
RealProct: Reliable Protocol Conformance Testing with Real Nodes for Wireless

Sensor Networks

Junjie Xiong1 Edith C.-H. Ngai2 Yangfan Zhou1 Michael R. Lyu 1,3

1Dept. of Computer Science & Engineering, The Chinese Univ. of Hong Kong, Shatin, Hong Kong
2Dept. of Information Technology, Uppsala University, Sweden

3School of Computer Science, National University of Defense Technology, Changsha, China.

Abstract—Despite the various applications of wireless sensor
network (WSN), experiences from real WSN deployments show
that protocol implementations in sensor nodes are susceptible
to software failures, which may cause network failures or
even breakdown. Pre-deployment protocol conformance testing
is essential to ensure reliable communications for WSNs.
Unfortunately, existing solutions with simulators cannot test
the exact hardware and implementation environment as real
sensors, whereas testbeds are expensive and limited to small-
scale networks and topologies.

In this paper, we present RealProct, a novel and reliable
framework for testing protocol implementations against their
specifications in WSNs. RealProct utilizes real sensors for
protocol conformance testing to ensure that the results are close
to the real deployment. Using different techniques from those in
simulations and real deployments, RealProct virtualizes a large
network with any topology and generate non-deterministic
events using only a small number of sensors to provide
flexibility and to reduce the cost. The framework is carefully
designed to support efficient testing in resource-limited sensors.
Moreover, test execution and verdict are optimized to minimize
the number of runs, while guaranteeing satisfactory false posi-
tive and false negative rates. We implement RealProct and test
it with the 1IP TCP/IP protocol stack and a routing protocol
developed for WSNs in Contiki-2.4. The results demonstrate
the effectiveness of RealProct by detecting several new bugs
and all previously discovered bugs in various versions of the
µIP TCP/IP protocol stack.

I. INTRODUCTION

Protocols play an important role in wireless sensor net-

works (WSNs) for reliable communication and coordina-

tion [1] [2]. However, experiences from real deployments

show that protocol implementations in sensor nodes are

susceptible to software failures despite pre-deployment test-

ing [3] [1] [4]. Even though specifications are available for

standardized protocols, it is still very hard to assure flawless

protocol implementations by software developers. Misinter-

pretation of the specification or software bugs in implemen-

tation could both cause communication failures [2] [4], and

even breakdown the whole network. It can be very expensive

and difficult to fix the bugs after deployment [5] [6].

Although simulations are applied to detect software bugs

for WSNs before deployment [5] [6], it is widely believed

that simulations may miss bugs that only expose in real

hardware and execution environment. Although testbeds are

considered for pre-deployment testing, they are expensive

and limited to small-scale networks. In addition, most of

the existing testbeds are designed for network performance

evaluation rather than software bug detection [7]. To uncover

as many problems as possible, the best method is to test with

large-scale real WSNs which is, however, too expensive.

To settle the above problem and achieve an effective

tradeoff between large-scale real deployment and simulation,

we present RealProct that use a few low-cost real sensor

nodes to mimic large-scale real WSNs and then perform

protocol conformance testing for WSNs reliably and cost-

effectively. With RealProct, the testing is the closest to

the real deployment while the cost is kept at a low level.

RealProct is motivated by protocol conformance testing

(PCT), an authoritative method to check the consistency

between a protocol implementation and its specification [8].

To test a protocol with RealProct, the tester only needs to

design a set of abstract test cases according to the protocol

specification. Although PCT have been applied for Internet,

3G network, WiMAX network [9] [10], its applications for

WSNs have not yet been investigated.

We observe that WSNs that are dramatically different

from the traditional networks. Moreover, RealProct is also

very distinct from the simulations and real deployments. As

a result, several major research challenges exist. First, sensor

nodes are resource-constrained devices, so they are unable to

provide the same facilities and operations as the standardized

PCT test system. For example, the sensor node is incapable

of storing all the test cases in its limited memory. Second,

a sensor node in the PCT test system is more difficult

to be controlled than a personal computer (PC). A sensor

node usually does not provide proper user interface, so

operation commands are sent to the node mainly relying

on the serial ports connecting to the computer. Third, the

volatile wireless environment in WSNs will result in random

packet loss [1]. The loss may trigger the potential protocol

bugs and results in instability and unreliability in our tests,

such as false positive and false negative errors [11]. Finally,

RealProct only employs a few real sensor nodes, and hence

it seems that it is unable to test the protocol with various

topologies and events as the simulations and high-cost real

deployments.

2011 International Joint Conference of IEEE TrustCom-11/IEEE ICESS-11/FCST-11

978-0-7695-4600-1/11 $26.00 © 2011 IEEE

DOI 10.1109/TrustCom.2011.74

572

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 10:44:26 UTC from IEEE Xplore. Restrictions apply.

To attack the challenges, our major contributions are as

follows:

• We propose RealProct as a generic and cost-effective

architecture for protocol conformance testing in WSNs

that makes use of only two real sensor nodes and a

personal computer (PC). The PC helps storing all the

test cases which will be handed over to the sensor nodes

in real time. The framework enforces abstracting the

protocol interfaces to build up a library for concise

control of the sensor nodes through serial ports.

• Three different techniques (not utilized in simulations

and real deployments) are proposed to make RealProct

practical and reliable for WSN protocol conformance

testing: topology virtualization, event virtualization,

and dynamic test execution. The topology virtualization

technique imitates WSNs with different structures using

a few sensor nodes, while the event virtualization gen-

erates non-deterministic events. Dynamic test execution

can tackle the inaccuracy problem caused by non-

deterministic events when generating the test verdict.

• We provide case studies with real experiments to

prove the feasibility of RealProct. RealProct effectively

discovers two new bugs verified by the developers,

and identifies all the previously detected bugs in the

µTCP/IP stack [12] [13] of Contiki-2.4 [14]. It also

validates the Rime mesh routing protocol in Contiki-

2.4. The source code for finding the bugs is available

online1.

The remainder of this paper is organized as follows.

Section II discusses the related work. Section III presents the

background of PCT. We design the framework of RealProct

for protocol conformance testing in WSNs in Section IV, and

propose three novel techniques to make RealProct practical

for WSNs in Section V. After discussing the generality of

RealProct in Section VI, we evaluate its feasibility with two

case studies in Section VII. Finally, Section VIII concludes

the paper.

II. RELATED WORK

Existing approaches for testing and debugging WSN

protocols fall into three main categories: program anal-

ysis tool and simulator (testing before deployment), real

deployment (testing after deployment), and debugger. We

consider testing as the technique for detecting failures or

abnormal behaviors, while debugging as the process for

diagnosing the precise nature of a known error [15]. Only

after abnormal behaviors are detected in testing, debugging

will be triggered.

Program analysis tools and simulators are very useful in

detecting errors and verifying algorithms of the protocols.

Safe TinyOS [16] is compile-time program analysis tool

that can avoid memory corruption before program execution.

1http://www.cse.cuhk.edu.hk/∼jjxiong/testcases/testcase.htm

FSMGen [17] derives FSM from TinyOS [18] application

so as to help the programmer detect the software errors

at a system level. Well-known simulation tools include

ns-2 [19], a general network simulator, TOSSIM [20], a

simulator for TinyOS WSNs, and Avrora [21], a cycle-

accurate instruction-level simulator. Several tools developed

for finding software bugs in WSNs are based on simulation,

such as T-Check [5] and KleeNet [6]. For example, T-

Check [5] is an event-driven simulator based on TOSSIM

and Safe TinyOS, while KleeNet [6] is based on the low-

level symbolic virtual machine KLEE [22]. Given the fact

that nodes in a simulation environment and real sensor nodes

are different, protocol execution in simulations may not be

able to discover all software problems that will occur in real

sensor nodes.

Different from simulations, testing during protocol exe-

cution in real sensor nodes is crucial in detecting software

bugs. Sympathy [23] actively collects run-time status from

sensor nodes, such as routing table and flow information, and

detects possible faults by analyzing the information. To save

energy, PassiveDiagnosis [7] passively records the logs from

real deployment by piggybacking the logs in regular data

packets. Although this run-time testing method can detect

real-time failures in real deployment, it is costly and very

difficult to detect and fix errors after deployment. Similarly,

testbeds could be applied for testing in real nodes, but

they are expensive and limited to small-scale networks [7].

Moreover, existing testbeds are often designed for network

performance evaluation rather than protocol conformance

testing [7]. Different from the above work, RealProct uses

a few real sensor nodes to perform protocol conformance

test, which can detect bugs on real nodes efficiently before

large-scale deployment.

A number of debuggers have been developed for WSNs.

Clairvoyant [24] is a comprehensive source-level debug-

ger that provides standard debugging commands including

break, step, watch, and so on. Since it can only debug a

sensor node instead of a network, it cannot handle distributed

bugs. Although some debugging techniques can detect ab-

normal behaviors, they mainly focus on locating the root

cause of the software bugs. DustMiner [25] diagnoses the

root cause of the exposed anomalous behavior by sequence

extraction and frequent pattern analysis.Sentomist [4] and

tracepoints [26] are both automated tools for debugging

WSN applications. The former is built based on simulation

and is especially effective for identifying transient bugs. The

latter inserts checkpoints in the applications to allow run-

time debugging. Since debuggers are designed for locating

the bugs after the bugs are detected by testing, they only

give a very detailed investigation on a small part of the

codes for locating specific bugs. In this work, we focus on

protocol conformance testing rather than debugging, which

allows us to detect general implementation problems for

WSN protocols.

573

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 10:44:26 UTC from IEEE Xplore. Restrictions apply.

III. PROTOCOL CONFORMANCE TESTING

Due to programming bugs or misunderstanding of the

standard specifications, the protocol implementation always

differs from the expected, hindering the interoperability

between systems implemented by different manufactur-

ers [8] [27]. Hence, testing is necessary. Protocol confor-

mance testing (PCT) is an authoritative way to check the

consistency between the any protocol and its implementa-

tion [8]. As functional (black-box) testing, PCT is popular

and influential not only in traditional wired networks [27],

but also in wireless networks, such as WiMAX network [9]

and 3G network [10]. Despite PCT’s wide application, it

has not yet benefited WSNs due to a number of challenges

discussed previously.

A. PCT Process

The PCT process is shown in Fig. 1, in which the protocol

implementation to be tested is called Implementation Un-

der Test (IUT). Its first phase is test generation, in which

abstract test cases for the IUT are designed based on the

protocol specification. Each test case can only have one

target, i.e., testing a particular function of the protocol.

A collection of test cases can cover many aspects of the

protocol, and they form a test suite. Formal methods, such

as FSM and extended FSM [27], are employed for deriving

the abstract test suite.

Abstract test suite

Protocol Specification (Conformance requirement)

Executable test suite

Test execution to IUT

Verdict

Test implementation

Test generation

Figure 1. PCT testing process.

The second phase, test implementation, transforms the

abstract test cases into executable test cases that can be exe-

cuted in a real test system. The last phase is test execution,

in which the implemented test cases are executed against

the IUT and the resulting behavior of the IUT is observed.

This leads to the verdict about the conformance of the IUT

with respect to the protocol specification. After PCT, we can

rerun those failed test cases to diagnose the problems so as

to improve the protocol implementation.

B. PCT architecture

There are mainly four classical architectures for PCT: lo-

cal, distributed, coordinated, and remote architectures. Since

their difference lies in the component organization rather

than in the component number, we only discuss the PCT

distributed architecture as shown in the biggest rectangle

(not including the 4 blue items) in Fig. 2. The architecture

is composed of two entities: the System Under Test (SUT)

and the tester. In traditional Internet protocol conformance

testing, both SUT and tester could be a PC.

The points where the tester controls and observes the IUT

are called the Points of Control and Observation (PCO).

For IUT at layer N, its specification identifies the behavior

of a protocol entity at the upper and lower access points

(interfaces) of the protocol. Hence the ideal PCOs to test the

IUT are these two access points. The part that is connected

through the upper access point is called the Upper Tester

(UT). Similarly, the part that is connected to the IUT

through the lower access point is called the Lower Tester

(LT). The service provider supports the UT, IUT, and LT

implementation.

The tester contains only LT while the SUT contains two

logical components: UT and the IUT. The LT is consisted

of executable test cases, and it is a peer entity of the

combination of the UT and the IUT. Each test case exe-

cution stimulates the IUT, and the response of the IUT is

observed at PCOs. Test results are obtained by comparing

the observations with the expected behaviors indicated in

the specifications. In other words, the LT provides different

kinds of inputs to IUT, and the outputs of the IUT are

compared with the correct behaviors as specified to arrive

at a verdict. When testing IUT, we focus on the operation

of the protocol being tested and consider that the other

parts behave correctly. In this way, the failed test cases

can pinpoint the problems in protocol implementation. In

addition, the test coordination helps execute the tests, which

includes maintaining synchronization between the SUT and

tester and controlling the execution flow.

IV. DESIGN OF REALPROCT FRAMEWORK

The above PCT design is a general software engineering

method for testing protocol implementation against specifi-

cations. However, none of the above four PCT architectures

fit WSNs due to the limited resources of sensor nodes and

their volatile working environment. For this reason, our

designed framework for PCT is different from the previous

general one in the 4 blue items as shown in Fig. 2. To unveil

as much abnormal behaviors of a protocol implementation

in WSNs before deployment, we utilize two real sensor

nodes to work as the tester and the SUT respectively in a

distributed PCT architecture. We explain the unique features

of our design as follows.

1) Number of real sensor nodes: We utilized only two

real sensor nodes rather than 3 or dozens of real sensor

nodes for three reasons. First, the general PCT architecture

in the ISO9646 standard [8] employs only two entities as

the SUT and the tester respectively. It means that even the

tester is only composed of 1 sensor node, it can still test

the protocols adequately. Second, although we can utilize

3 or more real nodes to function as the tester, it is much

more difficult to control and coordinate larger number of

independent devices in the required testing process. Third,

574

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 10:44:26 UTC from IEEE Xplore. Restrictions apply.

PC
(Test

Coordination)

IUT

LT

UT

Lower level protocol implementation

PCO2

Wireless environment

(Tester) (SUT)

Serial
Port

Serial
Port

Layer N

Layer (N+1)

Layer (N-1)

PO3PCO1

Figure 2. RealProct framework.

our virtualization technique allows us to virtualize more than

1 sensor nodes with only 1 real sensor node, and hence the

SUT can hardly distinguish 1 real sensor nodes from more

real sensor nodes.

2) Coordination: We suggest test coordination to be

functioned by a PC, rather than by the tester or the SUT, due

to the limited memory and computation power of the sensor

nodes. Compared with the sensor nodes, PC is a much more

powerful device to coordinate the tests. We connect the PC

with the two sensor nodes with serial ports, through which

the PC communicates with the sensor nodes and supply them

with power. Initially, all the test cases are stored in the PC,

and each one is downloaded to the tester for execution one

by one.

In addition, the PC maintains test synchronization and

controls sequence of actions between the tester and the SUT.

Since we cannot manipulate the system to be tested (SUT)

directly, we control it passively through the tester which will

be installed with all test cases. The details on how we control

it will be discussed in the next section. Furthermore, the PC

observes and saves the test execution logs through the serial

ports. These logs are very important for generating the test

verdict and performing bug analysis afterwards. In practice,

we do not save the test execution results in the sensor nodes

due to their limited memory. Moreover, saving logs in the

sensor node may alter or even deteriorate the performance

of the IUT. If we store all the logs in the sensor nodes, we

will not know the real-time results of the testing unless the

sensor nodes send the logs to the PC. Instead, we suggest

the PC to get real-time results from sensor nodes through

the serial port and save the logs locally.

3) Resource management: The design of the LT and

the UT are modified to better suit the resource-constrained

WSNs. Unlike the traditional PCT framework, the LT and

the UT are simplified for easier control of the tests. The

LT is a suite of executable test cases based on FSM. Each

test case in the LT now only targets at one aspect of the

IUT. To make the test case simpler, we apply virtualization

techniques to imitate a large network by controlling only

two nodes rather than managing a large number of nodes.

The UT should be simple, but still be capable to drive the

IUT to send and receive packets. The log generated from the

LT and the UT is mainly about packets in order to relieve

the load of the tester and the SUT.

4) PCO optimization: We further optimize the PCOs for

the testing framework and add logging module for the PCOs.

In traditional PCT architectures, one PCO is in the tester

and the other is the SUT. In contrast, our framework adds

a point of observation (PO3) in the SUT as shown in Fig.

2. Is it redundant to add such a point? The answer is no.

The traditional distributed PCT architecture assumes that

traditionally both the PCO1 and PO3 observe the same

phenomenon. However, this assumption does not hold due

to the volatile wireless environment of WSNs. The LT can

control and stimulate the IUT at PCO1, but it cannot make

sure that the packet it sends will arrive at PO3 without loss,

corruption, or duplication. To avoid false positive (FP) and

false negative (FN) errors in test, we double-check the packet

content at PO3.

V. REALPROCT TECHNIQUES

RealProct provides a generic framework for testing the

implementation of a wide range of protocols in WSNs.

Although it is straightforward to write test cases based

on the specifications, it is difficult for RealProct to fulfill

the testing requirements for different protocols using only

limited number of sensor nodes in practice. To address

this limitation, we propose two novel techniques, topology

virtualization and event virtualization, to aid the LT design

in order to imitate WSNs with various topologies and events

in our 2-node framework. Apart from that, testing with real

nodes also experiences random packet loss, which might

cause FP and FN errors in test verdict. We thus design a

dynamic test execution algorithm to reduce the FP and FN

error rates down to a required level.

A. Topology virtualization

Because the simulations and real deployments are able

to verify the protocol functionality various topologies, they

do not need to virtualize topology at all. However, for

RealProct that tests with limited number of nodes, topology

virtualization is necessary to provide higher test case gran-

ularity. Unlike simulation, virtualization in our framework

utilizes real hardware. The technique can virtualize larger

scale network with limited real nodes in a way that the

SUT can hardly distinguish them. The idea is that no matter

in what kinds of topology, the SUT can only recognize its

environment from the packets it receives. More importantly,

575

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 10:44:26 UTC from IEEE Xplore. Restrictions apply.

2
1

b

SUT

f

3

c

d

a

e Tester

Route 1

Route 2

Neighboring nodes are
connected by dotted lines

P
ac

ke
t1

P
acket2

Content of Packet 1:

Sender address is Addr1.

Content of Packet 2:

Sender address is Addr2.

The sender has a

neighbor with Addr3.

Figure 3. A virtualized topology.

it can only receive packets from the nodes that are placed

within its reception range, i.e., 1-hop neighbor nodes. In

practice, the amount of sensor nodes that are placed within

a sensor node’s reception range is limited. Hence, it is not

difficult for the tester to virtualize all the 1-hop neighbors

of the SUT. It seems that the tester can only virtualize

1-hop topologies, but not multi-hop topologies apparently.

However, this is not true. We will show how the packets

from nodes farther away can also be imitated and transmitted

to the SUT by topology virtualization.

Specifically, given two real sensor nodes: the SUT and

tester, and the latter can virtualize for the former a topology

composed of node 1, node 2, and node 3 as shown in the

upper portion of Fig. 3. The tester sends two routing packets

to the SUT. Since the SUT can receive packet 1 and packet

2 directly, it regards the nodes that send these packets as

its 1-hop neighbors (node 1 and node 2 here). In addition,

packet 2 tells the SUT that it has a neighbor node 3. Since

the SUT has not received any packets from node 3 directly,

it adds node 3 as its 2-hop neighbor. As a result, the SUT

experiences as if it has two 1-hop neighbors and one 2-hop

neighbor in a two-level tree topology.

In real deployment of this topology, the packet receptions

and topology discovery for the SUT are just the same as

those in our virtualized topology. In other words, as long

as the SUT receives the same packets as those in a real

topology, the virtualized topology for the SUT is indistin-

guishable from the actual one. With topology virtualization,

we can effectively reduce the number of sensor nodes and

the extensive human efforts for protocol conformance testing

in large-scale networks.

Algorithm 1 shows how to virtualize different topologies

when testing various routing protocols. In this case, the

routing protocol is IUT, and the real sensor node installed

with IUT is the SUT. The key point to test the SUT in any

given topology is to analyze the effects of different packet

transmissions in the SUT, and then to virtualize the effects

for the SUT with the tester.

Algorithm 1 Topology virtualization process for any routing

protocol.

1: Understand the route discovery mechanism

2: Divide the routing positions in a route into source,

forwarder, and destination

3: Divide the nodes into two sets: N1 (SUT’s 1-hop neigh-

bors) and N2 (SUT’s non-neighboring nodes)

4: while P takes each value in the above three positions

do

5: Analyze the effects on the SUT when nodes ∈ N1

send a packet

6: Analyze the effects on the SUT when nodes ∈ N2

send a packet

7: Analyze the responses of nodes ∈ N1 when the SUT

sends a packet

8: Analyze the effects of the above responses on the

SUT

9: end while

10: Build a model M for effects of packet transmission on

the SUT from the previous analysis

11: Let S be the set of to-be-tested topologies

12: while Based on the model M , ∀Topo ∈ S do

13: Test the SUT when it is communicating with nodes

∈ N1

14: Test the SUT when it is communicating with nodes

∈ N2

15: end while

B. Event virtualization

Software bugs are often detected when there are non-

deterministic events in the network, such as node reboot

and outage, packet duplication, packet loss, and so on.

These events have potential to drive a WSN application

into corner-case situation, where bugs usually lurk. In order

to ensure high coverage testing, RealProct employs event

virtualization to facilitate protocol conformance testing with

different kinds of events, including the non-deterministic

ones that are caused by the volatile environment. During the

simulations, such events are easy to be inserted. While in real

deployments, such events are only allowed to be observed.

However, in the testing of RealProct, these events need to be

triggered with different methods. The key problem is how

to trigger these events with only a few real sensor nodes so

as to test the corner-cases. We discuss the virtualization of

events below.

1) Node reboot and outage: Node reboot cases are

classified into two categories: the SUT reboots and the

tester reboots. In the first category, our test cases target at

verifying that the SUT can successfully reboot and return

576

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 10:44:26 UTC from IEEE Xplore. Restrictions apply.

to the initial state. For this case, we just send to SUT the

reboot command ‘/home/user/contiki-2.4/tools/sky/msp430-

bsl-linux –telosb -c /dev/ttyUSB0 -r’ in our experiments. For

the second category, the test cases are checking whether the

SUT can appropriately handle the reboot of other sensor

nodes in various topologies. We do not care about which

node reboots in what kind of virtualized topologies. As long

as we know the influence of its reboot in the SUT, we can

virtualize node reboot for the SUT by exerting such impacts

on it.

We take the rime mesh routing protocol (RMRP) used in

Contiki with the virtualized topology shown in Fig. 3 as an

example. The SUT is the only 1-hop node from the sink, and

the application running in the SUT and the tester is sending

data to the sink regularly. The reboot of node 1 has small

effects on the SUT. Before reboot, node 1’s influence on

the SUT is its regular data packets and the related route

discovery packets. Hence we virtualize its reboot by not

allowing the tester to send data packets and route discovery

packets with source as node 1 to the SUT. Given that node

outage will cause node reboot, the virtualization method is

the same.

2) Packet disorder, duplication, corruption, and loss:

Existing tools, such as KleeNet, have not explored packet

disorder in testing. It is because these tools rely on simu-

lation, model based on human experience [6]. Neither have

we realized it until we observed this phenomenon in our

testing with real sensor nodes. We reported this problem to

the Contiki developers and believed that it was caused by the

implementations of the lower level protocols and the volatile

wireless channels.

Let us look at the testing of a TCP implementation as an

example. Consider the whole topology in Fig. 3, the SUT is

the TCP server and node c is the TCP client. From node c to

the SUT, there exist two routes. One is c → b → 2 → SUT,

and the other is c → 3 → 1 → SUT. If the routing protocol

uses two routes simultaneously, then the packets arrived at

the SUT from node c may be disordered. Say, the first data

packet from node c takes route 1 and the second data packet

follows route 2. If route 1 is more congested than route 2,

the second data packet may arrive at the SUT before the

first data packet, resulting packet disorder at the SUT. If the

SUT cannot handle the disorder appropriately, it fails the test

case. To virtualize the packet disorder with only one tester,

it prepares two packets: packet 1 with a smaller sequence

number and packet 2 with a larger sequence number. Then

it sends packet 2 to the SUT first, and packet 1 next.

Packet duplication can be virtualized by sending the

same packets to the SUT twice or multiple times with

different intervals. Similarly, packet corruption is virtualized

by distorting different fields of the packet before sending the

packet to the SUT. In order to virtualize the packet loss, the

tester will not send the expected packet or acknowledgment

to the SUT.

C. Dynamic test execution

In simulations, we can control when and where the non-

deterministic events occur. However, testing with real sensor

nodes is not entirely under human control, and hence we

cannot avoid their occurrences in the cases that we do not

anticipate. Here we focus on unexpected packet loss caused

by the volatile environment, which is the main problem that

obstructs our normal testing with real sensor nodes. The

loss may occur to any packets we send or receive during

our testing, and hence threaten our testing and could result

in false positive (FP) and false negative (FN) errors in the

test verdict.

PO3 is thus deployed to monitor the difference of packets

exchanged between PCO1 and PO3 during execution (see

Fig. 2). It can assist human in debugging problems caused

especially by packet loss. Actually, the most convenient

way to avoid FP and FN errors is to repeat the test cases

several times so as to filter out the volatile influence from

the environment. Intuitively, the more times we repeat, the

less likely that FP and FN errors will occur. However, it

is inefficient to execute the test cases for too many times.

Thus, here is the problem: What is the minimal number

of executions that can guarantee the FP and FN error rates

lower than a certain level? We design an algorithm to tackle

this problem.

Let the empirical probability of packet loss caused by

the environment be L0. Due to packet loss, the test results

will be distorted with chance L0, and lead to FP and FN

errors. Suppose a test case is executed n times, and it passes

n1 times and fails n2 times. If n1 > n2, we would like

to declare the test as pass (Assertion 1). If n2 > n1, we

would like to declare the test as failure (Assertion 2). If

n1 = n0, we execute the test case for more times until

n1 = n0 does not hold. However, Assertion 1 may suffer

FN error if the test verdict should be fail, but was wrongly

concluded as pass. Assertion 2 may suffer FP error if the

test verdict should be pass, but was wrongly concluded as

fail. What is the minimum value of n that guarantees both

Assertion 1 suffers FN error and Assertion 2 suffers FP error

at a rate lower than a threshold E, say 1%?

For a test case with n1 > n2, if FN error occurs, then

n1 passes are caused by packet loss and n2 failures are not

affected by packet loss. Hence the FN probability P (FN)
is

(

n

n1

)

Ln1

0
(1 − L0)

n2 .

Let P (FN) ≤ E, then the smallest n exists if n1 = n,

i.e., all the executions pass. Hence we have the minimum n

as

n = ⌈lgE

L0
⌉.

Similarly, for a test case with n2 > n1, the minimum n

is also

n = ⌈lgE

L0
⌉.

577

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 10:44:26 UTC from IEEE Xplore. Restrictions apply.

In general, for each test case, it is first executed for ⌈lgE

L0
⌉

times. If the result is n1 > n2, then we calculate P (FN)
and compare it with E. If P (FN) ≤ E, then we end the

test execution and declare the test case as pass. If the result

is n2 > n1, then we calculate P (FP) and compare it with

E. If P (FP) ≤ E, we end the test execution and declare

the test case as failure. Otherwise, we repeat the test case

execution until n1 > n2 and P (FN) ≤ E or until n2 > n1

and P (FP) ≤ E. In this way, the execution repetition of

each test case can be minimized in real-time dynamically

according to the requirement of the FN and FP error rates.

VI. GENERALITY OF REALPROCT

RealProct presents a generic framework for testing a wide

range of protocols in WSNs by using only two real sensor

nodes and a PC. Three techniques are designed to make the

framework practical for WSNs. These techniques and related

algorithms are computed in the PC to relieve the burden of

resource-limited sensor nodes.

Although testing diverse protocols in WSNs requires

different manual efforts [8], RealProct provides a generic

framework and universal techniques to keep the testing pro-

cess the same and easy to follow. A user only needs to design

abstract test cases according to the protocol specification,

and then abstract the interfaces of the protocol implemen-

tation and translate those abstract test cases into executable

ones with our virtualization techniques. Next, the executable

test cases will be stored in the PC and downloaded into

the tester node in real-time. Our test execution and verdict

algorithm can control their execution and verdicts the test

results autonomously. Finally, the PC can repeat those failed

test cases to help debugging the problems.

VII. EVALUATION

This section evaluates the practicability and efficiency of

our RealProct for protocol conformance testing with two

case studies. We test the TCP protocol of the µIP TCP/IP

stack for WSNs in Contiki-2.4 because TCP is not only

viable for WSNs, but also very useful to connect WSNs

with traditional networks [13]. During the TCP testing,

RealProct finds not only two new bugs acknowledged by

the developers, but also all the previously discovered bugs

[6]. The Rime mesh routing protocol (RMRP) designed

for WSNs in Contiki-2.4 is also tested. The test cases for

detecting those bugs are available online1.

A. Detecting new bugs in TCP

Although we design many ordinary test cases based on

the TCP specifications, we only detail those test cases that

identify bugs.

1http://www.cse.cuhk.edu.hk/∼jjxiong/testcases/testcase.htm

TCP client: 1025

[SYN
/ACK

]seq
=0,

ack=
1

Sending SYN

SYN/ACK received,

sending ACK

ACK received,

connection stablished

[SYN]seq=0

[ACK]seq=1,ack=1

SYN received,

sending SYN/ACK

TCP server: 80

Figure 4. TCP three-way handshake.

1) Bug 1 – Connect to opened TCP ports: We discuss

each test case in the aspect of the test purpose, test scenario,

test steps, and test results. Since the SUT is not under direct

control, we steer it passively by manipulating the tester.

We want to test whether the TCP server allows successful

connection to an opened TCP ports. According to Internet

Assigned Numbers Authority (IANA), the legal ports for

TCP connection are from 0 to 65535. We can test each port

one by one because such kinds of similar test case generation

and execution are easy to be automated, but it takes long

time to execute. As a result, we choose several representative

ports to test. We select port 80 as a common port and port

0 as a special port to test. Then we get two test cases.

Test case 1 – Test purpose: Connection to an opened

common TCP port should be successful.

Test scenario: TCP is the IUT. One sensor node is the

SUT, and it functions as the TCP server installed with the

IUT. The UT runs on top of the IUT. It is a simple appli-

cation which just receives packets and sends the received

packets to the peer. The other node is the tester, in which

the LT (or tester) is installed with the test case. It functions

as the TCP client.

Test steps: The testing steps are as the three-way hand-

shake process of TCP as shown in Fig. 4. First, the server

opens port 80 and waits for connection. Second, the tester

sends an SYN packet to port 80 of the SUT. Then it waits for

the SYN/ACK packet from the SUT. If it does not receive the

packet, it declares the failure of the test and exits. Otherwise,

it checks the content of the packet. If the content is incorrect,

it claims test failure. Otherwise, it replies an ACK packet to

the SUT and asserts test case pass.

Our method is different from KleeNet [6] in that only the

node to be tested is installed with the IUT. The other node

is installed with test cases. Each test case realizes a simple

function of the IUT so that it can work as a peer of the IUT

and stimulates the IUT in many aspects.

Test results: According to the logs observed at the PCOs

and PO, this test case passes. However, Test case 2 which

tests port 0 fails. It seems that although the SUT opens port

578

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 10:44:26 UTC from IEEE Xplore. Restrictions apply.

0, it does not accept connection to port 0 from TCP client.

Then we repeat the test case and observe the packet logs

again. We find that the reason that test case 2 fails is because

the client times out waiting for the SYN/ACK packet from

the server. That is to say, the server does not reply the SYN

to port 0. We also observe “tcp: zero port.” in the log. Why

does this not happen to port 80? By digging into the code

that is related to the ports and the log, we find a segment

of code as follows:

1 / / Make s u r e t h a t t h e TCP p o r t number i s n o t z e r o .

2 i f (BUF −>d e s t p o r t == 0 | | BUF −>s r c p o r t == 0)
3 {
4 UIP LOG (” t c p : z e r o p o r t . ”) ;
5 goto drop ;
6 }

This code indicates that if the source port or destination port

number is 0, then it just ignores and drops the packet. This

explains why the failure happens. Actually, this operation

does not conform to the standard TCP specification, and it

obstructs the communication between other versions of TCP

implementation. By browsing the previous bugs in Contiki-

2.x, we find that this bug is introduced after fixing the

previous bug. Since RealProct enables high test coverage

and rerunning of test cases, it can effectively discover bugs

in the latest version of Contiki as shown in this case.

2) Bug 2 – Connect to unopened TCP ports: To comple-

ment the previous aspect of port testing in TCP, we should

test whether the TCP server allows successful connection

to an unopened TCP ports. According to the specification,

if the client connects to an unopened TCP ports, the server

should reply a reset packet. Similarly, we also test two ports

with two test cases.

Test case 3 – Test purpose: Connection to an unopened

normal TCP port should be unsuccessful.

Test scenario: It is the same as test case 1.

Test steps: First, the server opens port 80 and waits for

connection. Second, the tester sends an SYN packet to port

79 of the SUT. Then it waits for SYN/ACK packet from the

SUT. If it does not receive an RST packet from the server, it

declares the failure of the test and exits. Otherwise, it checks

the content of the packet. If the content is incorrect, it claims

test failure. Otherwise, it asserts test case pass.

Test results: pass. However, Test case 4 in which the client

connects to port 0 of the server fails because it gets no RST

reply after sending SYN. The reason is the same as the

previous bug. A mistake made in the program may result in

more than one failure in execution. Since the test execution

in RealProct can be easily automated, we would suggest

software engineers to rerun the test cases after fixing the

bugs.

B. Detecting previous bugs in TCP

Apart from the new bugs, RealProct also detects the

four old bugs discovered by KleeNet earlier in the TCP

TCP client: 1025

[SYN
/ACK

]seq
=0,a

ck=1

Sends SYN

Pretends that SYN/ACK is

lost. Client sends SYN

again.

[SYN]seq=0

[SYN]seq=0

SYN received. Server

sends SYN/ACK

TCP server: 80

SYN received,

Bug: Server replies ACK

[ACK
]seq

=0,a
ck=1

Figure 5. SYN packet loss.

stack implementation of Contiki [6]. The test cases for

discovering them are very short and simple. Hence, we

only discuss the test cases that identify the bugs caused by

non-deterministic events because these bugs will invoke our

virtualization techniques.

According to the TCP specifications, packet loss leads to

retransmission. As long as the loss is not caused by dis-

connected or extremely poor physical medium, it should not

result in TCP connection failure. For example, SYN packet

loss would arouse SYN retry for utmost 7 times. If one

SYN packet is successfully received before retransmitting

the SYN packets 7 times, then the three-way handshake

process would continue. Next we discuss the test case that

checks the loss of SYN/ACK packet.

Test case 5 – Test purpose: An SYN/ACK packet loss

should not result in TCP connection failure.

Test scenario: It is the same as test case 1. The SUT is

the TCP server, and the tester is the TCP client.

Test steps: As shown in Fig. 5, first, the server opens

port 80 and waits for a connection. Second, the tester sends

an SYN packet to port 80 of the SUT. Then it expects an

SYN/ACK packet with correct content from the SUT. After

receiving and verifying the content of the packet, it ignores

the packet and sends an SYN packet to the SUT again as if

the SYN/ACK packet is lost. It will declare test pass unless

it receives an SYN/ACK packet with correct content again.

Test results: fail. The reason is that the TCP server

replies an ACK packet to the TCP client at the second

time when it receives an SYN packet. However, the correct

behavior for the TCP server is to send an SYN/ACK packet

with right content according to the specification. This error

leads to two bugs discovered earlier by KleeNet, which are

also easily identified by RealProct. As long as this error

is fixed, multiple failures can be solved. Compared with

KleeNet which has to explore many redundant paths and

manually write many assertions, our test cases are clearer,

more concise, and more specific. Besides virtualizing packet

579

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 10:44:26 UTC from IEEE Xplore. Restrictions apply.

loss flexibly, we can also generate extra test cases easily by

retransmitting the SYN packets from 2 times up to 6 times

on Contiki-2.4 to verify whether this bug is completely fixed.

The results show that the above test cases all pass.

Similarly, we also design a test case that virtualizes SYN

packet duplication event to uncover a bug. The process is

shown online1.

C. Testing routing protocol RMRP

For RMRP testing, we give two test cases demonstrating

the topology virtualization techniques presented in Section

V. The first test case checks whether the SUT can establish

route to 1-hop neighbor in the topology shown in Fig. 3.

Test case 6 – Test purpose: The SUT can establish route

to 1-hop neighbor 2.

Test scenario: RMRP is the IUT. One sensor node is

the SUT, and it functions as the route discovery originator

installed with the IUT. The UT runs on top of the IUT. It is

a simple application that just receives packets and sends the

received the packets to the tester. The other node is the tester,

in which the LT is installed with the test case. It functions

as all the other nodes in the topology.

Test steps: First, the SUT broadcasts a route request

packet (REQ) before sending a data packet to node 2.

Second, the tester virtualizes node 2 to uni-cast a route reply

packet (REP) to the SUT and then virtualizes node a to

forward the REQ. Third, tester virtualizes node 2 to wait

for the data from the SUT. On receiving the data, it will

declare test pass. Otherwise, it will assert failure.

Test results: The pass result validates the RMRP in aspect

of route discovery with 1-hop neighbor.

The second test case tests if the SUT can establish route

to non-neighboring nodes in the topology shown in Fig. 3.

Since this topology will result in four scenarios. The test

case is divided into four sub-cases. We also show one sub-

case.

Test case 7 – Test purpose: The SUT can establish route

to non-neighboring nodes d.

Test scenario: It is the same as test case 6.

Test steps: First, the SUT broadcasts an REQ before

sending a data packet to node d. Second, the tester virtualizes

node 2 to forward the REQ and then virtualizes node a to

forward the REQ. Third, after a while, tester virtualizes node

2 to uni-cast the REP originated from node d to the SUT.

Finally, tester virtualizes node d to wait for the data from

the SUT. The next-hop of the data should be node 2. If it

receives the data, it will declare test pass. Otherwise, it will

assert failure.

Test results: The pass result validates the RMRP imple-

mentation in aspect of route discovery and initiation with

non-neighboring nodes.

1http://www.cse.cuhk.edu.hk/∼jjxiong/testcases/testcase.htm

VIII. CONCLUSIONS

In this paper, we presented RealProct, a reliable protocol

conformance testing approach using real sensor nodes to

check the conformance of protocol implementation to the

specification. RealProct includes two real sensor nodes and

a PC for testing and three techniques are carefully designed

to support the resource-limited sensor nodes. We proposed

topology virtualization as a technique for the two sensor

nodes to imitate larger WSNs with different topologies,

which allows efficient and flexible protocol conformance

testing. Event virtualization is also invented to generate non-

deterministic events to support virtualized topology with

multi-hop routing. We further enhanced the efficiency of

testing and the accuracy of verdict by determining the

optimal number of test executions, while guaranteeing an

acceptable probability of false negative and positive errors.

We implemented RealProct in real sensor nodes and tested

the protocol implementation of the µIP TCP/IP stack in

Contiki-2.4. RealProct effectively found two new bugs and

all the previously detected bugs in the µIP TCP/IP stack. The

experiments demonstrated that our protocol conformance

testing setup can effectively detect bugs that might be missed

in simulations. We also tested and validated the protocol

implementation of Rime mesh routing in Contiki-2.4. The

results indicated that RealProct can provide a cost-effective

and flexible solution for testing different advanced protocols,

like multi-hop routing, which are more sensitive to the

network topology and the non-deterministic events in real

wireless channels.

Due to the limited number of real sensor nodes used,

there are some cases that RealProct cannot virtualize with

high similarity. For example, It cannot virtualize the wire-

less environment when interference caused by simultaneous

transmissions happens, although the result of interference is

easy to be virtualized as packet loss or erroneous packet. In

the future, we will attempt at solving the problem with more

real sensor nodes.

ACKNOWLEDGMENTS

The work described in this paper was supported by a grant

from the Research Grants Council of the Hong Kong Special

Administrative Region, China (Project No. CUHK4154/10E)

and sponsored in part by the National Basic Research

Program of China (973) under Grant No. 2011CB302600

and the VINNMER program funded by VINNOVA, Sweden.

REFERENCES

[1] G. Barrenetxea, F. Ingelrest, G. Schaefer, and M. Vetterli,
“The hitchhiker’s guide to successful wireless sensor network
deployments,” in Proc. of the 6th International Conference
on Embedded Networked Sensor Systems (SenSys), 2008, pp.
43–56.

580

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 10:44:26 UTC from IEEE Xplore. Restrictions apply.

[2] G. W. Allen, K. Lorincz, J. Johnson, J. Lees, and M. Welsh,
“Fidelity and yield in a volcano monitoring sensor network,”
in Proc. of the 6th USENIX Symposium on Operating Systems
Design and Implementation, Seattle, USA, 2006, pp. 381–
369.

[3] K. Langendoen, A. Baggio, and O. Visser, “Murphy loves
potatoes: Experiences from a pilot sensor network deployment
in precision agriculture,” in Proc. of the International Work-
shop on Parallel and Distributed Real-Time Systems, April
2006.

[4] Y. Zhou, X. Chen, M. R. Lyu, and J. Liu, “Sentomist:
Unveiling transient sensor network bugs via symptom min-
ing,” in Proc. of the International Conference on Distributed
Computing System (ICDCS), Genova, Italy, June 2010, pp.
784–794.

[5] P. Li and J. Regehr, “T-Check: Bug finding for sensor net-
works,” in Proc. of the 9th ACM/IEEE International Confer-
ence on Information Processing in Sensor Networks (IPSN),
2010, pp. 174–185.

[6] R. Sasnauskas, O. Landsiedel, M. H. Alizai, C. Weisez,
S. Kowalewskiz, and K. Wehrle, “KleeNet: Discovering in-
sidious interaction bugs in wireless sensor networks before
deployment,” in Proc. of the 9th ACM/IEEE International
Conference on Information Processing in Sensor Networks
(IPSN), 2010, pp. 186–196.

[7] K. Liu, M. Li, Y. Liu, M. Li, Z. Guo, and F. Hong, “Passive
diagnosis for wireless sensor networks,” in Proc. of the 6th
International Conference on Embedded Networked Sensor
Systems (SenSys), 2008, pp. 1132–1144.

[8] Information Technology, Open Systems Interconnect, Confor-
mance Testing Methodology and Framework., ISO. Interna-
tional Standard IS-9646, 1991.

[9] Agilent 6430 WiMAX Protocol Conformance
Test (PCT) and Development System, Agilent,
http://cp.literature.agilent.com/litweb/pdf/5989-7513EN.pdf.

[10] Protocol Conformance Testing of 3G Terminals, Anritsu,
http://www.eu.anritsu.com/news/default.php?id=718.

[11] J. Neyman and E. S. Pearson, “On the problem of the most
efficient tests of statistical hypotheses,” Royal Society of
London Philosophical Transactions Series A, vol. 231, pp.
289–337, 1933.

[12] A. Dunkels, T. Voigt, J. Alonso, H. Ritter, and J. Schiller,
“Connecting wireless sensornets with TCP/IP networks,” in
Proc. of the 2nd International Conference on Wired/Wireless
Internet Communications (WWIC), 2004, pp. 583–594.

[13] A. Dunkels, T. Voigt, and J. Alonso, “Making TCP/IP viable
for wireless sensor networks,” in Proc. of the 1st European
Workshop on Wireless Sensor Networks (EWSN),, Berlin,
Germany, 2004.

[14] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a
lightweight and flexible operating system for tiny networked
sensors,” in Proc. of the 29th Annual IEEE International
Conference on Local Computer Networks (LCN), 2004, pp.
455–462.

[15] B. Hailpern and P. Santhanam, “Software debugging, testing,
and verification,” IBM Systems Journal, vol. 41, pp. 4–12,
2001.

[16] N. Cooprider, W. Archer, E. Eide, D. Gay, and J. Regehr,
“Efficient memory safety for TinyOS,” in Proc. of the 5th
International Conference on Embedded Networked Sensor
Systems (SenSys), 2007, pp. 266–279.

[17] N. Kothari, T. Millstein, and R. Govindan, “Deriving state
machines from TinyOS programs using symbolic execution,”
in Proc. of the 7th ACM/IEEE International Conference on
Information Processing in Sensor Networks (IPSN), 2008, pp.
271–282.

[18] P. Levis, S. Madden, J. Polastre, R. Szewczyk, A. Woo,
D. Gay, J. Hill, M. Welsh, E. Brewer, and D. Culler, “TinyOS:
An operating system for sensor networks,” in Ambient Intel-
ligence. Springer Verlag, 2004, pp. 115–148.

[19] Network simulator NS-2. http://www.isi.edu/nsnam/ns/.

[20] P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: Ac-
curate and scalable simulation of entire tinyos applications,”
in Proc. of the 1st International Conference on Embedded
Networked Sensor Systems (SenSys), 2003, pp. 266–279.

[21] W. P. Timing and B. L. Titzer, “Avrora: Scalable sensor net-
work simulation,” in Proc. of the 9th ACM/IEEE International
Conference on Information Processing in Sensor Networks
(IPSN), 2005, pp. 477–482.

[22] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted
and automatic generation of high-coverage tests for complex
systems programs,” in Proc. of the 8th USENIX Symposium
on Operating Systems Design and Implementation, 2008, pp.
209–224.

[23] N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler,
and D. Estrin, “Sympathy for the sensor network debugger,”
in Proc. of the 3rd International Conference on Embedded
Networked Sensor Systems (SenSys), 2005, pp. 255–267.

[24] J. Yang, M. L. Soffa, L. Selavo, and K. Whitehouse, “Clair-
voyant: A comprehensive source-level debugger for wireless
sensor networks,” in Proc. of the 5th International Conference
on Embedded Networked Sensor Systems (SenSys), 2007, pp.
189–203.

[25] M. M. H. Khan, H. K. Le, H. Ahmadi, T. F. Abdelzaher, and
J. Han, “Dustminer: Troubleshooting interactive complexity
bugs in sensor networks,” in Proc. of the 6th International
Conference on Embedded Networked Sensor Systems (Sen-
Sys), 2008, pp. 99–112.

[26] Q. Cao, T. F. Abdelzaher, J. Stankovic, K. Whitehouse,
and L. Luo, “Declarative tracepoints: A programmable and
application independent debugging system for wireless sensor
networks,” in Proc. of the 6th International Conference on
Embedded Networked Sensor Systems (SenSys), 2008, pp. 85–
98.

[27] S. Bishop, M. Fairbairn, M. Norrish, P. Sewell, M. Smith, and
K. Wansbrough, “Rigorous specification and conformance
testing techniques for network protocols, as applied to TCP,
UDP, and Sockets,” in Proc. of ACM Conference on Computer
Communication (SIGCOMM), 2005, pp. 265–276.

581

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 10:44:26 UTC from IEEE Xplore. Restrictions apply.

