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Abstract
Distributed in-memory key-value (KV) stores are embrac-
ing the disaggregated memory (DM) architecture for higher
resource utilization. However, existing KV stores on DM em-
ploy a semi-disaggregated design that stores KV pairs on
DM but manages metadata with monolithic metadata servers,
hence still suffering from low resource efficiency on metadata
servers. To address this issue, this paper proposes FUSEE, a
FUlly memory-diSaggrEgated KV StorE that brings disag-
gregation to metadata management. FUSEE replicates meta-
data, i.e., the index and memory management information, on
memory nodes, manages them directly on the client side, and
handles complex failures under the DM architecture. To scal-
ably replicate the index on clients, FUSEE proposes a client-
centric replication protocol that allows clients to concurrently
access and modify the replicated index. To efficiently manage
disaggregated memory, FUSEE adopts a two-level memory
management scheme that splits the memory management duty
among clients and memory nodes. Finally, to handle the meta-
data corruption under client failures, FUSEE leverages an
embedded operation log scheme to repair metadata with low
log maintenance overhead. We evaluate FUSEE with both mi-
cro and YCSB hybrid benchmarks. The experimental results
show that FUSEE outperforms the state-of-the-art KV stores
on DM by up to 4.5 times with less resource consumption.

1 Introduction
Traditional in-memory key-value (KV) stores on mono-
lithic servers have recently been ported to the disaggre-
gated memory (DM) architecture for better resource effi-
ciency [60, 73]. Compared with monolithic servers, DM de-
couples the compute and memory resources into independent
network-attached compute and memory pools [3,23,25,38,47,
54,55,65]. KV stores on DM can thus enjoy efficient resource
pooling and have higher resource efficiency.

However, constructing KV stores on DM is challenging
because the memory pool generally lacks the compute power
to manage data and metadata. Existing work [60] proposes
a semi-disaggregated design that stores KV pairs in the dis-
aggregated memory pool but retains metadata management
on monolithic servers. In such a design, the KV pair storage
enjoys high resource utilization due to exploiting the DM
architecture, but the metadata management does not. Many
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additional resources are exclusively assigned to the metadata
servers in order to achieve high overall throughput [13,53,69].

To achieve full resource utilization, it is critical to bring
disaggregation to the metadata management, i.e., building a
fully memory-disaggregated KV store. The metadata, i.e., the
index and memory management information, should be stored
in the memory pool and directly managed by clients rather
than metadata servers. However, it is non-trivial to achieve a
fully memory-disaggregated KV store due to the following
challenges incurred from handling complex failures and the
weak compute power in the memory pool.

1) Client-centric index replication. To tolerate memory
node failures, clients need to replicate the index on memory
nodes in the memory pool and guarantee the consistency
of index replicas. In existing replication approaches, e.g.,
state machine replication [33, 46, 50, 62] and shared regis-
ter protocols [5, 7, 43], the replication protocols are executed
by server-side CPUs. These protocols cannot be executed
on DM due to the weak compute power in the memory
pool. Meanwhile, if clients simply employ consensus pro-
tocols [36, 46, 50] or remote locks [60], the KV store suffers
from poor scalability due to the explicit serialization of con-
flicting requests [4, 11, 64, 70].

2) Remote memory allocation. Existing semi-disaggregated
KV stores manage memory spaces with monolithic metadata
servers. However, in the fully memory-disaggregated setting,
such a server-centric memory management scheme is infeasi-
ble. Specifically, memory nodes cannot handle the compute-
heavy fine-grained memory allocation for KV pairs due to
their poor compute power [25,60]. Meanwhile, clients cannot
efficiently allocate memory spaces because multiple RTTs
are required to modify the memory management information
stored on memory nodes [38].

3) Metadata corruption under client failures. In semi-
disaggregated KV stores, client failures do not affect metadata
because the CPUs of monolithic servers exclusively modify
metadata. However, clients directly access and modify meta-
data on memory nodes in the fully memory-disaggregated
setting. As a result, client failures can leave partially modified
metadata accessible by others, compromising the correctness
of the entire KV store.

To address these challenges, we propose FUSEE, a fully
memory-disaggregated key-value store that has efficient index
replication, memory allocation, and fault-tolerance on DM.
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First, to maintain the strong consistency of the replicated in-
dex in a scalable manner, FUSEE proposes the SNAPSHOT
replication protocol. The key to achieving scalability is to re-
solve write conflicts without involving the expensive request
serialization [7]. SNAPSHOT adopts three simple yet effec-
tive conflict-resolution rules on clients to allow conflicts to be
resolved collaboratively among clients instead of sequentially.
Second, to achieve efficient remote memory management,
FUSEE employs a two-level memory management scheme
that splits the server-centric memory management process
into compute-light and compute-heavy tasks. The compute-
light coarse-grained memory blocks are managed by the mem-
ory nodes with weak compute power, and the compute-heavy
fine-grained objects are handled by clients. Finally, to deal
with the problem of metadata corruption, FUSEE adopts an
embedded operation log scheme to resume clients’ partially
executed operations. The embedded operation log reuses the
memory allocation order and embeds log entries in KV pairs
to reduce the log-maintenance overhead on DM.

We implement FUSEE from scratch and evaluate its perfor-
mance using both micro and YCSB benchmarks [15]. Com-
pared with Clover and pDPM-Direct [60], two state-of-the-art
KV stores on DM, FUSEE achieves up to 4.5 times higher
overall throughput and exhibits lower operation latency with
less resource consumption. The code of FUSEE is available
at https://github.com/dmemsys/FUSEE.

In summary, this paper makes the following contributions:
• A fully memory-disaggregated KV store with disaggre-

gated metadata and data that is resilient to failures on
DM.

• A client-centric replication protocol that uses conflict
resolution rules to enable clients to resolve conflicts
collaboratively. The protocol is formally verified with
TLA+ [35] for safety and the absence of deadlocks under
crash-stop failures.

• A two-level memory management scheme that leverages
both memory nodes and clients to efficiently manage the
remote memory space.

• An embedded operation log scheme to repair the cor-
rupted metadata with low log maintenance overhead.

• The implementation and evaluation of FUSEE to demon-
strate the efficiency and effectiveness of our design.

2 Background and Motivation
2.1 The Disaggregated Memory Architecture
The disaggregated memory architecture is proposed to address
the resource underutilization issue of traditional datacenters
composed of monolithic servers [25, 38, 47, 54, 55, 65]. DM
separates CPUs and memory of monolithic servers into two
independent hardware resource pools containing compute
nodes (CNs) and memory nodes (MNs) [55, 60, 64, 73]. CNs
have abundant CPU cores and a small amount of memory
as local caches [64]. MNs host various memory media, e.g.,
DRAM and persistent memory, to accommodate different
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Figure 1: Two architectures of memory-disaggregated KV stores.
(a) The semi-disaggregated architecture (Clover [60]). (b) The fully
disaggregated architecture proposed in this paper.

application requirements with weak compute power. CPUs
in CNs directly access memory in MNs with fast remote-
access interconnect techniques, such as one-sided RDMA
(remote direct memory access), Omni-path [16], CXL [42],
and Gen-Z [14]. Each MN provides READ, WRITE, and atomic
operations, i.e., compare-and-swap (CAS) and fetch-and-add
(FAA), for CNs to access memory data. Besides, MNs own
limited compute power (e.g., 1-2 CPU cores) to manage local
memory and establish connections from CNs, providing CNs
with the ALLOC and FREE memory management interfaces.
Without loss of generality, in this paper, we consider CNs
accessing MNs using one-sided RDMA verbs.

2.2 KV Stores on Disaggregated Memory
Clover [60] is a state-of-the-art KV store built on DM. It
adopts a semi-disaggregated design that separates data and
metadata to lower the ownership cost and prevent the compute
power of data nodes from becoming the performance bottle-
neck. As shown in Figure 1a, Clover deploys clients on CNs
and stores KV pairs on MNs. It adopts additional monolithic
metadata servers to manage the metadata, including mem-
ory management information (MMI) and the hash index. For
SEARCH requests, clients look up the addresses of the KV pairs
from metadata servers and then fetch the data on MNs us-
ing RDMA_READ operations. For INSERT and UPDATE requests,
clients allocate memory blocks from metadata servers with
RPCs, write KV pairs to MNs with RDMA_WRITE operations,
and update the hash index on the metadata servers through
RPCs. To prevent clients’ frequent requests from overwhelm-
ing the metadata servers, clients allocate a batch of memory
blocks one at a time and cache the hash index locally. As a re-
sult, Clover achieves higher throughput under read-intensive
workloads with less resource consumption.

However, the semi-disaggregated design of Clover cannot
fully exploit the resource efficiency of the DM architecture
due to its monolithic-server-based metadata management. On
the one hand, monolithic metadata servers consume addi-
tional resources, including CPUs, memory, and RNICs. On
the other hand, many compute and memory resources have to
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Figure 3: The throughput of
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be reserved and assigned to the metadata server of Clover to
achieve good performance due to the CPU-intensive nature
of metadata management [13, 53, 69]. To show the resource
utilization issue of Clover, we evaluate its throughput with 2
MNs, 64 clients, and a metadata server with different num-
bers of CPU cores. We control the number of CPU cores by
assigning different percentages of CPU time with cgroup [10].
As shown in Figure 2, Clover has a low overall throughput
with a small number of CPU cores assigned to its metadata
server. At least six additional cores have to be assigned until
the metadata server is no longer the performance bottleneck.

To attack the problem, FUSEE adopts a fully memory-
disaggregated design that enables clients to directly access
and modify the hash index and manage memory spaces
on MNs, as shown in Figure 1b. Compared with the semi-
disaggregated design, resource efficiency can be improved
because client-side metadata management eliminates the ad-
ditional metadata servers. The overall throughput can also be
improved because the computation bottleneck of metadata
management no longer exists.

3 Challenges
This section introduces the three challenges of constructing a
fully memory-disaggregated KV store, i.e., index replication,
remote memory allocation, and metadata corruption.

3.1 Client-Centric Index Replication
The index must be replicated to tolerate MN failures. Strong
consistency, i.e., linearizability [26], is the most commonly
adopted correctness standard for data replication because it
reduces the complexity of implementing upper-level applica-
tions [1, 7, 12]. Linearizability requires that operations on an
object appear to be executed in some total order that respects
the operations’ real-time order [26]. The key challenge of
achieving a linearizable replicated hash index under the fully
memory-disaggregated setting comes from the client-centric
computation nature of DM.

First, existing replication methods are not applicable in the
fully memory-disaggregated setting due to their server-centric
nature. State machine replication (SMR) [33, 44, 46, 49, 50,
59, 62] and shared register protocols [7, 43] are two major
replication approaches that achieve linearizability. However,
both approaches are designed with a server-centric assump-
tion that a data replica is exclusively accessed and modified

by the CPU that manages the data. First, the SMR approaches
consider the CPU and the data replica as a state machine
and achieve strong consistency by forcing the state machines
to execute deterministic KV operations in the same global
order [49, 50]. Server CPUs are extensively used to reach a
consensus on a global operation order and apply state transi-
tions to data replicas. Second, shared register protocols view
the CPU and the data replica as a shared register with READ
and WRITE interfaces. Linearizability is achieved with a last-
writer-wins conflict resolution scheme [43] that forces a ma-
jority of shared registers to always hold data with the newest
timestamps. Shared register protocols also heavily rely on
server-side CPUs to compare timestamps and apply data up-
dates. The challenge with the server-centric approaches is
that in the fully memory-disaggregated scenario, there is no
such management CPU because all clients directly access and
modify the hash index with one-sided RDMA verbs.

Second, naively adopting consensus protocols or remote
locks among clients results in poor throughput due to the
expensive request serialization. To show the performance
issues of consensus protocols and remote locks, we store and
replicate a shared object on two MNs and vary the number
of concurrent clients. We use a state-of-the-art consensus
protocol Derecho [27] and an RDMA CAS-based spin lock
to ensure the strong consistency of the replicated object. As
shown in Figure 3, both Derecho and lock-based approaches
exhibit poor overall throughput and cannot scale with the
growing number of concurrent clients.

3.2 Remote Memory Allocation
The key challenge of managing DM is where to execute the
memory-management computation. There are two possible
DM management approaches [38], i.e., compute-centric ones
and memory-centric ones. The compute-centric approaches
store the memory management metadata on MNs and allow
clients to allocate memory spaces by directly modifying the
on-MN metadata. Since the memory management metadata
are shared by all clients, clients’ accesses have to be synchro-
nized. As a result, compute-centric approaches suffer from the
high memory allocation latency incurred by the expensive and
complex remote synchronization process on DM [38]. The
memory-centric approaches maintain all memory manage-
ment metadata on MNs with their weak compute power. Such
approaches are also infeasible because the poor memory-side
compute power can be overwhelmed by the frequent fine-
grained KV allocation requests from clients. Although there
are several approaches that conduct memory management on
DM, they all target page-level memory allocation and rely
on special hardware, i.e., programmable switches [38] and
SmartNICs [25], which are orthogonal to our problem.

3.3 Metadata Corruption
In fully memory-disaggregated KV stores, crashed clients
can leave partially modified metadata accessible by other
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Figure 5: The structure of an index replica.

healthy clients. Since the metadata contains important system
state, metadata corruption compromises the correctness of the
entire KV store. First, crashed clients may leave the index in a
partially modified state. Other healthy clients may not be able
to access data or even access wrong data with the corrupted
index. Second, crashed clients may allocate memory spaces
but not use them, causing severe memory leakage. Hence, in
order to ensure the correctness of the KV store, the corrupted
metadata has to be repaired under client failures.

4 The FUSEE Design
4.1 Overview
As shown in Figure 4, FUSEE consists of clients, MNs,
and a master. Clients provide SEARCH, INSERT, DELETE, and
UPDATE interfaces for applications to access KV pairs. MNs
store the replicated memory management information (MMI),
hash index, and KV pairs. The master is a cluster management
process responsible only for initializing clients and MNs and
recovering data under client and MN failures.

FUSEE replicates both the hash index and KV pairs to
tolerate MN failures. We adopt RACE hashing (Section 4.2)
to index KV pairs and propose the SNAPSHOT replication
protocol to enforce the strong consistency of the replicated
hash index (Section 4.3). A two-level memory management
scheme is adopted to efficiently allocate and replicate variable-
sized KV pairs (Section 4.4). FUSEE uses logs to handle the
corrupted metadata under client failures and adopts an em-
bedded operation log scheme to reduce the log maintenance
overhead (Section 4.5). Other optimizations are introduced in
Section 4.6 to further improve the system performance.

4.2 RACE Hashing
RACE hashing is a one-sided RDMA-friendly hash index. As
shown in Figure 5, it contains multiple 8-byte slots, with each
storing a pointer referring to the address of a KV pair, an 8-bit
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fingerprint (Fp), i.e., a part of the key’s hash value, and the
length of the KV pair (Len) [73]. For SEARCH requests, a client
reads the slots of the hash index according to the hash value of
the target key and then reads the KV pair on MNs according
to the pointer in the slot. For UPDATE, INSERT, and DELETE
requests, RACE hashing adopts an out-of-place modification
scheme. It first writes a KV pair to MNs and then modifies
the corresponding slot in the hash index to the address of the
KV pair atomically with an RDMA_CAS. Nevertheless, RACE
hashing only supports a single replica.

4.3 The SNAPSHOT Replication Protocol
In FUSEE, multiple clients concurrently read or write the
same slot in the replicated hash index to execute SEARCH or
UPDATE requests, as shown in Figure 6. To efficiently main-
tain the strong consistency of slot replicas in the replicated
hash index, FUSEE proposes the SNAPSHOT replication
protocol, a client-centric replication protocol that achieves
linearizability without the expensive request serialization.

There are two main challenges to efficiently achieving lin-
earizability under the fully memory-disaggregated setting.
First, how to protect readers from reading incomplete states
during read-write conflicts. Second, how to resolve write-
write conflicts without expensively serializing all conflicting
requests. To address the first challenge, SNAPSHOT splits the
replicated hash index into a single primary replica and multi-
ple backup replicas and uses backup replicas to resolve write
conflicts. Hence, incomplete states during write conflicts only
appear on backup replicas and the primary replica always
contains the correct and complete value. Readers can simply
read the contents in the primary replica without perceiving the
incomplete states. To address the second challenge, SNAP-
SHOT adopts a last-writer-wins conflict resolution scheme
similar to shared register protocols. SNAPSHOT leverages
the out-of-place modification characteristic of RACE hashing
that conflicting writers always write different values into the
same slot because the values are pointers referring to KV
pairs at different locations. Three conflict-resolution rules are
thus defined based on the values written by conflicting writers
in backup replicas, which enable clients collaboratively to
decide on a single last writer under write conflicts.

Algorithm 1 shows the READ and WRITE processes of the
SNAPSHOT replication protocol. Here we focus on the exe-
cution of SNAPSHOT when no failure occurs and leave the
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Algorithm 1 The SNAPSHOT replication protocol
1: procedure READ(slot)
2: v = RDMA_READ_primary(slot)
3: if v = FAIL then deal with failure
4: return v
5: procedure WRITE(slot,vnew)
6: vold = RDMA_READ_primary(slot)
7: v_list = RDMA_CAS_backups(slot,vold ,vnew)
8: // Change all the volds in the v_list to vnews.
9: v_list = change_list_value(v_list,vold ,vnew)

10: win = EVALUATE_RULES(v_list) ▷ The last writer returns
the winning rule while other writers return LOSE.

11: if win = Rule_1 then
12: RDMA_CAS_primary(slot,vold ,vnew)
13: else if win ∈ {Rule_2,Rule_3} then
14: RDMA_CAS_backups(slot,v_list,vnew)
15: RDMA_CAS_primary(slot,vold ,vnew)
16: else if win = LOSE then
17: repeat
18: sleep a little bit
19: vcheck = RDMA_READ_primary(slot)
20: if notified failure then goto Line 24
21: until vcheck ̸= vold
22: if vcheck = FAIL then goto Line 24
23: else if win = FAIL then
24: deal with failure
25: return

discussion of failure handling in Section 5. We call the slots
in the primary and backup hash indexes primary slots and
backup slots, respectively.

For READ operations, clients directly read the values in
the primary slots using RDMA_READ. For WRITE operations,
SNAPSHOT first resolves write conflicts by letting conflict-
ing writers collaboratively decide on a last writer with three
conflict resolution rules and then let the decided last writer
modify the primary slot. Figure 6 shows the process that two
clients simultaneously WRITE the same slot. The correspond-
ing algorithms are shown in Algorithms 1 and 2. Clients first
read the value in the primary slot as vold ( 1⃝). Then each
client modifies all backup slots by broadcasting RDMA_CAS
operations ( 2⃝) with vold as the expected value and vnew as
the swap value. On receiving an RDMA_CAS, the RNICs on
MNs atomically modify the value in the target slot only if
vold matches the current value in the slot. Since all writers
initiate RDMA_CAS operations with the same vold and different
vnews and all backup slots initially hold vold , the atomicity
of RDMA_CAS ensures that each backup slot can only be mod-
ified once by a single writer. As a result, the values in all
backup slots will be fixed after each of them has received one
RDMA_CAS from one writer 1. Meanwhile, since an RDMA_CAS
returns the value in the slot before it is modified, all clients

1That the process that all conflicting clients broadcast RDMA_CASes to
modify backup slots is just like taking a snapshot, which is why the replication
protocol is named SNAPSHOT.

Algorithm 2 The rule evaluation procedure of SNAPSHOT
1: procedure EVALUATE_RULES(v_list,slot,vnew,vold)
2: vma j = The majority value in v_list
3: cntma j = The number of vma j in v_list
4: if FAIL ∈ v_list then
5: return FAIL
6: else if cntma j = Len(v_list) then
7: return Rule 1 if vma j = vnew else LOSE
8: else if 2∗ cntma j > Len(v_list) then
9: return Rule 2 if vma j = vnew else LOSE

10: else if vnew ̸∈ v_list then
11: return LOSE
12: vcheck = RDMA_READ(slot)
13: if vcheck = FAIL then
14: return FAIL
15: else if vcheck ̸= vold then
16: return FINISH
17: else if min(v_list) = vnew then
18: return Rule 3
19: return LOSE

can perceive the new values in the backup slots ( 3⃝) through
the return values of the broadcast of RDMA_CAS operations.
The return values are denoted as v_list in Algorithm 1.

With v_list, SNAPSHOT defines the following three rules
to let conflicting clients collaboratively decide on a last writer:

Rule 1: A client that has successfully modified all the
backup slots is the last writer.
Rule 2: A client that has successfully modified a majority
of backup slots is the last writer.
Rule 3: If no last writer can be decided with the former
two rules, the client that has written the minimal target
value (vnew) is considered as the last writer.

The three rules are evaluated sequentially as shown in Al-
gorithm 2. Rule 1 provides a fast path when there are no
conflicting modifications. Rule 2 preserves the most success-
ful CAS operations to minimize the overhead of executing
atomic operations on RNICs when conflicts are rare [29]. Fi-
nally, Rule 3 ensures that the protocol can always decide on
the last writer. To ensure the uniqueness of the last write, a
client issues another RDMA_READ to check if the primary slot
has been modified (Line 12, Algorithm 2) before evaluating
Rule 3. If the primary slot has not been modified, then the
RDMA_CAS_backups (Line 7, Algorithm 1) of the client must
happen before the last writer modifies the primary slot. Hence,
it is safe to evaluate Rule 3 because the v_list must contain
the value of the last writer if it has already been decided. Oth-
erwise, Rule 3 will not be evaluated because the modification
of the primary slot means the decision of a last writer. Relying
on the three rules, a unique last writer can be decided without
any further network communications. For example, in Fig-
ure 6, Client 1 is the last writer according to Rule 2. Client 1
then modifies the backup slots that do not yet contain its pro-
posed value using RDMA_CASes and then modifies the primary
slot. Other conflicting clients iteratively READ the value in the
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primary slot and return success after finding the change in the
primary slot. The primary slot may remain unmodified only
under the situation when the last writer crashed, which will
be discussed in Section 5.

Correctness. The SNAPSHOT replication protocol guar-
antees linearizability of the replicated hash indexes with
last-writer-wins conflict resolution like shared register proto-
cols [7, 43]. We briefly demonstrate the correctness of SNAP-
SHOT using the notion of the linearizable point of KV op-
erations. A formal proof is shown in the extended version
of this paper [56]. A linearizable point is a point when an
operation atomically takes effect in its invocation and com-
pletion [26]. For READ, the linearizable point happens when it
gets the value in the primary slot. For WRITE operations, the
linearizable point of the last writer happens when it modifies
the primary slot. Linearizable points of other conflicting writ-
ers appear instantly before the last writer modifies the primary
slot. Conflicts between readers and the last writer are resolved
by RNICs because the last writer atomically modifies the pri-
mary slot using RDMA_CAS operations and readers access the
primary slot using RDMA_READ operations.

Performance. SNAPSHOT guarantees a bounded worst-
case latency when clients WRITE the hash index. Under the
situation when Rule 1 is triggered, 3 RTTs are required to
finish a WRITE operation. Under situations when Rule 2 or
Rule 3 is triggered, 4 or 5 RTTs are required, respectively.

4.4 Two-Level Memory Management
Memory management is responsible for allocating, replicat-
ing, and freeing memory spaces for KV pairs on MNs. As dis-
cussed in Section 3.2, the key challenge of DM management is
that conducting the management tasks solely on clients or on
MNs cannot satisfy the performance requirement of frequent
memory allocation for KV requests. FUSEE addresses this
issue via a two-level memory management scheme. The key
idea is to split the server-centric memory management tasks
into compute-light coarse-grained management and compute-
heavy fine-grained management run on MNs and clients.

FUSEE first replicates and partitions the 48-bit memory
space on multiple MNs. Similar to FaRM [18], FUSEE shards
the memory space into 2GB memory regions and maps each
region to r MNs with consistent hashing [32], where r is
the replication factor. Specifically, consistent hashing maps

a region to a position in a hash ring. The replicas are then
stored at the r MNs successively following the position and
the primary region is placed on the first of the r MN.

Figure 7 shows the two-level memory allocation of FUSEE.
Allocating a memory space for a KV pair happens before
writing the KV pair, as introduced in Section 4.1. The first
level is the coarse-grained MN-side memory block allocation
with low computation requirements. Each MN partitions its
local memory regions into coarse-grained memory blocks,
e.g., 16 MB, and maintains a block allocation table ahead of
each region. For each memory block, the block allocation
table records a client ID (CID) that allocates it. Clients allo-
cate memory blocks by sending ALLOC requests to MNs. On
receiving an ALLOC request, an MN allocates a memory block
from one of its primary memory regions, records the client
ID in the block allocation tables of both primary and backup
regions, and replies with the address of the memory block to
the client. The coarse-grained memory allocation information
is thus replicated on r MNs and can survive MN failures. The
second level is the fine-grained client-side object allocation
that allocates small objects to hold KV pairs. Specifically,
clients manage the blocks allocated from MNs exclusively
with slab allocators [6]. The client-side slab allocators split
memory blocks into objects of distinct size classes. A KV
pair is then allocated from the smallest size class that fits it.

The allocated objects can be freed by any client. To effi-
ciently reclaim freed memory objects on client sides, FUSEE
stores a free bit map ahead of each memory block, as shown
in Figure 7, where each bit indicates the allocation state of
one object in the memory block. The free bit map is initialized
to be all zeros when a block is allocated. To free an object,
a client sets the corresponding bit to ‘1’ in the free bit map
with an RDMA_FAA operation. By reading the free bit map,
clients can easily know the freed objects in their memory
blocks and reclaim them locally. FUSEE frees and reclaims
memory objects periodically using background threads in a
batched manner to avoid the additional RDMA operations on
the critical paths of KV accesses. The correctness of concur-
rently accessing KV pairs and reclaiming memory spaces is
guaranteed by RACE hashing [73], where clients check the
key and the CRC of the KV pair on data accesses.

4.5 Embedded Operation Log
Operation logs are generally adopted to repair the partially
modified hash index incurred by crashed clients. Conven-
tional operation logs record a log entry for each KV request
that modifies the hash index. The log entries are generally
written in an append-only manner so that the order of log
entries reflects the execution order of KV requests. The re-
covery process can thus find the crashed request and fix the
corrupted metadata by scanning the ordered log entries. How-
ever, constructing operation logs incurs high log maintenance
overhead on DM because writing log entries adds remote
memory accesses on the critical paths of KV requests.
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Figure 8: The embedded operation log.

To reduce the log maintenance overhead on DM, FUSEE
adopts an embedded operation log scheme that embeds log
entries into KV pairs. The embedded log entry is written to-
gether with its corresponding KV pair with one RDMA_WRITE
operation. The additional RTTs required for persisting log en-
tries are thus eliminated. However, by embedding log entries
in KV pairs, the execution order of KV requests cannot be
maintained because the log entries are no longer continuous.
To address this problem, the embedded operation log scheme
maintains per-size-class linked lists to organize the log entries
of a client in the execution order of KV requests. As shown
in Figure 8b, a per-size-class linked list is a doubly linked
list that links all allocated objects of the size class in the or-
der of their allocations. The object allocation order reflects
the execution order of KV requests because all KV requests
that modify the hash index, e.g., INSERT and UPDATE, need to
allocate objects for new KV pairs. For DELETE, FUSEE allo-
cates a temporary object recording the log entry and the target
key and reclaims the object on finishing the DELETE request.
FUSEE stores the list heads on MNs during the initialization
of clients, which will be accessed during the recovery process
of clients (Section 5).

An embedded log entry is a 22-byte data structure stored
behind KV pairs, as shown in Figure 8a. It contains a 6-byte
next pointer, a 6-byte prev pointer, an 8-byte old value, a 1-
byte CRC, a 7-bit opcode, and a used bit. The next pointer
points to the next object of the size class that will be allocated
and the prev pointer points to the object allocated before
the current one. The old value records the old value of the
primary slot for recovery proposes, which will be discussed in
Section 5. The 1-byte CRC is adopted to check the integrity of
the old value under client failures. The operation field records
the operation type, i.e., INSERT, UPDATE, or DELETE, so that
the crashed operation can be properly retried during recovery.
The used bit indicates if an object is in-use or free. Storing
the used bit at the end of the entire object can be used to
check the integrity of an entire object. This is because the

order-preserving nature of RDMA_WRITE operations ensures
that the used bit is written only after all other contents in the
object have been successfully written.

FUSEE efficiently organizes per-size-class linked lists by
co-designing the linked list maintenance process with the
memory allocation process. As shown in Figure 8b, for each
size class, a client organizes the addresses of remote free ob-
jects locally as a free list. Since an object is always allocated
from the head of a local free list, the allocation order of each
size class is pre-determined. Based on the pre-determined or-
der, for each allocation, a client pre-positions the next pointer
to point to the free object in the head of the local free list and
the prev pointer to point to the last allocated object of the
size class. Both the next pointer and the prev pointer are thus
known before each allocation and the entire log entry can be
written to MNs with the KV pair in a single RDMA_WRITE.

Combined with the SNAPSHOT replication protocol, the
execution process is shown as follows. First, for each writer, a
log entry with an empty old value and CRC is written with the
KV pair in a single RDMA_WRITE. Then, for the last writer of
the SNAPSHOT replication protocol, the old value is modified
to store the old value of the primary slot before the primary
slot is modified. For other non-last writers, the used bits in
their corresponding KV log entries are reset to ‘0’ after finding
the modification of the primary slot.

4.6 Optimizations
Adaptive index cache. Index caching is widely adopted on
RDMA-based KV stores to reduce request RTTs [60, 66–68].
For a key, the index cache caches the remote addresses of the
replicated index slots and the addresses of the KV pairs locally.
With the cached KV pair addresses, UPDATE, DELETE, and
SEARCH requests can read KV pairs in parallel with searching
the hash index, reducing an RTT on cache hits. To guarantee
cache coherence, an invalidation bit is stored together with
each KV pair, which is used by clients to check whether the
KV pair is valid or invalid. However, by accessing the index
cache, invalid KV pairs (e.g., outdated) can be fetched into
clients, causing read amplification.

To attack the read amplification issue, FUSEE adaptive
bypasses the index cache by distinguishing read-intensive and
write-intensive keys. For each cached key, FUSEE maintains
an access counter and an invalid counter which increases by
1 each time the key is accessed or found to be invalid. A
client calculates an invalid ratio I = invalid counter

access counter for each
cached key. The index cache is bypassed when accessing a
key with I > threshold because the key is write-intensive and
the cached key address points to an invalid KV pair with high
probability. The invalid ratio can adapt to workload changes,
i.e., a write-intensive key becomes read-intensive, because the
access counter of the key keeps increasing while the invalid
counter stops. Besides, the adaptive scheme does not affect
the SEARCH latency for most cases since only write-intensive
keys bypass the cache.
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RDMA-related optimizations. KV requests require multiple
remote memory accesses. FUSEE adopts doorbell batching
and selective signaling [29] to reduce RDMA overhead. Fig-
ure 9 shows the procedures for executing different KV re-
quests. Each request consists of multiple phases with multiple
network operations. For each phase, FUSEE adopts doorbell
batching [29] to reduce the overhead of transmitting network
operations from user space to RNICs and selective signal-
ing to reduce the overhead of polling RDMA completion
queues. Consequently, each phase only incurs 1 network RTT.
For INSERT, DELETE, and UPDATE requests, four RTTs are re-
quired in general cases. For SEARCH requests, at most two
RTTs are required and only one RTT is required in the best
case due to the index cache.

5 Failure Handling
Similar to existing replication protocols [33, 59, 62], FUSEE
relies on a fault-tolerant master with a lease-based member-
ship service [24] to handle failures. The master maintains a
membership lease for both clients and MNs so that clients
always know alive MNs by periodically extending their leases.
The failures of both clients and MNs can be detected by
the master when they no longer extend their leases. Master
crashes are handled by replicating the master with state ma-
chine replication [24, 59, 62]. We formally verify FUSEE in
TLA+ [35] for safety and absence of deadlocks under MN fail-
ures and more details are shown in the extended version [56].

5.1 Failure Model
We consider a partially synchronous system where processes,
i.e., clients and MNs, are equipped with loosely synchronized
clocks [20,24,33]. FUSEE assumes crash-stop failures, where
processes, i.e., clients and MNs, may fail due to crashing and
their operations are non-Byzantine.

Under this failure model, FUSEE guarantees linearizable
operations, i.e., each KV operation is atomically committed
in a time between its invocation and completion [26]. All the
objects of FUSEE are durable and available under an arbitrary
number of client crashes and at most r−1 MN crashes, where
r is the replication factor.

5.2 Memory Node Crashes
MN crashes lead to failed accesses to KV pairs and hash
slots. For accesses to KV pairs, clients can access the backup

replicas according to the consistent hashing scheme.
The complication comes from the unavailable primary and

backup slots that affect the normal execution of index READ
and WRITE operations. FUSEE relies on the fault-tolerant
master to execute operations on clients’ behalves under MN
failures. We first introduce how clients READ/WRITE the repli-
cated slots and then introduce the master’s operations.

When executing index WRITE under MN crashes, FUSEE
allows the last writer decided by the SNAPSHOT replication
protocol to continue modifying all alive slots to the same
value. Other writers send RPC requests to the master and wait
for the master to reply with a correct value in the replicated
slots. Under situations when no last writer can be decided,
the master decides the last writer and modifies all the index
slots on behalf of clients. For READ operations, executions
are not affected under the following two cases. First, if the
primary slot is still alive, clients can read the primary slot
normally. Second, if the primary slot crashes, clients read
all alive backup slots. If all alive backup slots contain the
same value, reading this value is safe because there are no
write conflicts. Otherwise, clients use RPCs and rely on the
master to return a correct value for the crashed slot. Since
READ operations are only affected under write conflicts, most
READ can continue under the read-intensive workloads that
dominate in real-world situations [9, 71].

On detecting MN crashes, the master first blocks clients
from further modifying the crashed slots with the lease ex-
piration. The master then acts as a representative last writer
that modifies all alive slots to the same value. Specifically, the
master selects a value v in an alive backup slot and modifies
all alive slots to v. Since the SNAPSHOT protocol modifies
the backup slots before the primary slot, the values in the
backup slots are always newer than the primary slot. Hence,
the master choosing a value from a backup slot is correct
because it proceeds the conflicting write operations. In cases
where all backup slots crash, the master selects the value in the
primary slot. Clients that receive old values from the master
retry their write operations to guarantee that their new value is
written. The master then writes the old value in the operation
log header to prevent clients from redoing operations when
recovering from crashed clients (Section 5.3). Finally, the
master reconfigures new primary and backup slots and returns
the selected value to all clients that wait for a reply. After the
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reconfiguration of the primary and backup slots, all KV re-
quests can be executed normally without involving the master.
During the whole process, only accesses to the crashed slots
are affected and the blocking time can be short thanks to the
microsecond-scale membership service [24].

5.3 Client Crashes
Crashed clients may result in two issues. First, their allocated
memory blocks remain unmanaged, causing memory leakage.
Second, other clients may be unable to modify a replicated
index slot if the crashed client is the last writer. The master
uses embedded operation logs to address these two issues.

The recovery process is executed in the compute pool and
consists of two steps, i.e., memory re-management and index
repair. Memory re-management restores the coarse-grained
memory blocks allocated by the client and the fine-grained
object usage information of the client. The recovery process
first gets all memory blocks managed by the crashed client by
letting MNs search for their local block allocation tables. Then
the recovery process traverses the per-size-class linked lists
to find all used objects and log entries. With the used objects
and the allocated memory blocks, the recovery process can
easily restore the free object lists of the crashed client. Hence,
all the memory spaces of the crashed client are re-managed.

The index repair procedure then fixes the partially mod-
ified hash index. FUSEE deems all requests at the end of
per-size-class linked lists as potentially crashed requests. For
incomplete log entries, i.e., the used bit at the end of the log
entry is not set, the client must crashes during writing the
KV pair (c0 in Figure 9). The object is directly reclaimed
without further operation since the writing of the object has
not been completed. For a log entry with an incomplete old
value according to the CRC field, FUSEE redoes the request
according to the operation field and the KV pair. Under this
situation, either the request belongs to the last writer that
crashed before committing the log (c1 in Figure 9), or it be-
longs to other non-last writers. In the first case, the values in
the backup slots may not be consistent and the primary slot
has not been modified to a new value. Redoing the request
can make the backup and primary slots consistent. In the sec-
ond case, since the request of crashed non-last writers has not
returned to clients, redoing the request does not violate the
linearizability. For a request with a complete old value, the
request must belong to a last writer. However, the request may
finish (c3) or crash before the primary slot is modified (c2).
The recovery process checks the value in the primary slot (vp)
and the value in the old value (vold) to distinguish c2 from c3.
If vp = vold , the request crashed before the primary was mod-
ified because vold records the value before index modification.
Since all backup slots are consistent, the recovery process
modifies the primary slot to the new value and finishes the
recovery. Otherwise, the request is finished and no further
operation is required. After recovering the request, the master
asynchronously checks content in the volds in log entries of

the crashed client to recover its batched free operations.

5.4 Mixed Crashes
In situations where clients and MNs crash together, FUSEE
recovers the failures separately. FUSEE first lets the master
recover all MN crashes and then starts the recovery processes
for failed clients. KV requests can proceed because the master
acts as the last writer for all blocked KV requests. No request
is committed twice because the master commits the operation
logs on clients’ behalves.

6 Evaluation
6.1 Experiment Setup
Implementation. We implement FUSEE from scratch in C++
with 13k LOC. We implement RACE hashing carefully ac-
cording to the paper due to no available open-source im-
plementations. Coroutines are employed on clients to hide
the RDMA polling overhead, as suggested in [30, 73]. The
design of FUSEE is agnostic to the lower-level memory me-
dia of memory nodes, i.e., any memory node with either per-
sistent memory (PM) or DRAM that provides READ, WRITE,
and 8-byte CAS interfaces is compatible. We adopt mono-
lithic servers with RNICs and DRAM to serve as MNs like
Clover [60] since we do not have access to smartNICs and PM.
Specifically, we start an MN process on a monolithic server to
register RDMA memory regions and serve memory allocation
RPCs with a UDP socket. MN processes serve memory allo-
cation requests with UDP sockets. Since the socket receive
is a blocking system call, the process will be in the blocked
state with no CPU usage most of the time.
Testbed. We run all experiments on 22 physical machines
(5 MNs and 17 CNs) on the APT cluster of CloudLab [19].
Each machine is equipped with an 8-core Intel Xeon E5-2450
processor, 16GB DRAM, and a 56Gbps Mellanox ConnectX-
3 IB RNIC. These machines are interconnected with 56Gbps
Mellanox SX6036G switches.
Comparison. We compare FUSEE with two state-of-the-
art KV stores on DM, i.e., pDPM-Direct and Clover [60].
pDPM-Direct stores and manages the KV index and mem-
ory space on the clients. It uses a distributed consensus pro-
tocol to ensure metadata consistency and locks to resolve
data access conflicts. We extend the open-source version of
pDPM-Direct to support string keys for fair comparison in
our evaluation. Clover is a semi-disaggregated KV store that
adopts monolithic servers to manage memory spaces and
a hash index. All UPDATE and INSERT requests have to go
through the metadata server, requiring additional compute
power. For both pDPM-Direct and Clover, client-side caches
are enabled following their default settings. To show the effec-
tiveness of SNAPSHOT and the adaptive index cache, we im-
plement FUSEE-CR and FUSEE-NC, two alternative versions
of FUSEE. FUSEE-CR replicates index modifications by se-
quentially CASing all replicas to enforce sequential accesses.
FUSEE-NC is the version of FUSEE without a client-side
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(b) UPDATE latency CDF.

0 10 20 30 40 50
Latency (us)

0.00

0.25

0.50

0.75

1.00

C
D

F

FUSEE
Clover
pDPM-Direct

(c) SEARCH latency CDF.

10 20 30 40 50
Latency (us)

0.00

0.25

0.50

0.75

1.00

C
D

F

FUSEE
pDPM-Direct

(d) DELETE latency CDF.

Figure 10: The CDFs of different KV request latency under the microbenchmark.
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cache. For all these methods, we evaluate their throughput
and latency with both micro and YCSB [15] benchmarks.

Since the open-source version of Clover and pDPM-Direct
only support one index replica, we compare FUSEE with
these two approaches with a single index replica and two data
replicas in the microbenchmark (Section 6.2) and YCSB per-
formance (Section 6.3) evaluations. When evaluating FUSEE
with a single index replica, the embedded log is constructed,
but the commit of the log is skipped since committing the
log is used to ensure the consistency of multiple index repli-
cas. The performance of FUSEE with multiple replicas is
evaluated in the fault-tolerance evaluation (Section 6.4).

6.2 Microbenchmark Performance
We use microbenchmarks to evaluate the operation throughput
and latency of the three approaches. For FUSEE and pDPM-
Direct, we use 16 CNs and 2 MNs. For Clover, we use 17 CNs
and 2 MNs because it needs an additional metadata server,
consuming 8 more CPU cores and an additional RNIC. We
do not use multiple metadata servers for Clover because the
current open-source implementation of Clover only supports a
single metadata server. We run 128 client processes on the 16
CNs, where each CN holds 8 clients. The DELETE of Clover
is not tested because Clover does not support it.

Latency. To evaluate the latency of KV requests, we use
a single client to iteratively execute each operation 10,000
times. Figure 10 shows the cumulative distribution functions
(CDFs) of the request latency. FUSEE performs the best on
INSERT and UPDATE, since the SNAPSHOT replication pro-
tocol has bounded RTTs. FUSEE has a little higher SEARCH
latency than Clover since FUSEE reads the hash index and the
KV pair in a single RTT, which is slower than only reading
the KV pair in Clover. FUSEE has slightly higher DELETE
latency than pDPM-Direct because FUSEE writes a log entry
and reads the hash index in a single RTT, which is slower than
just reading the hash index in pDPM-Direct.

Throughput. Figure 11 shows the throughput of the three

approaches. The throughput of pDPM-Direct is limited by its
remote lock, which causes extensive lock contention as the
number of clients grows. For Clover, even though it consumes
more hardware resources, i.e., 8 additional CPU cores and
an RNIC, the scalability is still lower than FUSEE. This is
because the CPU processing power of the metadata server
bottlenecks its throughput. On the contrary, FUSEE improves
the overall throughput by eliminating the computation bottle-
neck of the metadata server and efficiently resolving conflicts
with the SNAPSHOT replication protocol.

6.3 YCSB Performance
For YCSB benchmarks [15], we generate 100,000 keys with
the Zipfian distribution (θ = 0.99). We use 1024-byte KV
pairs, which is representative of real-world workloads [9, 15,
17]. The hardware setup is the same as microbenchmarks.

YCSB Throughput. Figure 13 shows the throughput of
three approaches with different numbers of clients. Clover per-
forms the best under a small number of clients since adopting
the metadata server simplifies KV operations. Compared with
Clover, pDPM-Direct and FUSEE require more RDMA oper-
ations to resolve index modification conflicts. As the number
of clients grows, the throughput of Clover and pDPM-Direct
does not increase because the throughput is bottlenecked
by the metadata server and the lock contention, respectively.
Compared with Clover, FUSEE scales better with the growing
number of clients while consuming fewer resources. Com-
pared with pDPM-Direct, FUSEE improves the throughput by
avoiding lock contention. When the number of clients reaches
128, the throughput of FUSEE is 4.9× and 117× higher than
Clover and pDPM-Direct, respectively.

Figure 14 shows the throughput of the three approaches
with a write-intensive workload (YCSB-A) and a read-
intensive workload (YCSB-C) when varying numbers of MNs
from 2 to 5 using 128 clients. The throughput of pDPM-Direct
and Clover does not increase due to being limited by lock con-
tention and the limited compute power of the metadata server,
respectively. As for FUSEE, the throughput improves as the
number of memory nodes increases from 2 to 3. There is no
further throughput improvement because the total throughput
is limited by the number of compute nodes.

Figure 12 shows the throughput of FUSEE under smaller
KV sizes. Since the throughput of FUSEE is limited by the
bandwidth of MN-side RNICs, the YCSB-C throughput of
FUSEE increases by 44.1% and 55.9% with 512B and 256B
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Figure 13: The scalability of FUSEE under different YCSB workloads.
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Figure 14: The throughput with different numbers of MNs.
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ferent SEARCH-UPDATE ratios.
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KV pairs, respectively. The performance of FUSEE is not
affected by the dataset size because the performance depends
only on the number of RTTs of KV requests, which is deter-
ministic as presented in Section 4.

Read-write performance. Figure 15 shows the throughput
of the three approaches under different SEARCH-UPDATE ratios.
As the portion of UPDATE grows, the throughput of all three
methods decreases because UPDATE requests involve more
RTTs. However, FUSEE exhibits the best throughput due to
eliminating the computation bottleneck of metadata servers.

Adaptive index cache performance. Figure 16 shows the
YCSB-A throughput of FUSEE with different adaptive index
cache thresholds. The throughput of FUSEE decreases with
the increasing thresholds because more bandwidth is wasted
on fetching invalidated KV pairs with a high threshold.

Two-level memory allocation performance. To show the
effectiveness of the two-level memory allocation scheme,
we compare FUSEE with an MN-centric memory allocation
scheme, as shown in Figure 17. The YCSB-A throughput
drops 90.9% due to the limited compute power on MNs, while
the YCSB-C throughput remains the same since no memory
allocation is involved in the read-only setting.

6.4 Fault Tolerance & Elasticity
SNAPSHOT Replication Protocol. Figure 19 shows the me-
dian latency of FUSEE, FUSEE-NC, and FUSEE-CR with
different replication factors under microbenchmarks. We set
both the numbers of index replicas and data replicas to r
where r is the replication factor. The latency of FUSEE-
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ferent memory allocation methods.
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CR on INSERT, UPDATE, and DELETE grows linearly as the
replication factor because it modifies index replicas sequen-
tially, and the number of RTTs equals the replication factor.
Differently, the latency of FUSEE grows slightly with the
replication factor because SNAPSHOT has a bounded num-
ber of RTTs. For SEARCH requests, FUSEE and FUSEE-CR
have comparable latency since they execute SEARCH simi-
larly. Compared with FUSEE-NC, FUSEE has lower latency
for UPDATE, DELETE, and SEARCH due to fewer RTTs. The
INSERT latency is slightly higher than that of FUSEE-NC
because FUSEE spends additional time to maintain the lo-
cal cache. Figure 18 shows the throughput of FUSEE under
different replication factors. For YCSB-A and YCSB-B, the
throughput drops as the replication factor grows. The YCSB-
D throughput slightly drops from 8.8 Mops to 8.6 Mops due to
the read-intensive nature of YCSB-D. The YCSB-C through-
put remains the same due to no index modifications.

Search under Crashed MNs. FUSEE allows SEARCH re-
quests to continue when MNs crash under read-intensive
workloads. Figure 20 shows the throughput of 9 seconds
of execution, where memory node 1 crashes at the 5th second.
The overall throughput drops to half of the peak throughput
because all data accesses come to one MN. The throughput is
then limited by the network bandwidth of a single RNIC.

Recover from Crashed Clients. To evaluate the efficiency
of a client recovering from failures, we crash and recover a
client after UPDATE 1,000 times. As shown in Table 1, FUSEE
takes 177 milliseconds to recover from a client failure. The
memory registration and connection re-establishment account
for 92% of the total recovery time. The log traversal and KV
request recovery only account for 4% of the recovery time,
which implies the affordable overhead of log traversal.

Elasticity. FUSEE supports dynamically adding and shrink-
ing clients. We show the elasticity of FUSEE by dynamically
adding and removing 16 clients when running the YCSB-C
workload. As shown in Figure 21, the throughput increases
when the number of clients increases from 16 to 32 and re-
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Figure 19: Median operation latency of FUSEE, FUSEE-NC and FUSEE-CR under different replication factors.
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FUSEE.

Table 1: Client recovery time breakdown.

Step Time (ms) Percentage

Recover connection & MR 163.1 92.1%
Get Metadata 0.3 0.2%
Traverse Log 3.5 2.0%
Recover KV Requests 3.5 2.0%
Construct Free List 6.6 3.7%

Total 177.0 100%

sumes to the previous level after removing 16 clients.

7 Related Work
Disaggregated Memory. Existing approaches can be clas-
sified into software-based, hardware-based, and co-design-
based memory disaggregation. Software-based approaches
hide the DM abstraction by modifying operating systems [3,
23,47,55,61], virtual machine monitors [41], or runtimes [54,
63]. Hardware-based ones design memory buses [14, 40] to
enable efficient remote memory access. Co-design-based ap-
proaches co-design software and hardware [8, 25, 38, 65] to
gain better application throughput and latency on DM. The
design of FUSEE is agnostic to the low-level implementations
of all these DM approaches.
Disaggregated Memory Management. MIND [38] and
Clio [25] are the two state-of-the-art memory management
approaches on DM. But they both rely on special hardware to
manage memory spaces. The two-level memory management
of FUSEE resembles the hierarchical memory management of
The Machine [21, 34]. The difference is that FUSEE focuses
on fine-grained KV allocation with commodity RNICs, while
The Machine relies on special SoCs and directly manages
physical memory devices.
Memory-disaggregated KV stores. Clover [60] and Di-
nomo [37] are the most related memory-disaggregated KV
stores. Compared with Clover [60], FUSEE brings disaggre-

gation to metadata management and gains better resource
efficiency and scalability. Finally, Dinomo [37] is a fully-
disaggregated KV store that was developed concurrently with
our system. Dinomo proposes ownership partitioning to re-
duce coordination overheads of managing disaggregated meta-
data. However, it assumes that the disaggregated memory
pool is fault-tolerant, and hence its design does not con-
sider MN failures. In contrast, FUSEE addresses the chal-
lenges of handling MN failures with the SNAPSHOT repli-
cation protocol. There are many related RDMA-based KV
stores [18, 28, 30, 31, 45, 48, 51, 57, 60, 66–68]. They are infea-
sible on DM since they rely on server-side CPUs to execute
KV requests. Besides, there are emerging approaches that use
SmartNICs to construct KV stores [39, 52]. FUSEE can also
benefit from the additional compute power by offloading the
memory management to SmartNICs.
Replication. Both traditional [2, 22, 36, 43, 46, 50, 59, 62] and
RDMA-based [33, 58, 72] replication protocols are designed
to ensure data durability. However, all these approaches are
server-centric replication protocols designed for monolithic
servers. Differently, SNAPSHOT is a client-centric replication
protocol designed for the DM architecture and achieves high
scalability with collaborative conflict resolution.

8 Conclusion
This paper proposes FUSEE, a fully memory-disaggregated
KV store, that achieves both resource efficiency and high per-
formance by disaggregating metadata management. FUSEE
adopts a client-centric replication protocol, a two-level mem-
ory management scheme, and an embedded log scheme to
attack the challenges of weak MN-side compute power and
complex failure situations on DM. Experimental results show
that FUSEE outperforms the state-of-the-art approaches by
up to 4.5× with less resource consumption.
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