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Abstract 
The application of Hough Transform (HT) has been 

liniited ro small-size inmges f o r  a long rime. For large-size 
images. rhe peak derecrion and rhe line verification 
become much more rime-consuming. Many HT-based line 
detection methods are not able IO detecr line widrh. This 
paper proposes a new approach for  deterring line 
segmenrs using HT, which makes HT applicable to large- 
size iinages, espaially for  rhose applications whose line 
width is critical. Our approach applies a boundan 
recorder to eliminate redundant analyses, and entploys an 
i17iage-analysis-based line-verification method IO 
overcome rhe d i f icu ln  of using a threshold to disringuish 
short lines from noise. It avoids the overlapping lines by 
removing the pixels of derecred line segmenrs, n,hich is 
more robusr than only clearing the N H  neighborhood. 
This approach could be e o s i l ~  exrended IO iniproved HT 
methods that perform the global accuniularion. The 
experimental resrclr shows rhat this approach is v e n  rime- 
eflcienrfor large-size images. 

1. Introduction 

Hough Transform (HT) is a powerful t w l  for finding 
predefined features in digital images [ I ] .  Since HT 
converts a difficult global detection problem in image 
space into a more easily solvable peak detection problem, 
it can deal with noise, gaps, and partial occlusion, even in 
complicated background. HT is capable of dctecting 
straight lines, circles, ellipses and other curves in both 
binary and grayscale images. However, most reported 
applications of HT are limited to small-size images. The 
attempts of applying HT to large-size images are usually 
discouraged by the well-known weaknesses of HT: the 
time-inefficiency, the difficulty of choosing a proper 
thrcshold to distinguish short lines from noise, and the 
missing of the line width. 

Generally, using HT to detect lines consists of three 
steps: accumulation, peak detection, and line verification. 
Typically, a pre-processing is necessary to extract feature 
points from the image to be transformed, usually medial 
points or edge points. The first two steps have been well 
investigated so far. An abundant number of improved HT 
methods, e.g. gradient-based HT [2], randomized HT [3]. 
probabilistic HT [4] and sampling HT [5],  have been 
proposed to accelerate the accumulation and to highlight 
the peaks greatly. These techniques can also be applied to 
large-size images. There are also many ways to detect 
peaks after the accumulation. The common way is to find 
the lmal maxima within an NxN neighborhood [6], where 
N is very critical: using too large N will suppress some 
real lines, while using t w  small N will yield overlapping 
lines. Princen et a1 [7] proposed an iterative global peak 
detection method. This method is more robust than 
clearing a rigid-size neighborhood, but i t  is very time- 
consuming for a large-size image due to the iterative 
accumulations. In fact, it is only applied to a subimage in 
[7]. The line verification step is to get the exact location of 
line segments along the line. The basic method is 
sequentially checking the connectivity of feature points 
within the narrow strip area determined by the peak 
parameter ( r ,@ the quantization interval Ar, and the 
sampling interval A 8 .  Since the line equation is calculated 
frequently and the feature points are searched iteratively, 
this step may be more time-consuming than the previous 
two steps for large-size images containing numerous lines. 
And, it cannot delecl the line width. However, the 
improvement on this step is seldom addressed. 

The motivation of this paper is to recognize lines in 
pwr-quality scanned images of engineering drawings. 
These images usually contain noise and broken lines with 
rough edges. Popular graphics-recognition methods, 
including thinning-based ones, contour-based ones, and 
pixel-tracking-based ones, cannot handle these images 
well, since they all depend on the connectivity and parallel 
edges of the line image. However, "I has distinguished 
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advantages for these cases. Therefore, we propose an 
efficient HT-based approach to verify lines and detect the 
line width, because the line-width information is critical to 
further processing of engineering drawings. 

2. Line detection algorithm 

As engineering drawings are usually stored and 
processed in binary format, we assume that the image is 
monochromatic (i.e., black for foreground and white for 
background). We predefine two thresholds, MIN-LW and 
MAX-LW, to indicate the minimum and maximum 
acceptable line widths, respectively. In the pre-processing, 
we perform horizontal and vertical run-length scans on the 
input image IO extract the medial pixels of valid runs to be 
feature points. The length of a valid run must be between 
MIN-LW and MAXLW. Considering the poor image 
quality, one-pixel-long gap does not break a run. 

To ease the description, we choose the standard HT 
for straight line (see Equation 1 below) to explain the line 
detection algorithm. 

r=xxcos8  +yxsin@ ( 1 )  

2.1 Boundary recorder 

One important reason for the time-inefficiency of 
common line verification methods is that they do not 
know which part of the strip area contains feature points. 
Thus they have to either recalculate all feature points with 
the known 810 pick out those with the same (or similar) r .  
or check every position within the strip area in the image. 
Obviously, neither way is fast for a large-size image. 
Usually, only a small part of the strip area contains the 
feature points. According to this fact, we add a boundary 
recorder to each parameter cell, which only contains an 
accumulator before, to record the minimum scope that 
contains the feature points contributed to this parameter. 

The boundary of each parameter is actually two 
feature points, called "up boundary'' and "low boundary", 
which enclose all other feature points contributed to this 
parameter. Since the dimension of parameter space is large 
when the image size is large, one should be considerate to 
add any byte to the parameter cell. According to Equation 
( I ) ,  given rand 8, one dimension of the image coordinates 
can be calculated from another dimension. So we only 
need to record one dimension of the coordinates in the 
parameter cell. The choice of X- or Y- dimension 
coordinates depends on @(Fig. 1). When 45"1&135°, the 
line in the image space is nearly horizontal, so X- 
dimension coordinates is chosen to record the boundary; 
otherwise, Y-dimension coordinates is chosen. The 
initialization and recording processes of the boundary 
recorder are shown in the following codes. 
Initialization: for  all parameter cells 

Param[rl[8].accum"laror = 0 

" 

...... .... .... .... 

Figure 1. Choice of the recording dimension Figure 1. Choice of the recording dimension 
Param[rl[Bl.tow_boundary = max(X_MAX. Y-MAXI; 
Param[rl[@.up_boun&L?ry = min(X_MIN. Y-MINI: 

Recording: when a point 0, .v) contributes to a parameter 
Pnrsm[rl[@.~ccumulutor += I ;  
IF(45°<&tiSD) [ 
ParamIrllBl.low~bound3iry=minlParam[rl[~.low~boundnry. paint.xJ: 
P a r a m l r l l B l . u p _ b o u n d a r y = m s i ( P ~ ~ ~ l ~ l ~ B l . ~ p ~ b ~ ~ ~ & ~ y ,  poinr.x): 

Pnram[rl[ B l . l o w _ b o u n d 3 i r y = m i n ( P a r a m [ r l [ ~ . l ~ w ~ b ~ ~ ~ d ~ ~ y ,  p o m y l ;  
Paramlrll Bl.up_boundary=max(Param[rl[@.up_boundary. p6nr.y); 

)ELSE I 

I 

Where min(a.6) returns the smaller one of U and b, and 
max(a.b) returns the bigger one. 

Consider an image of size LxW, whose range breath 
of r is at most dp+w?. The memory requirement for the 
2D parameter array of HT can be calculated as follows: 

Mem Req = \/L?+W'x!!!?x sizeof(param cell) bytes. 

We choose Ar =2 and 8@=1" to keep both the accuracy of 
direction and the clustering effect. The parameter cell 
contains one accumulator, usually an integer (4 bytes), and 
two boundary recorders that are shon integers (2 bytes for 
each). For a large image of AO-size engineering drawing 
scanned with 300 dpi, which is tine enough to digitize a 
line as thin as 0.003 inches, L is about 14,000 pixels and 
W about 9,900 pixels. Then, the memory requirement for 
the parameter m a y  is about 12.3 Mega-bytes. This is 
obviously acceptable to current hardware condition. 

2.2 Line verification 

Ar A e  

In this step, we introduce two more thresholds: 
MIN-LEN stands for the minimum acceptable line length, 
and M A X G A P  stands for the maximum acceptable gap 
length. They are preset according to the image type. 

After all feature points are transformed, we detect the 
local maximal peak within a small 5x5 neighborhood, and 
all peaks higher than MINLEN are stored into a peak list 
in descending order of peak value. The line verification 
begins from the head of the peak list; thus, it can also take 
advantage of the global peak. Owing to the recorded 
boundary information, we only need lo analyze the 
valuable part in the original image determined by the peak 
parameter to find the evidence of line segments and detect 
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the line width' of each segment. Then, the pixels of the 
verified line segments are removed from the image, i.e., 
tuning them. from black to white. Since this line 
verification is based on image analysis, not on feature 
points, the overlapping lines are successfully avoided by 
removing the pixels of the verified line segments. Thus, it 
does not need' the re-accumulation, and it is much faster 
than using the.method of [7]. 

According to the boundary recording process defined 
in Section 2:l: the image coordinates of two boundary 
points can be calculated easily, denoted by Plb and Pub. 
The line verification analyzes the image along the straight- 
line direction from Plb to Pub sequentially. To avoid the 
heavy computation in solving the equation, we adopt the 
off-the-shelf, rasterization method - Bresenham algorithm 
for straight line [8 ] ,  which generates a straight-line path 
point with at most three additions - t o  generate the eight- 
connected path points from Plb to Pub. denoted by Pi 
(i=l..n), where PI=Plb and P,=P,b. The detailed image 
analysis algorithm is as follows. 

gap-count = 0; stan-pos = I ;  
FOR (i = 1.TO n) { 

IF (Pi i s  black) { 
gap-count = 0; 
IF (start-pos = 0) start-pos = i ;  
IF (i = n) { 

IF (VerifySegment(start-pos,i) == true) { 
Accept this segment; 
Remove the pixels of thin segment; 

I 

)ELSE I 
I 

gap-count +=I; 
IF (gap-count= MAX-GAP or i = n) { 

IF (i-gap-caunt-start-pas > MIN-LEN) [ 
IF (VerifySegmenr(st~_pos,i-gap-count) = true) { 

Accept this segment; 
Remove the pixels of this segment; 

1 
I 
StdILpOS = 0; 

I 
I 

1 
This algorithm detects all segments from Plb to Pub that 
are longer than MIN-LEN and do not contain gaps longer 
than MAX-GAP. For each segment, it then calls 
VerifySegment(srar1,end) for verification by checking the 
line width. The line width of a line segment is voted by all 
local line widths detected at each black Pi(i=srarr..end). If 
the voted line width is larger than MAX-LW, this segment 
may be a part of intersecting line or other shapes so that it 
should be rejected. Since this algorithm does not depend 
on a single threshold for the decision purpose, i t  
overcomes the difficulty of trading-off between short lines 
and noise. Thus, i t  can distinguish between true lines and a 
random alignment of points correctly. 

Figure 2. Local line width detection 
Considering the poor quality of line image, we use a 

missing-pixel-tolerant approach to detect the local line 
width. For each Pi, we use P,.] and Pi+[ (if available) to 
help the decision (Fig. 2). Vi is the straight-line path 
passing P, and perpendicular to the line &Pub. which is 
also generated by Bresenham algorithm. Vi(k) (k=- 
MAX-LW..MAX-LW) is the point on the V, path with k 
steps away from Pi, particularly, Vj(O)= Pi. The detection 
starts from k=O and increases k by 1 iteratively until the 
number of black pixels among y( t )  (j=i-l..i+l, t=k..k+l) 
is less than 4, and then records the stopped k as k,,,. Next, 
i t  decreases k from 0 with the same criteria to get k,,,,". 
Finally, the lmal line width is calculated as kmax-k,nin+l. 
This approach can detect correct line width from poor 
quality images as well as high quality images. The verified 
line segments will be stored with three parameters: starting 
point, end point, and line width. 

2.3 Line removal 

After all line segments contributed to a peak have 
been verified, the pixels of these line segments should be 
removed from the image to avoid overlapping lines. It is 
easy to remove the pixels of a line segment within a 
rectangular area determined by the parameters (the long 
axis is from the starting point to the end point, and the 
length of short axis equals the line width). This is correct 
for an isolated line segment. However, if there are other 
under-detected line segments intersecting this line segment, 
their intersection parts will also be removed so that the 
under-detected line segment will be separated. This 
problem also exists in other line verification methods 
based on removing the feature points. 

Instead, we use an intersection-preserving approach 
based on detecting the trends of branches at the 
intersection [9]. It simply removes those parts whose local 
line widths are less than or similar to the line width of this 
line segment as rectangular areas. For other parts, i.e. 
intersection parts, i t  detects the trend of branches toward 
the line segment to approximate the border for removing 
and for preserving purposes. This approach only removes 
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the pixels belonging to the verified line segments. Thus, 
the overlapping lines are avoided, and the entirety of 
under-detected line segments is kept as well. 

3. Experimental results 

We have implemented our approach based on the 
standard HT using V C w ,  and the experiment was 
performed on a PC with PIIISOO CPU and 256M RAM. 
Figure 3 shows a fraction of the line recognition result on 
a real image. The left picture is the original image, and the 
right one shows the detected lines with their line widths 
displayed. Both the location and the line width are 
detected correctly. The vertical broken lines are also 
recovered, while the horizontal dashed lines are retained. 

Figure 3. Line recognition result of a real image 
The testing data include five real images, which are 

scanned from engineering drawings of size A4, A3. A2, 
AI and AO, respectively. We set MIN-LW to be O.OlxR,  
MAX-LW to be O . l x R ,  MIN-LEN to be O.ISxR, and 
MAX-GAP to be 0.03xR in the experiment, where R is 
the scan resolution. Table 1 shows the performance of our 
approach, where Time is the whole processing time for the 
line detection, T-LV is the time spent on the line 
verification, LS-Num is the number of recognized line 
segments, TLS is the average line-verification time for 
each line segment, and RecocRate is the recognition rate. 

~~~~~~ ~ ~ ~ - I  

T-LV (sec.) 
LS-Num 1018 1778 3240 5218 
T/LS(msec.) 6.95 8.74 10.29 12.84 16.69 
Reco Rate 0.89 0.90 0.91 0.88 0.87 

Table 1. Performance over different image sizes 
From the above experimental results, we conclude 

that the proposed approach is very time-efficient since 
T-LV is only a small fraction of Time. T/LS increases as 
the image size becomes larger since the average length of 
line segments becomes longer. The whole processing time 
is acceptable considering the image size. Actually, the 
standard “I can be replaced by some proper improved 
HTs to further accelerate the accumulation. 

4. Conclusions 

This paper proposes a new approach for detecting line 
segments using HT. The boundary recorder and image- 
analysis-based line verification make i t  very time-efficient. 
This approach enables HT to process large-size images, 
especially for those line-width-critical applications. It 
overcomes the difficulty of choosing a proper threshold to 
distinguish between short lines and noise, and it avoids the 
overlapping lines by removing the pixels of detected line 
segments, which is more robust than just clearing the N x N  
neighborhood. This approach could be easily extended to 
other global accumulation HTs to accelerate the accumula- 
tion step. Of course this approach can work with the 
hierarchical €€I [7], which, however, cannot take its full 
advantages. Since Bresenham algorithm for circle is also 
very time-efficient, the similar idea can be applied to arc 
and circle detection, which will be useful to detect dashed 
arcs and circles with correct line width in a noisy 
environment. 
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