
A New Approach for Line Recognition in Large-size Images
Using Hough Transform

Jiqiang Song, Min Cai, Michael R. Lyu, and Shijie Cai'
Dept. Computer Science &Engineering, the Chinese University of Hong Kong, Hong Kong, China

(jqsong, mcai, lyu] @cse.cuhk.edu.hk
* State Key Lab. of Novel Software Technology, Nanjing University, Nanjing, China

sjcai @netra.njmedU.cn

Abstract
The application of Hough Transform (HT) has been

liniited ro small-size inmges f o r a long rime. For large-size
images. rhe peak derecrion and rhe line verification
become much more rime-consuming. Many HT-based line
detection methods are not able IO detecr line widrh. This
paper proposes a new approach for deterring line
segmenrs using HT, which makes HT applicable to large-
size iinages, espaially for rhose applications whose line
width is critical. Our approach applies a boundan
recorder to eliminate redundant analyses, and entploys an
i17iage-analysis-based line-verification method IO
overcome rhe d i f icu ln of using a threshold to disringuish
short lines from noise. It avoids the overlapping lines by
removing the pixels of derecred line segmenrs, n,hich is
more robusr than only clearing the N H neighborhood.
This approach could be e o s i l ~ exrended IO iniproved HT
methods that perform the global accuniularion. The
experimental resrclr shows rhat this approach is v e n rime-
eflcienrfor large-size images.

1. Introduction

Hough Transform (HT) is a powerful t w l for finding
predefined features in digital images [I] . Since HT
converts a difficult global detection problem in image
space into a more easily solvable peak detection problem,
it can deal with noise, gaps, and partial occlusion, even in
complicated background. HT is capable of dctecting
straight lines, circles, ellipses and other curves in both
binary and grayscale images. However, most reported
applications of HT are limited to small-size images. The
attempts of applying HT to large-size images are usually
discouraged by the well-known weaknesses of HT: the
time-inefficiency, the difficulty of choosing a proper
thrcshold to distinguish short lines from noise, and the
missing of the line width.

Generally, using HT to detect lines consists of three
steps: accumulation, peak detection, and line verification.
Typically, a pre-processing is necessary to extract feature
points from the image to be transformed, usually medial
points or edge points. The first two steps have been well
investigated so far. An abundant number of improved HT
methods, e.g. gradient-based HT [2], randomized HT [3].
probabilistic HT [4] and sampling HT [5], have been
proposed to accelerate the accumulation and to highlight
the peaks greatly. These techniques can also be applied to
large-size images. There are also many ways to detect
peaks after the accumulation. The common way is to find
the lmal maxima within an NxN neighborhood [6], where
N is very critical: using too large N will suppress some
real lines, while using t w small N will yield overlapping
lines. Princen et a1 [7] proposed an iterative global peak
detection method. This method is more robust than
clearing a rigid-size neighborhood, but i t is very time-
consuming for a large-size image due to the iterative
accumulations. In fact, it is only applied to a subimage in
[7]. The line verification step is to get the exact location of
line segments along the line. The basic method is
sequentially checking the connectivity of feature points
within the narrow strip area determined by the peak
parameter (r ,@ the quantization interval Ar, and the
sampling interval A 8 . Since the line equation is calculated
frequently and the feature points are searched iteratively,
this step may be more time-consuming than the previous
two steps for large-size images containing numerous lines.
And, it cannot delecl the line width. However, the
improvement on this step is seldom addressed.

The motivation of this paper is to recognize lines in
pwr-quality scanned images of engineering drawings.
These images usually contain noise and broken lines with
rough edges. Popular graphics-recognition methods,
including thinning-based ones, contour-based ones, and
pixel-tracking-based ones, cannot handle these images
well, since they all depend on the connectivity and parallel
edges of the line image. However, "I has distinguished

1051-465U02 $17.00 Q 2002 IEEE 33

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 06:52:22 UTC from IEEE Xplore. Restrictions apply.

mailto:netra.njmedU.cn

advantages for these cases. Therefore, we propose an
efficient HT-based approach to verify lines and detect the
line width, because the line-width information is critical to
further processing of engineering drawings.

2. Line detection algorithm

As engineering drawings are usually stored and
processed in binary format, we assume that the image is
monochromatic (i.e., black for foreground and white for
background). We predefine two thresholds, MIN-LW and
MAX-LW, to indicate the minimum and maximum
acceptable line widths, respectively. In the pre-processing,
we perform horizontal and vertical run-length scans on the
input image IO extract the medial pixels of valid runs to be
feature points. The length of a valid run must be between
MIN-LW and MAXLW. Considering the poor image
quality, one-pixel-long gap does not break a run.

To ease the description, we choose the standard HT
for straight line (see Equation 1 below) to explain the line
detection algorithm.

r=xxcos8 +yxsin@ (1)

2.1 Boundary recorder

One important reason for the time-inefficiency of
common line verification methods is that they do not
know which part of the strip area contains feature points.
Thus they have to either recalculate all feature points with
the known 810 pick out those with the same (or similar) r .
or check every position within the strip area in the image.
Obviously, neither way is fast for a large-size image.
Usually, only a small part of the strip area contains the
feature points. According to this fact, we add a boundary
recorder to each parameter cell, which only contains an
accumulator before, to record the minimum scope that
contains the feature points contributed to this parameter.

The boundary of each parameter is actually two
feature points, called "up boundary'' and "low boundary",
which enclose all other feature points contributed to this
parameter. Since the dimension of parameter space is large
when the image size is large, one should be considerate to
add any byte to the parameter cell. According to Equation
(I) , given rand 8, one dimension of the image coordinates
can be calculated from another dimension. So we only
need to record one dimension of the coordinates in the
parameter cell. The choice of X- or Y- dimension
coordinates depends on @(Fig. 1). When 45"1&135°, the
line in the image space is nearly horizontal, so X-
dimension coordinates is chosen to record the boundary;
otherwise, Y-dimension coordinates is chosen. The
initialization and recording processes of the boundary
recorder are shown in the following codes.
Initialization: for all parameter cells

Param[rl[8].accum"laror = 0

"

......

Figure 1. Choice of the recording dimension Figure 1. Choice of the recording dimension
Param[rl[Bl.tow_boundary = max(X_MAX. Y-MAXI;
Param[rl[@.up_boun&L?ry = min(X_MIN. Y-MINI:

Recording: when a point 0, .v) contributes to a parameter
Pnrsm[rl[@.~ccumulutor += I ;
IF(45°<&tiSD) [
ParamIrllBl.low~bound3iry=minlParam[rl[~.low~boundnry. paint.xJ:
P a r a m l r l l B l . u p _ b o u n d a r y = m s i (P ~ ~ ~ l ~ l ~ B l . ~ p ~ b ~ ~ ~ & ~ y , poinr.x):

Pnram[rl[B l . l o w _ b o u n d 3 i r y = m i n (P a r a m [r l [~ . l ~ w ~ b ~ ~ ~ d ~ ~ y , p o m y l ;
Paramlrll Bl.up_boundary=max(Param[rl[@.up_boundary. p6nr.y);

)ELSE I

I

Where min(a.6) returns the smaller one of U and b, and
max(a.b) returns the bigger one.

Consider an image of size LxW, whose range breath
of r is at most dp+w?. The memory requirement for the
2D parameter array of HT can be calculated as follows:

Mem Req = \/L?+W'x!!!?x sizeof(param cell) bytes.

We choose Ar =2 and 8@=1" to keep both the accuracy of
direction and the clustering effect. The parameter cell
contains one accumulator, usually an integer (4 bytes), and
two boundary recorders that are shon integers (2 bytes for
each). For a large image of AO-size engineering drawing
scanned with 300 dpi, which is tine enough to digitize a
line as thin as 0.003 inches, L is about 14,000 pixels and
W about 9,900 pixels. Then, the memory requirement for
the parameter m a y is about 12.3 Mega-bytes. This is
obviously acceptable to current hardware condition.

2.2 Line verification

Ar A e

In this step, we introduce two more thresholds:
MIN-LEN stands for the minimum acceptable line length,
and M A X G A P stands for the maximum acceptable gap
length. They are preset according to the image type.

After all feature points are transformed, we detect the
local maximal peak within a small 5x5 neighborhood, and
all peaks higher than MINLEN are stored into a peak list
in descending order of peak value. The line verification
begins from the head of the peak list; thus, it can also take
advantage of the global peak. Owing to the recorded
boundary information, we only need lo analyze the
valuable part in the original image determined by the peak
parameter to find the evidence of line segments and detect

34

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 06:52:22 UTC from IEEE Xplore. Restrictions apply.

the line width' of each segment. Then, the pixels of the
verified line segments are removed from the image, i.e.,
tuning them. from black to white. Since this line
verification is based on image analysis, not on feature
points, the overlapping lines are successfully avoided by
removing the pixels of the verified line segments. Thus, it
does not need' the re-accumulation, and it is much faster
than using the.method of [7].

According to the boundary recording process defined
in Section 2:l: the image coordinates of two boundary
points can be calculated easily, denoted by Plb and Pub.
The line verification analyzes the image along the straight-
line direction from Plb to Pub sequentially. To avoid the
heavy computation in solving the equation, we adopt the
off-the-shelf, rasterization method - Bresenham algorithm
for straight line [8] , which generates a straight-line path
point with at most three additions - t o generate the eight-
connected path points from Plb to Pub. denoted by Pi
(i=l..n), where PI=Plb and P,=P,b. The detailed image
analysis algorithm is as follows.

gap-count = 0; stan-pos = I ;
FOR (i = 1.TO n) {

IF (Pi i s black) {
gap-count = 0;
IF (start-pos = 0) start-pos = i ;
IF (i = n) {

IF (VerifySegment(start-pos,i) == true) {
Accept this segment;
Remove the pixels of thin segment;

I

)ELSE I
I

gap-count +=I;
IF (gap-count= MAX-GAP or i = n) {

IF (i-gap-caunt-start-pas > MIN-LEN) [
IF (VerifySegmenr(st~_pos,i-gap-count) = true) {

Accept this segment;
Remove the pixels of this segment;

1
I
StdILpOS = 0;

I
I

1
This algorithm detects all segments from Plb to Pub that
are longer than MIN-LEN and do not contain gaps longer
than MAX-GAP. For each segment, it then calls
VerifySegment(srar1,end) for verification by checking the
line width. The line width of a line segment is voted by all
local line widths detected at each black Pi(i=srarr..end). If
the voted line width is larger than MAX-LW, this segment
may be a part of intersecting line or other shapes so that it
should be rejected. Since this algorithm does not depend
on a single threshold for the decision purpose, i t
overcomes the difficulty of trading-off between short lines
and noise. Thus, i t can distinguish between true lines and a
random alignment of points correctly.

Figure 2. Local line width detection
Considering the poor quality of line image, we use a

missing-pixel-tolerant approach to detect the local line
width. For each Pi, we use P,.] and Pi+[(if available) to
help the decision (Fig. 2). Vi is the straight-line path
passing P, and perpendicular to the line &Pub. which is
also generated by Bresenham algorithm. Vi(k) (k=-
MAX-LW..MAX-LW) is the point on the V, path with k
steps away from Pi, particularly, Vj(O)= Pi. The detection
starts from k=O and increases k by 1 iteratively until the
number of black pixels among y(t) (j=i-l..i+l, t=k..k+l)
is less than 4, and then records the stopped k as k,,,. Next,
i t decreases k from 0 with the same criteria to get k,,,,".
Finally, the lmal line width is calculated as kmax-k,nin+l.
This approach can detect correct line width from poor
quality images as well as high quality images. The verified
line segments will be stored with three parameters: starting
point, end point, and line width.

2.3 Line removal

After all line segments contributed to a peak have
been verified, the pixels of these line segments should be
removed from the image to avoid overlapping lines. It is
easy to remove the pixels of a line segment within a
rectangular area determined by the parameters (the long
axis is from the starting point to the end point, and the
length of short axis equals the line width). This is correct
for an isolated line segment. However, if there are other
under-detected line segments intersecting this line segment,
their intersection parts will also be removed so that the
under-detected line segment will be separated. This
problem also exists in other line verification methods
based on removing the feature points.

Instead, we use an intersection-preserving approach
based on detecting the trends of branches at the
intersection [9]. It simply removes those parts whose local
line widths are less than or similar to the line width of this
line segment as rectangular areas. For other parts, i.e.
intersection parts, i t detects the trend of branches toward
the line segment to approximate the border for removing
and for preserving purposes. This approach only removes

35

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 06:52:22 UTC from IEEE Xplore. Restrictions apply.

the pixels belonging to the verified line segments. Thus,
the overlapping lines are avoided, and the entirety of
under-detected line segments is kept as well.

3. Experimental results

We have implemented our approach based on the
standard HT using V C w , and the experiment was
performed on a PC with PIIISOO CPU and 256M RAM.
Figure 3 shows a fraction of the line recognition result on
a real image. The left picture is the original image, and the
right one shows the detected lines with their line widths
displayed. Both the location and the line width are
detected correctly. The vertical broken lines are also
recovered, while the horizontal dashed lines are retained.

Figure 3. Line recognition result of a real image
The testing data include five real images, which are

scanned from engineering drawings of size A4, A3. A2,
AI and AO, respectively. We set MIN-LW to be O.OlxR,
MAX-LW to be O . l x R , MIN-LEN to be O.ISxR, and
MAX-GAP to be 0.03xR in the experiment, where R is
the scan resolution. Table 1 shows the performance of our
approach, where Time is the whole processing time for the
line detection, T-LV is the time spent on the line
verification, LS-Num is the number of recognized line
segments, TLS is the average line-verification time for
each line segment, and RecocRate is the recognition rate.

~~~~~~ ~ ~ ~ - I  

T-LV (sec.) 
LS-Num 1018 1778 3240 5218 
T/LS(msec.) 6.95 8.74 10.29 12.84 16.69 
Reco Rate 0.89 0.90 0.91 0.88 0.87 

Table 1. Performance over different image sizes 
From the above experimental results, we conclude 

that the proposed approach is very time-efficient since 
T-LV is only a small fraction of Time. T/LS increases as 
the image size becomes larger since the average length of 
line segments becomes longer. The whole processing time 
is acceptable considering the image size. Actually, the 
standard “I can be replaced by some proper improved 
HTs to further accelerate the accumulation. 

4. Conclusions 

This paper proposes a new approach for detecting line 
segments using HT. The boundary recorder and image- 
analysis-based line verification make i t  very time-efficient. 
This approach enables HT to process large-size images, 
especially for those line-width-critical applications. It 
overcomes the difficulty of choosing a proper threshold to 
distinguish between short lines and noise, and it avoids the 
overlapping lines by removing the pixels of detected line 
segments, which is more robust than just clearing the N x N  
neighborhood. This approach could be easily extended to 
other global accumulation HTs to accelerate the accumula- 
tion step. Of course this approach can work with the 
hierarchical €€I [7], which, however, cannot take its full 
advantages. Since Bresenham algorithm for circle is also 
very time-efficient, the similar idea can be applied to arc 
and circle detection, which will be useful to detect dashed 
arcs and circles with correct line width in a noisy 
environment. 

Acknowledgement 

The work described in this paper was fully supported 
by two grants from the Hong Kong Special Administrative 
Region: the Hong Kong Research Grants Council under 
Project No. CUHK422?/01E, and Innovation and 
Tcchnology Fund, under Project No. ITS/29/00. 

References 

[I] J.  lllingwarth and, J.  Kittler, “A survey of the Hough 
transform”, CVGIP. 1988, vo1.44. pp. 87-1 16 
[ 2 ]  T.M. van Veen and F.C.A. Grxn. “Discretization errors in 
the Hough transform,” Parrern Recognirion. 1981, 14: 137-145. 
131 L. Xu and E. Oja. “Randomized Hough transform (RHT): 
basic mechanisms, algorithms, and computational complexities”. 
CVGIP: h u g e  Undersranding. 1993,57(2): 131-154. 
141 N. Kiryati, Y. Eldar. and A.M. Bruckstein, “A probabilistic 
Hough transform”. Parrern Recognirion, 1991. 24(4): 303-3 16. 
[5] P.-K. Ser and W.-C. Siu, ”Sampling Hough algorithm for the 
detection of lines and curves”, in Proceedings of lEEE 
lnlernarional Svmnosium on Circuirs ond Svsremr. 1992. “01.5. 
pp. 2497 -2500 ’ 

161 P.R. Thnft and S.M. Dunn. “Aooroximatine ooint-set imaees .. _ .  . .  I 

by line segments using a variation of the Hough transform”, 
CVGIP, 1983, vol.21, pp. 383-394 
171 J .  Princen. J .  Illingwonh, and J.  Kittler, “A hierarchical 
aooroach to line extraction based on the Houeh transform”. 
CVGIP, 1990. vol. 52. pp. 57-77 
181 J .  D. Folev. A. van Dam. S. K. Feiner. and J.  F. Huehes. 

~ 

” . .  
Compurer Gruphicu: Principles and Procrice. Addison-Wesley, 
Reading, MA. 1990 
[9] J .  Song. F. Su. J .  Cheng. and S .  Cai. “A knowledge-aided line 
network oriented vectorization method for engineering 
drawings”, Pattern Analysis and Applicnrion, ZOW, 3(2):142-152. 

36 

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 06:52:22 UTC from IEEE Xplore.  Restrictions apply. 


