all

equal to 0 as the origin 0 in the normalized space. We note

that the origin is a pure color image, since all its pixels have

constant RGB values when we transform the origin in the

normalized space back to the original color space.

We find that when generating adversarial samples, SIM

and Admix actually augment images from a linear path.

Specifically, SIM augments multiple scaled copies of the

target image: 1
2i · xadv

t = 1
2i · xadv

t + (1 − 1
2i ) · 0, which

is a linear combination of the target image and the ori-

gin. Therefore, SIM exponentially augments images along

a linear path from the target image to the origin. Admix

first replaces the target image with the mixture of the tar-

get image and the image from other categories (x′ ∈ X ′):
xadv
t + η · x′. Then it follows SIM to augment multiple

scaled copies of the mixture image: 1
2i · (xadv

t + η · x′) =
1
2i ·(xadv

t +η ·x′)+(1− 1
2i )·0, which is also a linear combi-

nation of the mixed target image and the origin. Therefore,

Admix exponentially augments images along a linear path

from the mixed target image to the origin.

From the above analysis, we argue that SIM and Ad-

mix suffer from two pitfalls. The first one is the limited

augmentation path. SIM and Admix only consider the aug-

mentation path to one baseline image, which is the origin.

However, there are other possible augmentation paths that

can increase the diversity of the augmented images. There-

fore, the limited diversity of the augmented images can in-

cur limited transferability of the resultant adversarial sam-

ple. Besides, the augmentation path of SIM and Admix may

be overlong. They may augment images that are too far

away from the target image. As a result, the augmented im-

ages are close to the origin, which contains no information

about the target image. Augmenting such images can dis-

tract the learning of adversarial samples against the target

image, thus harming adversarial transferability.

3.3. Path-Augmented Method

To overcome the pitfalls of state-of-the-art

augmentation-based attacks, we propose the Path-

Augmented Method (PAM). We first describe how we

explore more augmentation paths to increase the diversity

of augmented images. Then we introduce our method to

constrain the length of the augmentation path to make the

augmented images preserve the semantic meanings of the

target image.

3.3.1 Augmentation Path Exploration

In order to diversify the augmented images, we propose to

explore more augmentation paths. In fact, the augmentation

paths starting from the target image are numerous, consid-

ering the continuous image space. In order to deal with the

efficiency problem, we first construct a candidate augmen-

tation path pool by selecting representative augmentation

paths. Then, we employ the augmentation path candidate in

a greedy manner when crafting adversarial samples.

We first demonstrate the construction of the candidate

augmentation path pool. To reduce the numerous searching

space and align with SIM, we only consider the pure color

images as the baseline image for the augmentation path.
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Moreover, we select distinct baseline images to guarantee

the augmented images on the paths are diverse. The close

augmented images have similar augmented gradients hav-

ing similar effects on transferability. Therefore, we divide

the whole image space into multiple regions and select one

baseline from each region as the representative augmenta-

tion path to form a candidate augmentation path pool. In

general, we regard the image space is normalized to [-1,

1] for the RGB channel. We divide each channel by three

points (-1, 0, 1) to largely diversify the path, so we have

33 = 27 representative augmentation paths for the image

space. Although we can divide each channel more precisely,

the number of augmentation paths increase in cubic degree.

Therefore, our way of constructing the augmentation path

pool is efficient in improving the transferability.

Afterward, we discuss how to utilize the constructed

augmentation path pool for generating adversarial samples.

Intuitively, we combine more augmentation paths to com-

pute the gradient, the higher transferability we can obtain,

but the computation complexity will increase. Thus, we

should balance the transferability and the computation com-

plexity. In consequence, the number of augmentation paths

n we select is a hyperparameter to tune. After the determi-

nation of the augmentation paths number for computing the

gradient, we should also figure out the augmentation paths

we select from the candidate augmentation path pool. We

first rank the augmentation paths in the candidate path pool

by deploying the following adversarial attack and measur-

ing the average transferability on a development dataset to

rank each augmentation path. For simplicity, we denote

the baseline image from the path pool as x′. Therefore

the i-th scaled augmented image along the path from the

target image x to the baseline image x′ is represented by
1
2i · x+ (1− 1

2i ) · x′.

ḡt+1 =
1

m

m−1∑

i=0

∇xadv
t

J(
1

2i
· xadv

t + (1− 1

2i
) · x′, y)

We follow a greedy manner in that we choose the top-

n augmentation paths and directly combine the gradient of

augmented images from those augmentation paths together

for generating adversarial samples.

3.3.2 Semantics Preservation

In order to keep the semantics of the augmented images on

the augmentation paths consistent with the target image, we

can constrain the length of the augmentation path and aug-

ment the images in the semantics-consistent part to avoid

the overlong path. However, it is hard to directly know

the semantics-consistent part of the augmentation path. We

can use the prediction of the classifier on the image along

the augmentation path to identify the semantics-consistent

length. If the augmented image is semantics-consistent, the

augmented image should have the same prediction as the

target image. Therefore, the semantics-consistent length is

actually to find the decision boundary of the target image

class along the augmentation path. Thus, we train a Seman-

tics Predictor (SP) to constrain the length of each augmen-

tation path. The SP takes the image as the input and predicts

the semantic ratio on each augmentation path. The seman-

tic ratio is represented by a scaling factor r ∈ [0, 1] on each
augmentation path. Therefore, we can utilize the semantic

ratio to constrain the length of the augmentation path. We

augment the gradient in the semantics-consistent length to

obtain meaningful gradients. Therefore, the i-th scaled im-
age along the augmentation path from the target image x
to the baseline image x′ with a semantic scaling factor r is
represented by 1

2i · x+ (1− 1
2i )r · x′.

The Semantics Predictor (SP) is a lightweight neural net-

work consisting of five layers: two Convolutional layers,

two Average Pooling layers, and one Fully Connected layer.

The image is fed into one Convolutional layer with a kernel

size of 5 × 5 and one Average Pooling layer with a stride
of 4, which can largely reduce the dimension. Then the fea-
ture map is sent into another Convolutional layer and Av-

erage Pooling layer with the same setting. After that, the

feature map is fed into a Fully Connected layer with Sig-

moid activation, and the output size is set to be the number

of augmentation paths. The output of the lightweight neu-

ral network is exactly the semantic scaling factor of each

augmentation path. The training objective is to minimize

the difference between the confidence score of the true la-

bel and the highest confidence score from other classes, as

shown below. We train the Semantics Predictor with Adam

optimizer for fifteen epochs and set the learning rate to be

1× 10−4.

xb = SP (x) · x′ + (1− SP (x)) · x

loss =

∥∥∥∥F (xb, y)−max
y′ �=y

F (xb, y
′)
∥∥∥∥
2

3.3.3 Attacking Equation and Comparison

The attacking equation of PAM is shown below, where x′j
is the baseline image of j-th augmentation path in the aug-
mentation path pool, and rj is the semantic ratio of j-th aug-
mentation path from the Semantic Predictor. n is the num-

ber of augmentation paths, andm is the number of copies.

xi,j
t =

1

2i
· xadv

t + (1− 1

2i
)rj · x′j

ḡt+1 =
1

m · n
n−1∑

j=0

m−1∑

i=0

∇xadv
t

J(xi,j
t , y)
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Finally, we regard the current state-of-the-art methods

SIM [20], and Admix [35] are special cases of the PAM be-

cause both SIM and Admix treat the origin as the baseline

and augment the gradient along a linear path. SIM utilizes

the target image as the starting point, but Admixs select

mixtures of the target image with images from other classes

as starting points. Our PAM tries to solve two problems of

the previous methods: the limited and overlong augmenta-

tion path. We first augment images from multiple augmen-

tation paths to explore other augmentation directions. Be-

sides, we train a lightweight neural network Semantic Pre-

dictor to constrain the length of each augmentation path for

providing a semantics-consistent gradient.

4. Experiments
In this section, we conduct experiments to validate the

effectiveness of our proposed approach. We first specify

the setup of the experiments. Then, we present the attack-

ing results of our approach against both state-of-the-art un-

defended and defended models. Finally, we present the ab-

lation study on the number of augmentation paths and the

Semantic Predictor.

4.1. Experimental Setup

We focus on attacking image classification models

trained on ImageNet [28], which is the most widely recog-

nized benchmark task for transfer-based attacks [5, 17, 41]

and is a more challenging dataset compared to MNIST and

CIFAR-10. We follow the protocol of the baseline method

[20] to set up the experiments, whose details are shown as

follows.

Dataset. We randomly sample 1000 images of different

categories from the ILSVRC 2012 validation set [28]. We

ensure that nearly all selected test images can be correctly

classified by all of the models deployed in this paper. We

also randomly sample another 1000 images as the develop-

ment set to train Semantics Predictor and rank representa-

tive augmentation paths.

Target Model. We consider both undefended (normally

trained) models and defended models as the target models.

For undefended models, we choose four top-performance

models with different architectures, containing Inception-

v3 (Inc-v3) [30], Inception-v4 (Inc-v4) [29], Inception-

Resnet-v2 (IncRes-v2) [29], and Resnet-v2-101 (Res-v2)

[13, 14]. For defended models, we consider three adver-

sarially trained models, because adversarial training is the

most simple but effective way to defend attacks [25, 45].

The selected defended models include Inception v3 trained

with adversarial samples from an ensemble of three models

(Inc-v3ens3), and four models (Inc-v3ens4), and adversarially

trained Inception-Resnet-v2 (IncRes-v2adv). Furthermore,

we include six advanced defense models that are robust

against black-box attacks on the ImageNet dataset. These

defenses cover high-level representation guided denoiser

(HGD) [19], random resizing and padding (R&P) [43],

NIPS-r31, feature distillation (FD) [22], compression de-

fense (ComDefend) [16], and randomized smoothing (RS)

[8].

Baseline. We take an advanced optimizer-based attack:

MI-FGSM [9] as our baseline because it exhibits better

transferability than white-box attacks [11,18]. Furthermore,

SIM [20] and Admix [35] can be viewed as special cases of

our proposed PAM, so we select them as baselines. In or-

der to show that our approaches achieve state-of-the-art per-

formance, we select Variance Tuning Method [34] (VMI)

because Admix and VMI are the current state-of-the-art

transfer-based attack methods. In addition, we integrate

all the methods with other augmentation-based methods:

DIM [44] and TIM [10] for further comparison. We denote

the approaches with DT extension as the method combined

with DIM and TIM.

Metric. We evaluate the performance of attack methods

via the attack success rate against the target model. The at-

tack success rate is the percentage of adversarial samples

that successfully mislead the target model over the total

number of the generated adversarial sample.

Parameter. Following [9], we set the maximum per-

turbation budget ε = 16, the number of attack iterations

T = 10, and the step length ε′ = 1.6. We set the decay

factor μ = 1.0 for all the methods. We follow the source

code of SIM [20] and Admix [35] to change the number of

scale copies to 32 and 8 for a fair comparison with the same

computation complexity as PAM. For DIM, we set the trans-

formation probability to 0.5. We deploy the 7 × 7 Gaussian

kernels for TIM. We take n = 8 andm = 4 for PAM.

4.2. Attack Transferability

First, we study the performance of our attack method

PAM against both undefended and defended models. We

fix a source model and produce adversarial samples with

different attack methods. The generated samples are then

fed into the target models to compute the attack success

rates. Our attack achieves nearly 100% success rates un-

der the white-box scenarios in Table 1. More importantly,

on the evaluation of transferability, our technique can dras-

tically outperform VMI over 10% and Admix about 4.8%

under the black-box setting on average. In addition, PAM

improves the transferability to adversarially trained models,

largely showing a high threat to adversarial training. Be-

sides, our attack consistently outperforms other baselines

by a significant margin under the black-box setting, which

confirms the superiority of our strategies on transferable ad-

versarial sample generation.

Then, we combine all the baselines with augmentation-

based methods: DIM and TIM to further enhance the trans-

1https://github.com/anlthms/nips-2017/tree/master/mmd
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Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-v2 Inc-v3ens3 Inc-v3ens4 IncRes-v2adv

Inc-v3

MI-FGSM 100.0 44.1 43.1 35.1 13.2 13.2 6.2

SIM 100.0 69.9 67.7 63.2 36.7 31.4 17.5

VMI 100.0 71.7 67.1 59.9 36.3 31.0 17.8

Admix 100.0 80.1 79.1 70.1 36.9 34.8 19.0

PAM 100.0 83.7 81.2 77.5 44.8 43.4 22.4

Inc-v4

MI-FGSM 55.1 99.6 46.7 41.6 16.1 15.0 7.8

SIM 81.2 99.5 73.8 68.7 47.2 44.6 29.1

VMI 77.9 99.7 71.1 61.8 38.4 36.5 24.0

Admix 87.0 99.7 82.9 78.2 50.6 47.5 31.3

PAM 89.5 100.0 84.5 80.5 57.3 54.5 34.7

IncRes-v2

MI-FGSM 60.1 51.2 97.9 46.7 21.0 16.0 10.9

SIM 84.4 80.7 99.0 76.0 56.1 48.6 41.9

VMI 78.6 73.4 98.2 67.6 48.4 39.9 33.5

Admix 87.7 85.3 99.1 80.4 61.4 54.6 47.3

PAM 91.8 89.4 99.6 84.7 69.8 62.7 55.2

Res-v2

MI-FGSM 57.2 51.4 48.7 99.2 24.2 22.4 12.7

SIM 74.2 70.4 68.9 99.8 42.9 38.6 25.2

VMI 75.0 68.8 69.4 99.3 45.6 41.0 29.6

Admix 80.3 75.6 76.1 99.8 45.5 40.8 27.5

PAM 81.8 77.4 76.9 100.0 53.1 47.0 33.2

Table 1. The attack success rates (%) against seven models by various transfer-based attacks. The best results are marked in bold.

Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-v2 Inc-v3ens3 Inc-v3ens4 IncRes-v2adv

Inc-v3

SIM-DT 99.0 85.7 80.3 75.1 67.6 63.1 46.0

VMI-DT 99.2 78.4 75.2 67.9 58.1 57.4 44.5

Admix-DT 99.6 88.1 85.6 79.1 69.2 66.1 48.9

PAM-DT 99.4 93.4 91.5 88.4 80.5 78.6 59.8

Inc-v4

SIM-DT 86.4 98.4 84.2 77.9 69.9 67.1 56.1

VMI-DT 81.4 98.4 76.4 67.0 58.8 56.7 49.8

Admix-DT 88.8 99.4 85.8 80.2 72.4 69.0 57.6

PAM-DT 93.9 99.7 91.5 87.2 80.1 78.1 65.2

IncRes-v2

SIM-DT 88.2 85.6 97.4 82.2 77.6 73.2 72.7

VMI-DT 78.8 77.2 94.8 71.8 63.9 59.9 59.3

Admix-DT 88.2 87.4 98.2 84.0 80.0 75.4 71.8

PAM-DT 95.3 93.2 99.3 90.8 88.8 85.4 81.8

Res-v2

SIM-DT 85.8 80.9 84.8 98.5 76.2 70.3 62.0

VMI-DT 81.0 78.8 78.3 98.1 69.5 65.7 57.2

Admix-DT 89.0 85.5 86.2 99.9 78.2 73.1 64.5

PAM-DT 90.0 86.8 88.0 99.5 84.4 80.6 71.8

Table 2. The attack success rates (%) on eight models by various transfer-based attacks combined with augmentation-based strategies. The

best results are marked in bold.

ferability. As shown in Table 2, the attack success rates

against black-box models are promoted by a large margin

with our approaches. In general, our attacks consistently

outperform the state-of-the-art baselines by about 7.2%,

which further corroborates the effectiveness of our method.

In addition, we also evaluate the performance of differ-

ent attacks against advanced defenses. Table 3 shows the

results when adopting Inc-v3 as the source model to attack

other advanced defense models. Our attacks reduce the ac-

curacy of defended models to 52.7% on average, defeating

all baseline attacks. It validates the effectiveness of our at-

tack against advanced defense models, raising security con-

cerns for developing more robust defenses.

4.3. Ablation Study

We conduct ablation studies to examine two designs in

our proposed PAM: the number of augmentation paths n
and the Semantics Predictor. Adversarial samples are gen-

erated by attacking the Inc-v3 model without employing

augmentation-based methods.

Number of Augmentation Paths. We investigate the

effect of different augmentation path numbers on attack

performance. We employ PAM with top-n augmentation

paths for generating adversarial samples based on the Inc-

v3 model. The result is shown in Figure 2. With the in-

crease of the number of augmentation paths, transferabil-
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Attack HGD R&P NIPS-r3 FD ComDefend RS Average

SIM 15.1 28.1 36.6 59.5 55.1 22.3 36.1

VMI 15.8 27.0 33.3 54.8 52.0 22.5 34.2

Admix 32.4 30.5 41.3 64.4 60.8 23.7 42.2

PAM 41.0 40.3 48.1 66.0 63.8 24.3 47.3

Table 3. The attack success rates (%) of six advanced defense mechanisms on adversarial samples. The adversarial samples are generated

on the Inc-v3 model by various transfer-based attacks. The best results are marked in bold.

Figure 2. The attack success rates (%) of PAMwith different num-

ber of augmentation paths n.

ity improves. However, the computation cost also rises as

the number of augmentation paths increases. Therefore, we

choose n = 8 to balance the performance and computation
cost. Besides, we find an intriguing observation that the se-

lected augmentation path is not the same as SIM or Admix

when n = 1. Our top-1 augmentation path improves the

transferability of SIM with more than 1% on average with-

out introducing additional computation complexity. This

means the augmentation path of SIM is not optimal.

Semantics Predictor. We study the influence of Seman-

tics Predictor on attack performance for PAM and the per-

formance improvement for SIM. As shown in Table 4, the

transferability of SIM can be improved by 1% on average

by utilizing the Semantics Predictor because some of the

augmented images are semantics-inconsistent with the tar-

get image as shown in Figure 3. We cannot recognize the

object in the augmented image of SIM. However, the aug-

mented image of SIM+SP demonstrates consistency with

the target image, which shows the effectiveness of the Se-

mantic Predictor. In addition, SIM+path+SP outperforms

SIM+path by more than 1.6%, showing Semantics Predic-

tor improves transferability when we combine multiple aug-

mentation paths together. Besides, SIM + path surpasses

SIM by a large margin, which also demonstrates the effec-

tiveness of exploring more augmentation paths.

5. Conclusion

In this paper, we argue current data augmentation-based

attacks suffer from the limited and overlong augmentation

Model IncRes-v2 Res-v2 Inc-v3ens4 IncRes-v2adv
SIM 67.7 63.2 31.4 17.5

SIM+SP 68.3 64.3 32.5 18.3

SIM+paths 79.7 76.4 40.7 21.2

SIM+paths+SP (PAM) 81.2 77.5 43.4 22.4

Table 4. The attack success rates (%) against selected four black-

box models by various transfer-based attacks.

Original Image SIM SIM+SP

Figure 3. Visualization of original image and augmented images.

We fail to identify the object in the augmented image of SIM.

However, the object in the augmented image of SIM+SP is rec-

ognizable.

path. PAM proposes to augment images from multiple im-

age augmentation paths to improve the transferability of the

learned adversarial sample. However, due to the continu-

ous space of images, the possible image augmentation paths

starting from the target image are countless. In order to cope

with the efficiency problem, we first select representative

path directions to construct a candidate augmentation path

pool. Then we settle the employed augmentation paths dur-

ing adversarial sample generation with greedy search. Fur-

thermore, to avoid augmenting semantics-inconsistent im-

ages, we train a Semantics Predictor, which is a lightweight

neural network, to constrain the length of each augmen-

tation path. Extensive experiments confirm the superior-

ity of our approaches on generating transferable adversarial

samples against both undefended and defended models over

state-of-the-art baselines.
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