
Defuse: A Dependency-Guided Function Scheduler
to Mitigate Cold Starts on FaaS Platforms

Jiacheng Shen∗, Tianyi Yang∗, Yuxin Su∗, Yangfan Zhou†‡, and Michael R. Lyu∗
∗Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China.

Email: {jcshen, tyyang, yxsu, lyu}@cse.cuhk.edu.hk
†School of Computer Science, Fudan University, Shanghai, China. Email: zyf@fudan.edu.cn

‡Shanghai Key Laboratory of Intelligent Information Processing, Shanghai, China.

Abstract—Function-as-a-Service (FaaS) is becoming a preva-
lent paradigm in developing cloud applications. With FaaS,
clients can develop applications as serverless functions, leaving
the burden of resource management to cloud providers. However,
FaaS platforms suffer from the performance degradation caused
by the cold starts of serverless functions. Cold starts happen
when serverless functions are invoked before they have been
loaded into the memory. The problem is unavoidable because
the memory in datacenters is typically too limited to hold all
serverless functions simultaneously. The latency of cold function
invocations will greatly degenerate the performance of FaaS
platforms. Currently, FaaS platforms employ various scheduling
methods to reduce the occurrences of cold starts. However, they
do not consider the ubiquitous dependencies between serverless
functions. Observing the potential of using dependencies to
mitigate cold starts, we propose Defuse, a Dependency-guided
Function Scheduler on FaaS platforms. Specifically, Defuse
identifies two types of dependencies between serverless functions,
i.e., strong dependencies and weak ones. It uses frequent pattern
mining and positive point-wise mutual information to mine such
dependencies respectively from function invocation histories. In
this way, Defuse constructs a function dependency graph. The
connected components (i.e., dependent functions) on the graph
can be scheduled to diminish the occurrences of cold starts.
We evaluate the effectiveness of Defuse by applying it to an
industrial serverless dataset. The experimental results show that
Defuse can reduce 22% of memory usage while having a 35%
decrease in function cold-start rates compared with the state-of-
the-art method.

Index Terms—FaaS, Cold Start, Serverless, Cloud Computing,
Service Dependency

I. INTRODUCTION

Function-as-a-Service (FaaS) is a promising programming
model for cloud computing [1]. Many cloud providers have
launched their FaaS products, such as Google Cloud Func-
tions, AWS Lambda, Azure Functions, and so on. Compared
with traditional cloud products, the adoption of FaaS benefits
both cloud providers and their clients. Specifically, by provid-
ing FaaS services, cloud providers can maximize the utilization
of their infrastructures, i.e., host machines and VMs [2]. For
example, computing resources can be allocated on-demand
instead of idling and waiting to be used. Meanwhile, by
using FaaS platforms, clients can focus exclusively on their
application logic [3]. They only need to develop applications
as serverless functions and leave all the labor-intensive man-
agement and administration tasks to cloud providers. Besides,

clients’ expenses can be saved since they only need to pay for
what they actually use [4].

However, providing FaaS services to clients raises new chal-
lenges to cloud providers. By using FaaS, clients expect their
serverless functions to be “always ready”. As memory is one
of the most limited resources in datacenters [5], there exists
a trade-off between the readiness of serverless functions and
the memory consumption. Typically, FaaS platforms put each
serverless function into a container to execute them safely.
When a serverless function is invoked, if a container with the
function has been initialized in memory, the function can be
executed instantly. However, if the container is not loaded,
the latency of the function invocation will degenerate greatly
because container initialization is time-consuming [6]. This
is known as the cold-start problem on FaaS platforms. Since
not all serverless functions are frequently invoked, keeping all
these initialized containers loaded wastes the precious memory
of cloud providers. Besides, clients of FaaS platforms are not
billed on the resource consumption when their functions are
not executed. Keeping idle functions loaded also wastes cloud
providers’ money [4]. The increased latency of cold starts will
cause client losses and finally leads to economic losses.

Current methods on cold start mitigation can be classified
into two categories. One is based on system-level optimiza-
tions [6]. These methods generally focus on reducing the time
spent on executing a cold start. However, cold starts still lead
to the increased latency which will affect user experiences.
Another is to schedule serverless functions according to their
invocation histories [4]. These methods focus on reducing
the occurrences of cold starts. In this paper, by extending
scheduling methods with higher accuracy, we first analyze
the current scheduling methods and identify two issues. The
first is the coarse granularity of scheduling. Current scheduling
methods schedule all the serverless functions in an application
as a whole. The idle functions, i.e, those that are loaded but not
invoked, inevitably waste memory in FaaS platforms. Second,
current scheduling methods cannot cope with applications
without clear invocation patterns. The unpredictable invoca-
tion behaviors of these applications deteriorate the overall
performance of FaaS platforms. Therefore, it is critical to
attack these two issues, in order to improve the cold-start
performance.

We suggest that the ubiquitous dependencies among server-

194

2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS)

2575-8411/21/$31.00 ©2021 IEEE
DOI 10.1109/ICDCS51616.2021.00027

20
21

 IE
EE

 4
1s

t I
nt

er
na

tio
na

l C
on

fe
re

nc
e

on
 D

ist
rib

ut
ed

 C
om

pu
tin

g
Sy

st
em

s (
IC

DC
S)

 |
 9

78
-1

-6
65

4-
45

13
-9

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
DC

S5
16

16
.2

02
1.

00
02

7

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on October 14,2021 at 07:44:15 UTC from IEEE Xplore. Restrictions apply.

less functions can be leveraged to improve current scheduling
methods. The dependencies are the patterns when clients
invoke serverless functions. In clients’ perspective, serverless
functions are APIs that can be invoked remotely [7]. Clients
compose these APIs into complex applications. In this regard,
there exists two types of dependencies, i.e., (1) some functions
may be frequently invoked together and (2) some functions
may be invoked by others. We can utilize the dependencies
among serverless functions to guide the memory allocation
when scheduling on FaaS platforms. Specifically, we can
(1) schedule dependent functions as a whole, and (2) relate
unpredictable functions to predictable ones. By scheduling
dependent functions as a whole, cold starts can be reduced
because these functions will naturally be invoked together. By
relating unpredictable functions to predictable ones, the cold
starts incurred by unpredictable functions can be diminished
with the help of the predictable invocation patterns. Further-
more, scheduling in this finer granularity reduces the memory
consumption.

However, discovering the dependencies among serverless
functions is a non-trivial task. The dependencies are defined
solely by the usage patterns of clients. FaaS platforms cannot
acquire this information directly from the uploaded serverless
functions. Observing the fact that clients exploit serverless
functions by invoking them remotely, the usage patterns are
recorded in the traces of function invocations. We conduct
dependency mining by analyzing the invocation histories of
serverless functions. Specifically, we divide the dependencies
into strong and weak dependencies. The strong dependencies
describe the relationships between predictable functions. We
apply frequent pattern mining to discover it. The weak de-
pendencies relate unpredictable functions to predictable ones.
We exploit positive point-wise mutual information (PPMI) to
reveal it from the data.

In this paper, we propose Defuse, a dependency-guided
function scheduler on FaaS platforms. There are three steps in
Defuse, i.e., dependency mining, dependency set generation,
and scheduling. Dependency mining reveals the dependencies
among serverless functions from their invocation histories.
The output of it forms a function dependency graph. Then
dependency sets are generated as connected components on the
graph. Finally, Defuse schedules functions in the dependency
sets with their invocation histories to decrease the occurrences
of cold starts.

We evaluate Defuse with the Azure Public Dataset [8]. We
measure the function cold-start rates and memory usages of
different scheduling methods. The experimental results show
that compared with the baseline methods, Defuse reduces
35% of function cold-start rate while saving 22% memory
consumption.

The contribution of this paper is summarized as follows:
• To the best of our knowledge, this is the first work

that utilizes the dependencies among serverless functions
during the process of scheduling on FaaS platforms.

• We employ frequent pattern mining and PPMI to reveal
dependencies from the data. We further propose Defuse,

a dependency-guided scheduler, to mitigate the cold-start
problem on FaaS platforms leveraging the dependencies
among serverless functions.

• The experimental results show that compared with the
baseline methods, Defuse reduces 35% of function cold-
start rate while cutting 22% of memory usage.

This paper is organized as follows. Section II introduces
basic concepts about FaaS platforms and the cold-start prob-
lem on them. In Section III we present the motivations of
our work. Then in Section IV we elaborate the design and
implementation of Defuse. We present our experimental study
in Section V. We introduce some related works in Section VI
and discusses about the limitations in Section VII. Finally, we
conclude the paper in Section VIII.

II. BACKGROUND

In this section, we provide background information on
serverless computing, highlight the cold start problem in FaaS
platforms, and introduce some basic solutions.

A. Serverless Computing and FaaS

In a FaaS platform, clients implement serverless functions
instead of monolithic applications. These serverless functions
appear as APIs that can be invoked with different triggers
(e.g., events from the back-end, HTTP end-points) provided
by FaaS platforms [9]. There are two main benefits FaaS
provides to their clients. The first is that their time spent
on environmental management is saved. Clients no longer
need to manage virtual machines (VMs) or containers on their
own. Besides, FaaS platforms take the responsibility of scaling
clients’ functions when a burst of requests emerges. By using
FaaS, clients expect their serverless functions to be “always-
ready” regardless of the load of concurrent invocations. Thus,
one of the common Service Level Agreements (SLA) is the
latency of function execution [10].

To meet the latency SLA, cloud providers should execute
the serverless function as soon as the client’s request arrives.
Besides, FaaS platforms are responsible for container manage-
ment, i.e., instance selection, scaling, deployment, and fault
tolerance [1].

B. The Cold Start Problem in FaaS

As serverless function invocations exhibit unique character-
istics such as burstiness, variable execution times, and state-
lessness [11], meeting clients’ SLAs under such a dynamic
workload is challenging to all FaaS platforms. Typically, FaaS
platforms exploit sandbox mechanisms like containers to host
the serverless functions [12]. When a serverless function is
invoked, a platform normally takes three steps to deal with the
request. First, it will choose an available worker and create an
instance of the invoked function. An instance of the function
is a container having all the required code loaded. Then it
will execute the function in the container under restricted
resources. Finally, it will return the execution results to the
client according to the trigger type of the function. The whole
process is known as the critical path of a client’s request.

195

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on October 14,2021 at 07:44:15 UTC from IEEE Xplore. Restrictions apply.

Keep-alive
Time

Pre-warm
Time

Function Loaded

Function Execution

Cold Start

Warm Start

Fig. 1. The cold-start problem.

However, the existence of the critical path deteriorates
the latency of cold starts in FaaS platforms. A cold start
happens when a serverless function is requested without any
instance of it in memory. The problem is unavoidable [13],
[14] because the memory in datacenters is too scarce to keep
all instances of serverless functions loaded. During a cold
start, the whole critical path must be executed before clients
can get their results. Since the time-consuming container
initialization is on the critical path, the latency of cold function
invocations will increase greatly. Meanwhile, the execution
time of serverless functions is short and bursty [11]. The
increased latency of cold function invocations will deviate
from clients’ expectations of their function execution time,
which may lead to client losses and financial damage [15]. To
maintain an “always-ready” illusion to clients, cloud providers
have to (1) execute the critical path as fast as possible and (2)
reduce the occurrences of function cold starts.

Currently, there are two types of methods to mitigate the
problem of cold starts on FaaS platforms. One focuses on
cutting the time spent on the critical path. The other targets at
decreasing the number of cold starts. Here we briefly introduce
the latter since Defuse also aims to reduce the occurrences of
cold starts. The problem of serverless function scheduling can
be reduced to deciding three parameters, i.e., the scheduling
granularity, when to load into memory (pre-warm time), and
how long should it be kept in memory (keep-alive time). Given
the granularity of the scheduling, the decision of pre-warm and
keep-alive time is crucial. As shown in Figure 1, cold starts
can be reduced if functions can be loaded and kept in memory
before their invocations.

However, the trade-off between memory usage and cold-
start performance makes scheduling difficult. Employing an
aggressive scheduling policy that uses a long keep-alive time
will result in huge memory waste, while the reduced memory
usage will inevitably lead to an increased cold-start rate. For
example, the most aggressive scheduling policy is to set the
pre-warm time to be 0 and the keep-alive time to be ∞.
There will be no cold starts under this setting because all
functions are loaded. But such a policy is impractical because
it will waste the precious memory in FaaS platforms. An
ideal scheduler should achieve an optimal balance between
minimizing the occurrences of cold starts and keeping low

0.0 0.2 0.4 0.6 0.8 1.0
Invocation Frequency

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5

Pr
ob

ab
ilit

y
De

ns
ity

(a) Histogram of Function Invocation Frequency

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223
Function ID

0.0
0.1
0.2
0.3
0.4

In
vo

ca
tio

n
Fr

eq
ue

nc
y

(b) Invocation Frequencies of Functions in an Application

Fig. 2. Invocation frequencies of (a) all the serverless functions and (b)
functions in a single application.

memory consumption.

III. MOTIVATION

In this section, we will first show our observations of current
scheduling methods by conducting data analysis on an indus-
trial dataset [8]. Then we will demonstrate the opportunity
of using dependencies of serverless functions to reduce the
occurrences of cold starts in serverless platforms. Finally, we
conclude this section with the challenges we need to solve.

A. Observations of Current Methods

There are two main issues with existing scheduling methods.
1) Coarse Scheduling Granularity: The hybrid histogram

scheduling method [4] schedules function invocations and
allocates resources at the granularity of applications. An
application is a set of serverless functions developed by clients
to accomplish a complete business logic, e.g., a train ticket
selling system [16]. The coarse scheduling granularity leads
to two problems on FaaS platforms.

The first problem is the memory waste. Memory is wasted
because not all serverless functions in an application are
frequently invoked. Figure 2a shows the histogram of function
invocation frequencies in the applications they belong to.
64.7% of functions have an invocation frequency less than
0.25. Figure 2b shows the histogram of function invocation
frequency in a single application. In this specific application,
only 2 out of 23 functions have invocation frequencies of more
than 40%. Considering the amount of infrequent functions, the
problem is universal on FaaS platforms. The skewed distribu-
tion of function invocation frequencies shows that memory will
be wasted if a whole application is loaded into the memory
during its cold start. This further implies that scheduling at
the application level will waste a huge amount of memory
on loading these infrequent functions. Having these wasted
memories freed, FaaS platforms can employ more aggressive
caching policies to further reduce the occurrences of cold
starts.

196

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on October 14,2021 at 07:44:15 UTC from IEEE Xplore. Restrictions apply.

2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Application Coefficient of Variation

0.0
0.1
0.2
0.3
0.4
0.5

Pr
ob

ab
ilit

y
De

ns
ity

(a) CV Histogram of Applications

2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Function Coefficient of Variation

0.0
0.1
0.2
0.3
0.4

Pr
ob

ab
ilit

y
De

ns
ity

(b) CV Histogram of Functions

Fig. 3. The histogram of coefficient of variations of IT histograms of (a)
applications and (b) serverless functions.

The second problem is the increased cold-start overhead.
The time and computation resources required to deal with a
cold start is related to the number of functions to be loaded.
When scheduling at the application level, the platform needs
to load all the serverless functions in an application to deal
with a cold start. However, as indicated in Figure 2a and
Figure 2b, only a few functions in an application is needed.
This means that resources and time will be wasted on loading
functions that are unimportant to the cold start. Having the
overhead of a cold start reduced, FaaS platforms can allocate
more computing resources to deal with the potential burst of
requests.

2) Unpredictable Functions/Applications: The second issue
is the existence of unpredictable functions or applications,
i.e., functions or applications that do not exhibit clear invo-
cation patterns. Unpredictable applications/functions can be
distinguished with the coefficient of variation (CV) of their
binned idle time (IT), i.e., the time between two adjacent
invocations. Functions/applications with small CVs are con-
sidered to be unpredictable as discussed in [4]. The problem of
unpredictable functions is nonnegligible. Figure 3a shows the
distribution of application CVs. There are 14% unpredictable
applications with CV ≤ 5. The problem becomes even worse
when it comes to the granularity of functions. Figure 3b
shows the distribution of CV of function invocation interval
histograms. There are 32% unpredictable functions with CV
≤ 5. The existence of unpredictable functions/applications
incurs two problems to existing scheduling methods.

The first problem is that they incur a huge amount of
cold starts. Normally, FaaS platforms apply a 10-minute fixed
keep-alive policy to schedule these unpredictable applica-
tions/functions1. However, the invocation intervals of these
applications/functions are likely to exceed the fixed keep-alive
time [4]. This implies that the cold-start performance can be

1Hybrid histogram scheduling method [4] also uses a 10-minute fixed
keep-alive policy to schedule applications with small CVs, i.e., unpredictable
applications.

improved if these functions/applications can be properly coped
with.

The second problem is that the enormous number of unpre-
dictable serverless functions makes it difficult to employ a fine-
grained scheduling method. As shown in Figure 3b there are
32% of unpredictable functions with CV ≤ 5. The existence of
these unpredictable functions leads to a poor result if current
scheduling methods are directly applied at the function level.
(See Section V).

To find a better solution to the cold-start problem, we need
to figure out the following two questions:

• What caused the skewed distribution of function invoca-
tion frequencies?

• How to reduce the negative impact that unpredictable
functions/applications cause on FaaS platforms?

B. Dependencies of Serverless Functions

We suggest that the ubiquitous dependencies among server-
less functions can explain the skewed distribution of their in-
vocation frequencies. To clients, serverless functions are APIs
that jointly serve for a complex application. During the process
of composition, serverless functions will exhibit some usage
patterns, which can be viewed as dependencies among server-
less functions. Specifically, taking serverless-trainticket [16], a
train ticket selling system implemented as serverless functions
on OpenFaaS [17], as an example, when a user books a
ticket, the function preserve-ticket will invoke function
dispatch-seats and function create-order. This sim-
ple case implies that whenever a user books a ticket, the
three functions preserve-ticket, dispatch-seats and
create-order will be invoked together. Further, the function
dispatch-seats and function create-order are common
services that will be jointly invoked by other functions, which
means they will be frequently invoked together.

The dependencies among serverless functions can be ex-
ploited to reduce memory waste and decrease the occurrences
of cold starts. Specifically, in the case of the serverless-
trainticket, when a user books a ticket, we just need to load
three functions preserve-ticket, dispatch-seats, and
create-order. Compared with loading the whole applica-
tion, memory can be saved by only loading those necessary
functions. Generally, if a FaaS platform tracks all the depen-
dencies of serverless functions, more memory can be saved
by scheduling these dependency sets. The overhead of a cold
start can also be reduced since fewer functions are required.

However, revealing dependencies among serverless func-
tions is a non-trivial task for FaaS platforms. In special settings
like AWS step functions, FaaS platforms can acquire the
dependencies by requiring clients to provide them. In most
cases, the dependencies cannot be explicitly acquired because
they are defined solely by the usage patterns of clients. Finding
that the usage patterns of functions are recorded in their
invocation histories, we decide to reveal the dependencies from
this data.

In summary, the challenges in leveraging the dependencies
to schedule serverless functions are listed as follows.

197

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on October 14,2021 at 07:44:15 UTC from IEEE Xplore. Restrictions apply.

Function
Invocation

History

Function
Dependency

Graph

Dependency
Mining Function

Dependency
Set

Scheduler

Dependency
Set Generation

Section IV.B Section IV.C Section IV.D

Scheduling

Fig. 4. Overview of Defuse

• How to reveal the dependencies among serverless func-
tions?

• How to cope with unpredictable functions?
• How to have comparable cold start performance while

having less memory usage compared with coarse-grained
scheduling methods?

IV. METHODOLOGY

In this section, we will introduce how Defuse solves the
above challenges. We will first demonstrate the workflow of
Defuse. Then we will present each step in detail, i.e., depen-
dency mining, dependency set generation, and scheduling.

A. Overview

Figure 4 shows an overview of Defuse. There are three
steps, dependency mining, dependency set generation, and
scheduling. First, Defuse takes the invocation histories of
serverless functions as the input and conducts dependency
mining on these invocation records. The dependencies are
divided into two categories, i.e. strong dependencies and weak
dependencies. A function dependency graph is constructed
based on the mined dependencies. Then we generate depen-
dency sets of serverless functions according to the graph.
All these dependency sets are the input of the dependency-
guided scheduling policy, in which all serverless functions in
a dependency set are scheduled as a whole. FaaS platforms
can decide when to load a dependency set and how long to
keep it in the memory based on the scheduling policy.

B. Dependency Mining

The first challenge to solve is how to discover the depen-
dencies among serverless functions. We will start by defining
the dependency we want to find and the intuition behind it.
Then we will present how to acquire the dependencies from the
invocation histories of serverless functions and how to generate
dependency sets.

1) Definition of the Dependency: Two aspects need to be
considered when defining the dependencies among serverless
functions. The first is how to precisely describe the depen-
dencies demonstrated in Section III. There are two properties
of the dependencies. First, dependent functions are likely to
be invoked together. Second, dependencies only exist among
serverless functions of the same client because the dependen-
cies result from the usage pattern of the clients. Typically,
clients only have access to their own serverless functions. It
would be meaningless to define dependencies across clients.

The second aspect is the cold starts incurred by the
unpredictable functions. If these ubiquitous unpredictable
functions cannot be properly dealt with, the latency of

FaaS platforms will degenerate greatly. The dependencies
between predictable and unpredictable functions could be
leveraged to solve the problem. Here is a motivating ex-
ample. In serverless-trainticket, users may book tickets at
any time. This will lead to the unpredictable invocation of
the function preserve-ticket. During the execution of
preserve-ticket, it will invoke dispatch-seat, which is
a common service that is invoked frequently and is predictable.
The above dependencies help us relate unpredictable functions
with predictable ones. The unpredictable functions could be
scheduled according to the invocation patterns of predictable
ones, which will reduce the cold starts.

Therefore, we define the strong dependencies and weak
dependencies among serverless functions.

• Strong Dependency: Function fa and function fb have
strong dependency iff. 1) they belong to the same client
and 2) there is high probability of them being simul-
taneously invoked in a small time window. It is a bi-
directional relationship (fa ↔ fb).

• Weak Dependency: Function fa have weak dependency
on function fb iff. 1) they belong to the same client
and 2) there is high probability that fa is invoked under
the condition that fb is invoked. It is a single-directional
relationship (fa → fb).

Both strong and weak dependencies should satisfy two condi-
tions, i.e., (1) the ownership condition, and (2) the probability
condition. The strong dependencies describe the relationship
between globally frequently invoked functions, which are
likely to be predictable. The weak dependencies describe the
relationship between unpredictable and predictable functions.

2) Strong Dependency Mining: The purpose of strong de-
pendency mining is to find the relationships among functions
that are frequent and predictable. We need to find combinations
of a client’s functions that have a high probability of being
invoked together. Frequent pattern mining [18] naturally fits
this requirement. Given a set of transactions, frequent pattern
mining can find all the itemsets with frequency greater than
a given threshold. Hence, Defuse adopts frequent pattern
mining to uncover the strong dependencies among serverless
functions.

Specifically, for each client, the invocation records of all
her functions can be represented as a set R = {ri|i =
1, 2, . . . ,m}, where m is the number of functions of the client,
ri = (t1, t2, . . . , tn) is the invocation records of function
fi, and tj is the timestamp of its jth invocation. Defuse
first divides the period where the records are sampled into
small non-overlapping time windows and counts the number
of invocations of each function in the time window. Then we
get the invocation matrix I for the client, where Ii,j is the

198

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on October 14,2021 at 07:44:15 UTC from IEEE Xplore. Restrictions apply.

number of invocations of function i in time window j. After
that, for each column of I , Defuse gathers all the functions
with non-zero invocation count into a single transaction and
gets all the transactions of the client. Finally, Defuse employs
FP-Growth [19] to conduct frequent pattern mining on the
generated transactions. The outputs of frequent pattern mining
are frequent itemsets. All functions in a frequent itemset
have a high probability of being invoked in the given small
time window, which satisfies the probability condition. Addi-
tionally, since Defuse conducts frequent pattern mining only
on functions that belong to the same client, the ownership
condition is satisfied as well. The strong dependencies of all
serverless functions in FaaS platforms can be retrieved by
repeating the above steps to each client on the platform.

3) Weak Dependency Mining: The goal of weak depen-
dency mining is to find the dependencies between unpre-
dictable and predictable functions. Since the coefficient of
variations (CV) of idle time (IT) histograms of unpredictable
functions are small. Defuse distinguishes unpredictable func-
tions with predictable ones with the CV of function IT
histograms. Particularly, Defuse generates the IT histogram of
each function from its corresponding vector in the invocation
matrix I . Then Defuse calculates the CV for each function
and discriminates them by a threshold.

Defuse mines weak dependencies by positive point-wise
mutual information (PPMI) [20]. Suppose the possibilities of
an unpredictable function fu and a predictable function fp
being invoked individually are Pu and Pp, respectively. Let
Pu,p indicate the probability of them being invoked together.
The PPMI of the invocation of fu and fp can be represented
as:

PPMI(fu, fp) = max(0, PMI(fu, fp))

Where PMI(fu, fp) is the point-wise mutual information
(PMI) [21] between fu and fp. It can be represented as:

PMI(fu, fp) = log2
Pu,p

Pu · Pp

Intuitively, if fu and fp are dependent, the probability of
them being invoked together will be higher than they are
each invoked independently. As a result, Pu,p will be greater
than Pu · Pp, which means PMI will be positive. The
higher the PMI(fu, fp) the stronger the dependency. Since
PPMI(fu, fp) is the maximum of PMI(fu, fp) and 0, it is
also positively related to the degree of dependency.

To get PPMIs, Defuse first constructs a co-occurrence ma-
trix C based on the function invocation matrix of predictable
and unpredictable functions. Each row of C represents an
unpredictable function and each column of C represents a
predictable one. Ci,j represents the number of co-invocations
of function fi and fj in a small time window. Then we es-
timate the probability by invocation frequencies and calculate
PPMI based on C. For each unpredictable function fui

,
a vector vui

= (PPMI(fui
, fp1

), . . . , PPMI(fui
, fpw

)) is
generated by Defuse. After sorting each vector in descending
order, Defuse assigns the top k predictable functions to be

Strong Dependency
Weak Dependency
Serverless Function

Dependency Set 1 Dependency Set 2

Fig. 5. The Dependency Graph and Dependency Sets of Serverless Functions

weakly dependent on the unpredictable function fui , where k
can be defined by users.

C. Dependency Set Generation

The second step of Defuse is to generate dependency sets
based on the mined dependencies. As mentioned in Section II
a scheduler needs to decide the granularity of scheduling
and how long a function should stay in memory. However,
the mined dependencies are relationships among serverless
functions, which cannot be directly exploited. To facilitate the
scheduling step, Defuse conducts dependency set generation
to convert the relationships into function sets. First, Defuse
constructs a function dependency graph as shown in Figure 5.
Each vertex in the graph is a serverless function and each edge
represents either strong or weak dependency. The dependency
sets are defined as connected components on the graph.
Then Defuse uses union-find to extract all these connected
components and group them as dependency sets. Implied
by the definition of dependencies, functions connected with
each other have a high probability of being jointly invoked.
Scheduling functions in a dependency set together reduces the
occurrences of cold starts.

D. Scheduling

The last step of Defuse is to schedule serverless functions
based on the generated dependency sets. As discussed in
Section II, for each dependency set, the scheduler needs to
decide 1) when to pre-warm it by loading it into the memory
(pre-warm time) and 2) how long to keep it in memory
after it is invoked (keep-alive time). As the IT histogram is
proved to be effective in scheduling functions in [4], we adopt
the same policy to determine the pre-warm time and keep-
alive time of each dependency set. Figure 6b illustrates the
cumulative distribution function (CDF) of an IT histogram of
a dependency set. We set the 5th percentile of the IT histogram
as the pre-warm time and load the set of functions into the
memory this period after its invocation. Then we set the time
between the 5th and 95th percentile as the keep-alive time,
which means a dependency set will be reserved in the memory
without being invoked for this period.

Besides, there exist some dependency sets without clear
invocation patterns. We distinguish dependency sets as pre-
dictable sets and unpredictable sets based on their CVs. The

199

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on October 14,2021 at 07:44:15 UTC from IEEE Xplore. Restrictions apply.

Scheduler

New
Function

Invocation

Find
Dependency Set

Predictable?

Yes

No

Schedule based on
IT histogram

10-minute fixed
keep-alive

Dynamic
Pre-warm
Keep-alive

Fixed
Keep-alive

(a)

5th percentile

95th percentile

Idle Time

Pre-warm
Time

Keep-alive
Time

C
D

F

(b)

Fig. 6. The Scheduling Policy. (a) The scheduling procedure when a new invocation is triggered. (b) Deciding keep-alive time and pre-warm time by the
CDF of idle time between function invocations.

scheduling policy is shown in Figure 6a. For predictable
sets, Defuse decides the pre-warm time and keep-alive time
based on their IT histograms. For unpredictable sets, Defuse
steps back to a fixed-timeout policy. Since the granularity
of scheduling is finer, Defuse can employ more aggressive
timeout settings and further reduce the negative effect brought
about by these unpredictable sets. In addition, it is possible to
conduct scheduling using different policies and we will discuss
this in Section VII.

V. EXPERIMENTS

In this section, we focus on the following research questions
to evaluate Defuse.

• RQ1: How effective is Defuse compared with other
scheduling methods?

• RQ2: What is the overhead of Defuse on FaaS platforms
compared with other scheduling methods?

• RQ3: What is the performance of Defuse under different
memory usage?

• RQ4: What are the contributions of weak and strong
dependency mining to Defuse?

A. Experiment Settings

To evaluate the cold-start performance of Defuse, we con-
duct simulations on the Azure Public Dataset [8]. The dataset
released by [4] contains a 14-day function invocation record on
the Microsoft Azure Functions with 83,137 functions, 24,964
applications, and 15,097 users. For each serverless function,
the dataset records its invocation times in the granularity of
minutes. We mine dependencies on the invocation data of the
first 12 days and conduct simulation with the data in the last
2 days. All the simulations are conducted on a workstation
with two 12-core Intel Xeon E5-2620 CPUs and 128 GB
memory. Since the traces of functions are recorded minute-
wise, we set the time window to be 1 minute for simplicity. For
strong dependency, we conduct frequent pattern mining with
pyfpgrowth2. Since the memory consumption of FP-Growth
explodes when the length of transactions exceeds a limit,
we shuffle the functions of a user and split them into small
windows of functions. In order to reserve dependencies across

2https://github.com/evandempsey/fp-growth

windows, the window size is set to be 20 and the stride is set
to be 10. There are two parameters in the dependency mining
step, i.e. the support θ of frequent pattern mining and the top-k
in the weak dependency mining. To set proper parameters, we
conduct line-search on both θ and k and discover that Defuse
performs best when the support is set to be 0.2 and the top-k
is set to be top-1.

We choose two baseline methods, namely Hybrid-
Application and Hybrid-Function. Hybrid-Application adopts
the hybrid histogram scheduling policy [4] at the applica-
tion level. We reproduce the method strictly following the
descriptions in the paper. Hybrid-Function simply employs the
hybrid histogram scheduling policy at the function level. We
implement the method by directly setting the granularity of
scheduling to be the function level. The reproduced schedul-
ing policy has a 0.25 application cold-start rate during the
simulation on the traces of the last 2 days, which is about
the same as the result described in the original paper [4].
There are two main sources of the little difference. The first
is the randomness in the ARIMA model and the second is the
differences in the dataset3.

There are three parameters in the hybrid histogram schedul-
ing policy, i.e., cvthresh, memthresh, and histthresh. cvthresh
distinguishes predictable functions from unpredictable ones.
memthresh controls the keep-alive time of unpredictable func-
tions. It decides how long an unpredictable serverless function
will stay in the memory after its former invocation. Finally,
histthresh controls the pre-warm time and the keep-alive time
of predictable functions according to its IT histogram. All
these three parameters will affect the memory usage. For all
the baseline methods, we set memthresh = 10 minutes and
histthresh = 0.05 following the previous work [4]. We set
cvthresh = 5 which performs better than the default setting
(cvthresh = 2) as reported in [4].

B. Evaluation Metrics

We adopt the following three metrics to evaluate the mem-
ory usage, cold-start performance, and the cost of cold starts of
different scheduling policies. First, limited by the dataset we
approximate the memory usage of different methods with the

3The released dataset is a small fraction of the dataset used in [4]

200

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on October 14,2021 at 07:44:15 UTC from IEEE Xplore. Restrictions apply.

0.8 0.9 1.0 1.1 1.2 1.3 1.4
Normalized Memory Usage

0.0

0.1

0.2

0.3

0.4

0.5

0.6
75

-p
 F

un
ct

io
n

Co
ld

-S
ta

rt
Ra

te Defuse
Hybrid-Function
Hybrid-Application

Fig. 7. 75th percentile function cold-start rate under different memory usage

number of functions loaded in memory. The dataset doesn’t
provide the run-time memory consumption of each serverless
function. Considering the fact that serverless functions usually
perform simple tasks, the memory consumption of them will
be close. We resort to using the number of functions loaded
in memory to evaluate the memory usage. Then, similar
to [4], we quantify the cold-start performance of different
scheduling methods by the function cold-start rate. For Defuse,
we calculate the cold-start rates of each function as the cold-
start rate of its dependency set. Similarly, for the Hybrid-
Application method, the cold-start rate of functions are com-
puted as the cold-start rate of their applications. As for the
Hybrid-Function, we simply calculate the cold-start rate of
each serverless function during the simulation. Intuitively, the
lower the cold-start rate, the fewer functions will encounter
high-latency cold starts when they are invoked. This means
that the latency of function invocations will also be reduced.
Finally, we measure the overhead of scheduling methods by
the number of loading functions. The process of loading
serverless functions requires FaaS platforms to execute the
critical path, which consumes the computation resources of
host machines. The fewer the functions being loaded, the
more free computation resources can be used to serve clients’
requests. Therefore, it is reasonable to evaluate the overhead
that a scheduling method will add on FaaS platforms with the
number of loading functions.

C. RQ1: Effectiveness of Defuse

Figure 7 shows the 75th percentile function cold-start rate of
three scheduling methods under different memory usages. To
precisely control the memory usage of each method, we add
an additional parameter, amplification factor a. Specifically,
for each method, we increase or reduce its memory usage by
multiplying a to the calculated keep-alive time. Each point
on the figure represents the result of a single simulation.
The x-axis of the figure means the average memory usage
of the experiment. Without further noticing, all the memory
usages are normalized by the minimum memory usage of
Defuse. The y-axis of the figure means the 75th percentile

0.0 0.2 0.4 0.6 0.8 1.0
(a) Function Cold Start Rate

0.2

0.4

0.6

0.8

1.0

CD
F

Defuse
Hybrid-Function (HF)
Hybrid-Application (HA)

Defuse HF HA
(b) Method

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

No
rm

al
ize

d
M

em
or

y
Us

ag
e

Fig. 8. CDF of function cold start rate of Defuse, Hybrid-Function, and
Hybrid-Application

function cold-start rate. A point (x, y) on the graph indicates
that under the memory usage of x, there are 75% serverless
functions that have cold-start rates less than y. Hence, the
closer a point is to (0, 0), the better the performance of the
scheduling method. The Hybrid-Function scheduling method
has the least average memory usage, but it has the highest cold-
start rate. This is caused by the huge number of unpredictable
functions that it cannot properly deal with. On the other hand,
Hybrid-Application has more memory usage and lower cold-
start rate. However, its cold-start rate will increase greatly
when its memory usage is restricted. Compared with two
baseline methods, Defuse exhibits the best cold-start perfor-
mance. Compared with the Hybrid-Application method, the
memory usage of Defuse is reduced. However, the memory
consumption of Defuse exceeds that of the Hybrid-Function
method. This happens because Hybrid-Function schedules at
a finer granularity. But the improvement in function cold-start
rate outweighs the increase in the memory usage.

Figure 8a shows the cumulative distribution (CDF) of the
cold-start rates of serverless functions under different schedul-
ing methods. Figure 8b shows the corresponding memory
consumption. We restrict the memory consumption for the
fairness of comparison. Defuse has more functions that have
a lower cold start rate compared with the other two. Es-
pecially, compared with the Hybrid-Application scheduling
method, Defuse has a 20% reduction in memory usage while
having a 35% decrease in the 75th percentile function cold-
start rate. However, the Hybrid-Application method has fewer
functions that have high cold-start rates compared with the
other two fine-grained methods. The inferior performances of
finer-grained scheduling methods are caused by the infrequent
unpredictable serverless functions. The same problem also
exists in the Hybrid-Application scheduling method, but the
negative impact is weaker since these functions are grouped
together as applications. The increasing memory usage of the
Hybrid-Application contributes to the decrease of cold-start
rates in these functions. The problem can be mitigated with a
different scheduling policy. For example, by conducting time-
series predictions to schedule functions more accurately. We
leave this to our future work and will discuss it in Section VII.

D. RQ2: The Overhead of Defuse

To evaluate the overhead of Defuse on FaaS platforms,
we measure the number of loading functions in every minute

201

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on October 14,2021 at 07:44:15 UTC from IEEE Xplore. Restrictions apply.

0 20 40 60 80 100 120
Timestamp

0.0

0.2

0.4

0.6

0.8

1.0

No
m

al
ize

d
Lo

ad
in

g
Fu

nc
tio

n Defuse
Hybrid-Application

Fig. 9. Normalized number of loading functions in 2 hours. (We don’t
consider Hybrid-Function here because it sacrifices cold-start rate to have
lower memory consumption and load one function at a time.)

0.0 0.2 0.4 0.6 0.8 1.0
(a) Function Cold Start Rate

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

CD
F

Defuse
Defuse-3
Defuse-5
Defuse-10

Defuse Defuse-3 Defuse-5 Defuse-10
(b) Method

0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20

No
rm

al
ize

d
M

em
or

y
Us

ag
e

Fig. 10. CDF of function cold start rate under different memory usage.

during the simulation. The number of loading functions reflects
the computation resources that FaaS platforms need to spend
on the scheduling. We first calculate the average loading func-
tions in every minute during the simulation. Compared with
the Hybrid-Application method, Defuse reduces the average
number of loading functions by 79%. Figure 9 shows the time
series of the normalized number of loading functions in two
hours. The number of loading functions is normalized by the
maximum number of loading functions of Hybrid-Application
in the period. We can also find that the cost of cold starts is
reduced sharply by using Defuse. The reduction in the number
of loading functions owes to the finer granularity of scheduling
that Defuse employs. This implies that the dependency of
serverless functions can be effectively used to reduce the
pressure on FaaS platforms.

E. RQ3: Performance under Different Memory Consumption

To test the stability of Defuse, we measure the function
cold-start rate under different memory consumption. Fig-
ure 10a shows the CDF of the function cold-start rate of
Defuse under different memory consumption. Similarly, we
control the memory usage by changing the amplifying factor
a to be 1, 3, 5, and 10, respectively. Figure 10b shows
the normalized memory consumption. The results show that
more functions have smaller cold-start rates when memory
usage increases, which confirms the trade-off between memory
consumption and function cold-start rate. This further shows
that cloud providers can simply balance the memory consump-
tion and the function cold-start rates by choosing a proper
parameter that controls memory usage.

0.0 0.2 0.4 0.6 0.8 1.0
(a) Function Cold Start Rate

0.2

0.4

0.6

0.8

1.0

CD
F

Strong + Weak (S+W)
Strong-Only (S-O)
Weak-Only (W-O)

S+W S-O W-O
(b) Method

0.6

0.7

0.8

0.9

1.0

1.1

No
rm

al
ize

d
M

em
or

y
Us

ag
e

Fig. 11. Left: CDF of function cold-start rate using (1) both strong and
weak dependency, (2) strong dependency only, and (3) weak dependency only.
Right: Their corresponding memory consumption

F. RQ4: Contribution of Strong and Weak Dependency Mining

We also conduct an ablation study on Defuse. Particularly,
we focus on evaluating the contribution of strong and weak
dependency mining. We compare the cold-start performance
and memory consumption using (1) strong dependency mining
only (Strong-Only), (2) weak dependency mining only (Weak-
Only), and (3) both (Strong + Weak). Figure 11a shows
the CDF of function cold-start rate of the three approaches.
Figure 11b shows the corresponding memory consumption.
Compared with Weak-Only, more functions exhibit lower cold-
start rates in Strong-Only, but there are more functions with
high cold-start rates. This is because the strong dependencies
only detect functions that are globally invoked together leaving
lots of unpredictable functions. However, the weak dependen-
cies can link these unpredictable functions to predictable ones.
Linking predictable functions with unpredictable functions and
scheduling them as a whole effectively reduces the cold-
start rates of these unpredictable functions. Combing both
strong and weak dependency mining produces the lowest func-
tion cold-start rate. Nevertheless, the memory consumption
of Strong+Weak is also the highest. This happens because
combining the two dependencies generates bigger connected
components in the dependency graph, which results in bigger
dependency sets. Combining with the results in Figure 7,
Defuse utilizes the memory more efficiently compared with the
Hybrid-Application scheduling method. The efficiency comes
from the fact that combining strong and weak dependencies
can guide memory usage.

VI. RELATED WORK

Cold Start Mitigation. Cold start mitigation [22] on FaaS
platforms is an emerging research problem. Approaches for
cold-start mitigation can be divided into two categories, i.e.,
reducing the time spent on a cold start and reducing the
occurrences of cold starts.

There are three ways to reduce the time spent on a cold
start. The first one is to speedup container initialization.
SOCK [6], and HotC [23] leverage lightweight containers to
reduce the latency of creating a new container, the memory
footprint, and the latency of network of containers. Akkus et
al. [24] introduce application-level sandboxing and a hierar-
chical message bus for acceleration. SEUSS [25] leverages

202

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on October 14,2021 at 07:44:15 UTC from IEEE Xplore. Restrictions apply.

the advantage of unikernels to speedup function invocations
as well as cache more function in memory. The second is
to reduce the runtime initialization latency. Mohan et al. [2]
propose to use pre-created networks to reduce the time spent
in network initialization. Daw et al. [26] develop Xanadu
to mitigate the cascading latency overheads in triggering a
sequence of serverless functions according to a workflow
specification. The third way is to reuse containers. Silva et
al. [27] propose to restore snapshots from previously executed
function processes to reduce cold starts. Ustiugov et al. [28]
propose REAP, a record-and-prefetch mechanism to speedup
the function invocation.

Many approaches have been proposed to reduce the occur-
rences of cold starts. OpenWhisk [29] employs pre-warming
to launch containers before their invocations. AWS Lambda
employs a fixed-time “keep-alive” policy to keep resources
in memory after function executions [13]. ENSURE [30]
prevents cold-starts incurred by different workloads leveraging
the concepts of operations research and the characteristics of
different functions. To overcome the lack of flexibility of fixed-
time “keep-alive” policy, Thundra [31] periodically makes
warm-up calls to serverless functions. The closest related work
to ours is [4]. It focuses on deciding when and how long to
keep a function execution environment alive. It characterizes
the industrial FaaS workload in a large cloud service provider,
and then uses the histogram of the historical idle time between
function invocations to select the pre-warm and keep-alive
times. However, Defuse leverages the dependencies among
serverless functions to schedule them directly, which is a finer
granularity. It adds another dimension to the problem of cold-
start mitigation, and thus is complimentary to all existing
methods that focus on the former two aspects.

Scheduling. In FaaS platforms, scheduling is to allocate
resources (memory, CPU, container, etc.) to handle incom-
ing function invocations. Although scheduling methods have
been studied for decades, most existing methods fall short in
catering to the need of FaaS platforms, i.e., scheduling at a
scale of millions of function invocations per second while
achieving predictable performance. Suresh and Gandhi [10]
propose FnSched, the first work that focuses on scheduling
user function requests from single and multiple invokers.
FnSched first categorizing functions into different categories
and then place them accordingly. Kaffes et al. [11] improve
performance by explicitly managing the sharing of individual
cores among simultaneously executing functions. They pro-
posed a centralized, cluster-level scheduler that operates at
core-granularity and assigns functions directly to individual
cores. Nguyen et al. [32] extends the use case of FaaS to real-
time scenarios and implemented a prototype for it. Different
from the above works, Defuse focuses on scheduling on
function level instead of the lower-level resource allocations.

Dependency Mining. While mining the dependencies
among distributed services has been studied for years, to the
best of our knowledge, we have not found any prior work
specific to mining the dependencies of serverless functions.
Nandi et al. [33] mine a service dependency graph from

runtime logs for anomaly detection. Yin et al. [34] cluster
services based on the key performance indicators such as CPU
utilization, memory utilization, and disk I/O.

VII. DISCUSSION AND FUTURE WORK

Dependency Mining. Restricted by the dataset, in this
work, we can only reveal dependencies from the function
invocation histories. That’s why we apply frequent pattern
mining and PPMI to discover dependent serverless functions.
If provided with sufficient data, the dependencies can also be
extracted with other data mining or machine learning methods.
For example, natural language processing techniques may be
applicable to improve dependency mining if the names and
contents of these serverless functions are provided.

Scheduling Policies. In this work, we focus on improving
the granularity of scheduling with the dependencies among
serverless functions. The scheduling policy we employ is
similar to the hybrid histogram method proposed in [4]. In fact,
our method is compatible with arbitrary scheduling policies.
For example, time-series prediction methods can be applied
to predict when a function will be invoked. By using a
more sophisticated scheduling policy, the memory usage can
be further reduced while the cold start rate can be further
decreased. Developing accurate scheduling policies based on
the function invocation histories is also worth exploring.

Adaptive Scheduling. In the evaluation part, we conduct
dependency mining on the data of the first 12 days and conduct
simulation with the data of the last 2 days. In fact, Defuse
is an adaptive scheduling method. The dependency mining
module can be implemented as a daemon process and update
the function dependency graph periodically, i.e., every day. It
takes 15 minutes to generate all the dependencies in a one-day
trace with 50,334 distinct functions with the same machine in
Section V. Dependency sets can be updated with the latest
dependency graph. The scheduler can be implemented to
schedule serverless functions with the updated dependency
sets.

Resource Consumption. Another important factor is the
resource consumption of the scheduler. During the scheduling
process, the scheduler only needs to find the dependency
set of the invoked function and update its histogram. The
requirements for computation resources are low. On the other
hand, the scheduler needs to store all the dependency sets and
their corresponding histograms. Since the histograms are of
fixed length, the demand for memory resources is also low. In
addition, the scheduler can be implemented in a stand-alone
service to eliminate the interference with client functions.

VIII. CONCLUSION

The cold start of serverless functions is a severe problem
on FaaS platforms. In this work, we propose Defuse, a
dependency-guided scheduler for serverless functions, to miti-
gate the problem. Unlike the current coarse-grained scheduling
methods, Defuse takes the dependencies among serverless
functions into consideration in the scheduling process. The
utilization of dependencies makes it possible to schedule

203

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on October 14,2021 at 07:44:15 UTC from IEEE Xplore. Restrictions apply.

functions in a finer granularity while reducing the cold-start
rates. Besides, Defuse is complementary to existing cold-
start mitigation approaches and is compatible with arbitrary
scheduling policies as well as system improvements that
reduce the cold-start time. Experiments show that Defuse can
effectively reduce memory consumption while having smaller
function cold-start rates compared with the baseline methods.

ACKNOWLEDGMENTS

The work was supported by Key-Area Research and
Development Program of Guangdong Province (No.
2020B010165002) and the Research Grants Council of
the Hong Kong Special Administrative Region, China
(CUHK 14210717). Yangfan Zhou is the corresponding
author.

REFERENCES

[1] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal,
Q. Pu, V. Shankar, J. Carreira, K. Krauth, N. Yadwadkar, J. E. Gonzalez,
R. A. Popa, I. Stoica, and D. A. Patterson, “Cloud Programming Sim-
plified: A Berkeley View on Serverless Computing,” EECS Department,
UC Berkeley, Tech. Rep., 2019.

[2] A. Mohan, H. Sane, K. Doshi, S. Edupuganti, N. Nayak, and V. Sukhom-
linov, “Agile cold starts for scalable serverless,” in 11th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 19). USENIX
Association, Jul. 2019.

[3] R. Buyya, S. N. Srirama, G. Casale, R. Calheiros, Y. Simmhan,
B. Varghese, E. Gelenbe, B. Javadi, L. M. Vaquero, M. A. Netto et al.,
“A manifesto for future generation cloud computing: Research directions
for the next decade,” ACM computing surveys (CSUR), vol. 51, no. 5,
pp. 1–38, 2018.

[4] M. Shahrad, R. Fonseca, I. Goiri, G. Chaudhry, P. Batum, J. Cooke,
E. Laureano, C. Tresness, M. Russinovich, and R. Bianchini, “Serverless
in the wild: Characterizing and optimizing the serverless workload at a
large cloud provider,” in 2020 USENIX Annual Technical Conference,
USENIX ATC 2020, July 15-17, 2020, 2020, pp. 205–218.

[5] Z. Ruan, M. Schwarzkopf, M. K. Aguilera, and A. Belay, “AIFM:
High-performance, application-integrated far memory,” in 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
20). USENIX Association, 2020, pp. 315–332.

[6] E. Oakes, L. Yang, D. Zhou, K. Houck, T. Harter, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau, “SOCK: rapid task provisioning
with serverless-optimized containers,” in 2018 USENIX Annual Tech-
nical Conference, USENIX ATC 2018, Boston, MA, USA, July 11-13,
2018. USENIX Association, 2018, pp. 57–70.

[7] “Azure functions documentation.” [Online]. Available: https://docs.
microsoft.com/en-us/azure/azure-functions/

[8] “Azure public dataset.” [Online]. Available: https://github.com/Azure/
AzurePublicDataset

[9] “Aws lambda.” [Online]. Available: https://aws.amazon.com/lambda/
[10] A. Suresh and A. Gandhi, “Fnsched: An efficient scheduler for serverless

functions,” in Proceedings of the 5th International Workshop on Server-
less Computing, WOSC@Middleware 2019, Davis, CA, USA, December
09-13, 2019. ACM, 2019, pp. 19–24.

[11] K. Kaffes, N. J. Yadwadkar, and C. Kozyrakis, “Centralized core-
granular scheduling for serverless functions,” in Proceedings of the ACM
Symposium on Cloud Computing, SoCC 2019, Santa Cruz, CA, USA,
November 20-23, 2019. ACM, 2019, pp. 158–164.

[12] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. M. Swift, “Peeking
behind the curtains of serverless platforms,” in 2018 USENIX Annual
Technical Conference, USENIX ATC 2018, Boston, MA, USA, July 11-
13, 2018, H. S. Gunawi and B. Reed, Eds. USENIX Association, 2018,
pp. 133–146.

[13] M. Shilkov, “Cold starts in aws lambda.” [Online]. Available:
https://mikhail.io/serverless/coldstarts/aws/

[14] M. Shilkov, “Cold starts in azure functions.” [Online]. Available:
https://mikhail.io/serverless/coldstarts/azure

[15] B. L. R. Erwan Alliaume, “Cold start / warm start
with aws lambda.” [Online]. Available: https://blog.octo.com/en/
cold-start-warm-start-with-aws-lambda/

[16] “Serverless trainticket.” [Online]. Available: https://github.com/
FudanSELab/serverless-trainticket

[17] “Openfaas.” [Online]. Available: https://github.com/openfaas/faas
[18] R. Agrawal, T. Imieliński, and A. Swami, “Mining association rules

between sets of items in large databases,” in Proceedings of the 1993
ACM SIGMOD international conference on Management of data, 1993,
pp. 207–216.

[19] J. Han, J. Pei, Y. Yin, and R. Mao, “Mining frequent patterns without
candidate generation: A frequent-pattern tree approach,” Data mining
and knowledge discovery, vol. 8, no. 1, pp. 53–87, 2004.

[20] Y. Niwa and Y. Nitta, “Co-occurrence vectors from corpora vs. distance
vectors from dictionaries,” arXiv preprint cmp-lg/9503025, 1995.

[21] K. Church and P. Hanks, “Word association norms, mutual information,
and lexicography,” Computational linguistics, vol. 16, no. 1, pp. 22–29,
1990.

[22] P. Vahidinia, B. Farahani, and F. S. Aliee, “Cold start in serverless com-
puting: Current trends and mitigation strategies,” in 2020 International
Conference on Omni-layer Intelligent Systems, COINS 2020, Barcelona,
Spain, August 31 - September 2, 2020. IEEE, 2020, pp. 1–7.

[23] K. Suo, Y. Shi, X. Xu, D. Cheng, and W. Chen, “Tackling cold start in
serverless computing with container runtime reusing,” in Proceedings
of the 2020 Workshop on Network Application Integration/CoDesign,
NAI@SIGCOMM 2020, Virtual Event, USA, August 14, 2020. ACM,
2020, pp. 54–55.

[24] I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck, P. Aditya,
and V. Hilt, “SAND: towards high-performance serverless computing,”
in 2018 USENIX Annual Technical Conference, USENIX ATC 2018,
Boston, MA, USA, July 11-13, 2018. USENIX Association, 2018, pp.
923–935.

[25] J. Cadden, T. Unger, Y. Awad, H. Dong, O. Krieger, and J. Appavoo,
“Seuss: Skip redundant paths to make serverless fast,” in Proceedings of
the Fifteenth European Conference on Computer Systems, ser. EuroSys
’20. New York, NY, USA: Association for Computing Machinery,
2020. [Online]. Available: https://doi.org/10.1145/3342195.3392698

[26] N. Daw, U. Bellur, and P. Kulkarni, “Xanadu: Mitigating cascading
cold starts in serverless function chain deployments,” in Middleware
’20: 21st International Middleware Conference, Delft, The Netherlands,
December 7-11, 2020, D. D. Silva and R. Kapitza, Eds. ACM, 2020,
pp. 356–370.

[27] P. Silva, D. Fireman, and T. E. Pereira, “Prebaking functions to warm the
serverless cold start,” in Middleware ’20: 21st International Middleware
Conference, Delft, The Netherlands, December 7-11, 2020, D. D. Silva
and R. Kapitza, Eds. ACM, 2020, pp. 1–13.

[28] D. Ustiugov, P. Petrov, M. Kogias, E. Bugnion, and B. Grot, “Bench-
marking, analysis, and optimization of serverless function snapshots,”
arXiv preprint arXiv:2101.09355, 2021.

[29] “Squeezing the milliseconds: How to make serverless platforms
blazing fast!” [Online]. Available: https://medium.com/openwhisk/
squeezing-the-milliseconds-how-to-make-serverless-platforms-blazing\
-fast-aea0e9951bd0

[30] A. Suresh, G. Somashekar, A. Varadarajan, V. R. Kakarla, H. Upadhyay,
and A. Gandhi, “Ensure: Efficient scheduling and autonomous resource
management in serverless environments,” in 2020 IEEE International
Conference on Autonomic Computing and Self-Organizing Systems
(ACSOS), 2020, pp. 1–10.

[31] E. Şamdan, “Dealing with cold starts in aws
lambda.” [Online]. Available: https://medium.com/thundra/
dealing-with-cold-starts-in-aws-lambda-a5e3aa8f532

[32] H. D. Nguyen, C. Zhang, Z. Xiao, and A. A. Chien, “Real-time
serverless: Enabling application performance guarantees,” ser. WOSC
’19. New York, NY, USA: Association for Computing Machinery, 2019,
p. 1–6. [Online]. Available: https://doi.org/10.1145/3366623.3368133

[33] A. Nandi, A. Mandal, S. Atreja, G. B. Dasgupta, and S. Bhattacharya,
“Anomaly detection using program control flow graph mining from
execution logs,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco,
CA, USA, August 13-17, 2016. ACM, 2016, pp. 215–224.

[34] J. Yin, X. Zhao, Y. Tang, C. Zhi, Z. Chen, and Z. Wu, “Cloudscout: A
non-intrusive approach to service dependency discovery,” IEEE Trans.
Parallel Distributed Syst., vol. 28, no. 5, pp. 1271–1284, 2017.

204

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on October 14,2021 at 07:44:15 UTC from IEEE Xplore. Restrictions apply.

