
Abstract
In this paper we propose an analytical approach for
estimating the reliability of a component-based software.
This methodology assumes that the software components
are heterogeneous and the transfers of control between
components follow a discrete time Markov process. Besides,
we also formulate and solve two resource allocation
problems. Finally, we demonstrate how these analytical
approaches can be employed to measure the reliability of a
software system including multiple-input/multiple-output
systems and distributed software systems. Experimental
results show that the proposed methods can solve the
testing-effort allocation problems and improve the quality
and reliability of a software system.

1. Introduction

With the great advancement of computer technology,
software designers are motivated to integrate commercial
off-the-shelf (COTS) software components for rapid
software development. To ensure high reliability for such
applications using software components as their building
blocks to construct a software system, dependable
components have to be deployed to meet the reliability
requirements. Therefore, it is necessary to assess the
reliabilities of such systems by investigating the
architectures, the testing strategies, and the component
reliabilities [1-4].To ensure the overall reliability of a
software application, software components in the system
have to meet certain reliability requirements, subject to
some resource constraints [5-9]. These resources include
human power, CPU hours, and elapsed time, etc. Without
loss of generality, we call all these resources as the
testing-effort [10]. Hence, to develop a good reliable
software system, a project manager must determine in
advance how to effectively allocate these resources [7]. In
this paper, we investigate two optimal testing-effort
allocation problems: minimization of the number of
remaining faults in a system given a fixed amount of
testing-effort and minimization of the total amount of

*Michael R. Lyu is with Computer Science and Engineering
Department, The Chinese University of Hong Kong, Shatin,
Hong Kong.

testing-effort given specific reliability requirements [5-9].
The organization of this paper is as follows. Section 2
presents an analytical approach to estimating the reliability
of a system. Two optimum testing-effort allocation
problems are discussed in Section 3. Section 4 illustrates
how the proposed approach is actually applied on the three
applications. Conclusions and future works are presented
in Section 5.

2. Reliability analysis for component-based
systems

A software system can be regarded as composed of
logically individual components, which can be
implemented and tested independently [2, 11-14]. In this
section, we propose an approach to estimating the reliability
of a component-based system by taking the architecture of
the software system and the reliabilities of the components
into consideration. For example, if a system consists of n
components with reliabilities denoted by R1,…, Rn

respectively, the reliability of an execution path, 1, 3, 2, 3, 2,

3, 4, 3, n, is given by nRRRRR ×××× 4
4

3
2

21 . Thus, the

objective here is to estimate the reliability of a system by
averaging over all path reliabilities [16].

2.1. Reviews of some testing-effort functions

In the field of software reliability modeling, Yamada et.
al. [6] adopted the concept of testing-effort within an NHPP
model to get a better description of the software fault
phenomenon. The testing-effort can be measured by the
man power, the number of test cases, the number of CPU
hours,..., etc. Furthermore, if the number of faults detected
by the current testing-effort expenditures is proportional to
the number of remaining faults, then we we have

� �)1()())0()((WtWreatm −−−= � � (1)�

where m(t)=the number of faults detected in time (0, t) ,
W(t)= the testing-effort consumption in time (0, t),
a = the expected number of initial faults,
r = the error detection rate per unit testing

2.2. A new approach to representing the effects of
weighting on the components

Optimal Resource Allocation and Reliability Analysis
for Component-Based Software Applications

Jung-Hua Lo, Sy-Yen Kuo, Michael R. Lyu*, and Chin-Yu Huang
Department of Electrical Engineering

National Taiwan University
Taipei, Taiwan

sykuo@cc.ee.ntu.edu.tw

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 06:52:24 UTC from IEEE Xplore. Restrictions apply.

From [15], we know the fact that a superposition or a
decomposition of independent Poisson processes is also a
Poisson process. Consider a series system of n independent
components. Assume that the system failure intensity
is)(tsλ and the failure intensity of component i is)(tiλ ,

i=1,…,n, the relationship between)(tsλ and)(tiλ is given

as follows:
� �).(...)()()(21 tttt ns λλλλ +++= � � (2)�

Xie et. al. [16] proposed an additive model for assessing the
reliability of this type of integrated system. Although the
approach of the additive model is straightforward, there are
some potential drawbacks. For example, Eq. (2) reveals
that each component has equal influence on the overall
system no matter how often it executes. In practice, the
frequency of a component being executed affects the overall
system reliability. A higher frequency indicates a greater
effect of that component on the performance of the system.
This fact shows that the components should have distinct
weights according to the architecture of the software system.
Consequently, we propose a new approach to representing
the effects of weighting on the components. This means
that we add a weight vector to Eq. (2) and the new solution
is as follows:
� �)(...)()()(2211 twtwtwt nns λλλλ +++= �(3)�

where the vector of weights (w1, w2, ..., wn) represents the
importance of each component and is obtained based on the
system architecture.

2.3. Markov process to model the architecture of a
component-based system

In this section, we consider systems with different
architecture styles and utilize the Markov process to model
the failure behaviors of the applications. Three general
input-output cases were employed. In addition, we develop
three methodologies to estimating the reliability of a
software system.
Definition : Let {Xn, n=0, 1, 2…} be a Markov process
with some absorbing states and some transient states.
Define the random variable, Nij, to represent the number of
visits to state j before entering an absorbing state given Xo=i.
The expected value of Nij , E(Nij), is denoted by ijµ .

Moreover, let kη denote the probability of absorption when

a process terminates at an absorbing state k. Furthermore,
let the probability of reaching state k from state i in n steps

be denoted as n
ikf . ���

The proofs of Theorem 1 and Theorem 2 are similar to
Theorem 3 and are omitted.

Theorem 1 (single-input/single-output system): Consider
a single-input and single-output system consisting of N
components with reliabilities R1,…, RN. Let {Xn} be the

Markov process where state N is an absorbing state, i.e., an
output node, while states {1, 2, ..., N−1} are transient states.
In particular, assume state 1 is the input node. Therefore, we
have the reliability of the system:

Rs= ∏××
−

=

1

2
11),(

N

i
iiN RpowRR µ ,

where the pow(x, y) is the power function, namely, pow(x,
y)=xy. ��

Theorem 2 (single-input/multiple-output system):
Consider a single-input and r-output system consisting of N
components with individual reliabilities denoted by R1,…,
RN.. Let {Xn} be the Markov process where {N, N−1, ...,
N−r+1} are absorbing states (i.e. r output nodes) and {1,
2, ..., N−r} are transient states. In particular, assume state 1
is the input node. Therefore, we have the reliability of the
system:

Rs= ∏ ∏××
−

= +−=

rN

i

N

rNk
jjii RpowRpowR

2 1
11),(),(ηµ .�����

Theorem 3 (multiple-input/multiple-output system):
Consider an s-input and r-output system consisting of N
components with reliabilities R1,…, RN.. Let {Xn} be a
Markov process where {N, N−1, ..., N−r+1} are absorbing
states (i.e. r output nodes) and {1, 2, ..., N−r} are transient
states. In particular, assume states {1, 2, ..., s} are the input
nodes with probability p1, p2, ..., ps, respectively. Therefore,
the system reliability, Rs , equals

∏ ∏×∑×∏
−

+= +−===

rN

sj

N

rNk
kk

s

l
ljlj

s

i
ii RpowpRpowpRpow

1 111
),(),(),(ηµ

Proof:
(1) The transformation probability matrix can be written:

P=
NNrNrNrrN

rr
QR

I

×−×−×−

×









)()()(

0

where Q is the transformation probability matrix
corresponding to the transient states, rrNR ×−)(is the matrix

of transition probabilities from transient to recurrent state,
and I is an identity matrix of size r.
(2) Next, we focus on ijµ where 1, ≥≥− jirN . By the

definition of ijµ and the conditional probability on X1, we

can have ijµ as follows:

E(Nij|X1=1)Pr(X1=1|X0=i)+..+E(Nij|X1=N−r)Pr(X1=N−r|X0=i)+
E(Nij|X1=N−r+1)Pr(X1=N−r+1|X0=i)+..+E(Nij|X1=N)Pr(X1=N|X0=i)
Because {N, ..., N−r+1} are absorbing states, it indicates
that the mathematical terms, E(Nij | X1=K)Pr(X1= K| X0=i)
where 1+−≥≥ rNKN , equal to one. That is,

=ijµ ∑
−

=
+

rN

k
ikkjij P

1
µδ where





≠
==

jiif
jiif

ij 0
1δ (4)

Equivalently, we can transform Eq. (4) into a matrix form:

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 06:52:24 UTC from IEEE Xplore. Restrictions apply.

M=I+QM, and get M=(I−Q)-1where M is composed of ijµ .

(3) Assume that the starting state i is the transient state and
the ending state j is the absorbing states. Therefore, we

have 1
ijf =Rij and ∑

−

=

−=
rN

k

n
kjik

n
ij fQf

1

1 . Equivalently, we can

have iη = irrNrNrN RQI 1)(
1

)()())((×−
−

−×− ×− . Therefore, in this

case, the process may be absorbed from one of the input
nodes. Thus we have the result for multiple inputs:

iη = ∑
=

×−
−

−×− ×−×
s

j
rrNrNrNj RQIp

1
)(

1
)()().)((

(4) At last, we can conclude that the nodes i (1≥≥ is) will

have pi visits, the node i (1+≥≥− sirN) have li

s

l
lp µ∑

=1

visits on average, and the output nodes i (1+−≥≥ rNiN)
have iη visits. Therefore, the system reliability , Rs , equals

∏ ∏∑∏
−

+= +−===
××

rN

sj

N

rNk
kk

s

l
ljlj

s

i
ii RpowpRpowpRpow

1 111
),(),(),(ηµ

�

3. Optimum testing-effort allocation problems

In this section we describe a general problem of
allocating testing resources to software components so that
the software applications can be constructed effectively,
given that the applications have prescribed reliability
requirements [5-9]. Furthermore, we consider two
testing-effort allocation problems [5-8] based on the
proposed model:
(1)minimizing the number of software faults remaining in
the system given fixed amount of testing-effort,
(2)minimizing the total testing-effort given the fixed
reliability requirements.

3.1. Minimizing the number of remaining faults

Suppose that each application is distributed with a
limited amount of testing-effort over its components, and
component i is allotted Wi testing-effort, and thus the
optimization problem can be represented as follows:

Minimize ∑
=

−
N

i
iiii Wrav

1
)exp(, subject to the requirements:

11212111 ... εααα ≤+++ NNWWW

…

MNMNMM WWW εααα ≤+++ ...2211

NjMiW jiij ,...,2,1,,...,2,1,0,0,0 ==≥≥≥ εα

Note that the parameters vi, ai, ri and ijα have already been

estimated by the proposed model and iε is the limited

amount of testing-effort available for components used by
application i.

3.2. Minimizing the total testing-effort
On the other hand, suppose the applications have

pre-specified reliability requirements, one has to allocate an
amount of testing-effort to each component to minimize the
total testing-effort such that all applications meet their
reliability requirement. Therefore, the optimization
problem can be represented as follows:

Minimize ∑
=

N

i
iW

1
, subject to the requirements:

1122121111)exp(...)exp()exp(γβββ ≤−++−+− NNN WrWrWr

…

MNNMNMM WrWrWr γβββ ≤−++−+−)exp(...)exp()exp(222111

NjMiWjiij ,...,2,1,,...,2,1,0,0,0 ==≥≥≥ γβ
Note that the parameters ri and ijβ have already been

estimated by the proposed model and iγ is the reliability

requirement used by application i.

3.3. Results for single application environment

3.3.1. Minimizing the number of remaining faults given
fixed amount of testing-effort. The optimization problem
is that the total amount of testing-effort is fixed, and we
want to allocate these efforts to each component to
maximize the system reliability. Suppose the total amount
of testing-effort is W, and component i is allotted Wi

testing-effort, and thus the optimization problem can be
represented as follows:

Minimize: ∑ −
=

N

i
iiii Wrav

1
)exp(, subject to

NiWWW i
N

i
i ...,,2,1,0,

1
=≥=∑

=
.

Note that the parameters ai and vi have already been
estimated by the proposed model in Section 2. To solve the
above problem, the Lagrange multiplier method [20] can be
applied. Furthermore, we propose a simple optimization
algorithm to solve the above problem.
Algorithm 1 for minimizing the number of remaining faults
Step 1: Set l=0.
Step 2: Calculate the following equations where i=1,…,N-l.

].ln)[ln(,
)/1(

))(ln/1(
ln 1

1

1 λλ −=
−

=
∑

∑

=

−

=
iiiiriN

i
i

lN

i
iiii

ravW
r

Wravr

Step 3: Rearrange the index i such that **
1 lNWW −≥≥

Step 4: If 0* ≥−lNW then stop, else update 0* =−lNW and

l=l+1.
Step 5: Go to Step 2. �

3.3.2. Minimizing the total testing-effort given the fixed
reliability requirement. On the other hand, suppose the

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 06:52:24 UTC from IEEE Xplore. Restrictions apply.

number of remaining faults in the system is specified by γ ,

one has to allocate an amount of testing-effort to each
component to minimize the total testing-effort. Therefore,
the optimization problem can be represented as follows:

Minimize ∑
=

N

i
iW

1
, subject to 0,)exp(

1
≥=−∑

=
i

N

i
iiii WWrav γ

We also propose a simple optimization algorithm to solve it.
Algorithm 2 for minimizing the total amount of
testing-effort expenditures:
Step 1: Set l=0.

Step 2: Calculate .,...,2,1],)
1

[ln(
1

1
lNi

r

rav

r
W

lN

i i

iii

i
i −== ∑

−

=γ

Step 3: Rearrange the index i such that **
1 lNWW −≥≥

Step 4: If 0* ≥−lNW then stop, else update 0* =−lNW and
l=l+1.
Step 5: Go to Step 2. �

4. Numerical examples

4.1. Reliability evaluation of component-based systems

The following examples adapted from [2, 11] are used
to illustrate the three architecture cases discussed in Section
2. Without loss of generality, we use the terminating
application reported in [11] as a running example and let the
estimated reliabilities of the components be regarded as
unchanged throughout the following three subsections and
listed in Table 1.

4.1.1. Example 1: a single-input/single-output system.
The first example is a single-input/single-output system. It
consists of 10 components where component 1 is the input
component and component 10 the output component.
Figure 1 depicts the control-flow graph of the example, and
the transition probabilities among the components are given
as follows: P1,2 = 0.6, P1,3 = 0.2, P1,4 = 0.2, P2, 3= 0.7, P2,5 = 0.3,
P3,5 = 1.0, P4,5 = 0.4, P4, 6= 0.6, P5,7 = 0.4, P5,8 = 0.6, P6,3 = 0.3,
P6,7 = 0.3, P6,8 = 0.1, P6,9 = 0.3, P7,2 = 0.5, P7,9 = 0.5, P8,4 = 0.25,
P8,10 = 0.75, P9,8 = 0.1, P9,10 = 0.9. Therefore, the expected
number of visits on each transient state before absorption
from the input node (component 1) and the probability of
absorption can be derived as follows:

,9784.1,5289.0,3254.1,4717.1,1 1514131211 ===== µµµµµ
.1,9669.0,3155.1,7433.1,3173.0 1019181716 ===== ηµµµµ

Thus, the system reliability is estimated as R1= 0.7715.

Table 1: The estimated reliabilities of the components.
1 2 3 4 5 6 7 8 9 10

0.99 0.98 0.99 0.96 0.98 0.95 0.98 0.96 0.97 0.99

1

2 4

3

5

7

6

89

10

�

Figure 1: A single-input/single-output system.

4.1.2. Example 2: a single-input/multiple-output type.
In this example, we delete two links of the original program
control graph in Example 1, and obtain the modified graph
as shown in Figure 2. The modification is a simple
transformation from a single-output system to a
multiple-output system and the corresponding transition
probabilities are similar to Example1.

1

2 4

3

5

7

6

89

10

Figure 2: A single-input/multiple-output system.

Therefore, following the same approach we can have
following results: ,6845.0,6.0,1 131211 === µµµ

,6326.0,2149.0,0077.1,3581.0 18161514 ==== µµµµ
,0645.019 =µ .5324.0,4676.0 107 == ηη Thus, the

reliability of the application, R2, is 0.8890.

4.1.3. Example 3: a multiple-input/multiple-output type.
In this example, the process will start from one of the two

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 06:52:24 UTC from IEEE Xplore. Restrictions apply.

input components (components 1 and 2) with equal
probability and terminates at the output components
(components 7 and 10). That is, the modification is a
transformation from a single-input system to a
multiple-input system. Figure 3 depicts the control-flow
graph of the example and the transition probabilities are
similar to Example 2 except P1,3 = 0.5 and P1,4 = 0.5.

0.5 0.5

1

2 4

3

5

7

6

89

10

Figure 3: A multiple-input/multiple-output system.

Therefore, according to Theorem 3, portion of the vector of

weights in Eq. (3) can be obtained by ∑
=

=
2

1
.

l
lklk pw µ

Therefore, we have (w1, w2, w3, w4, w5, w6, w8, w9) = (0.5,
0.5, 0.673, 0.4057, 0.9853, 0.2434, 0.6228, 0.073). On the
other hand, with the aim to computing the probability of
absorption at each absorbing state, the following
information about the two absorbing states is obtained
based on Theorem 3: .5327.0,4672.0 107 == ww Thus, we

have the reliability of the system is R3= 0.8929.

4.2. Optimum testing-effort allocation problems

In this subsection, three numerical examples for the
optimum testing-effort allocation problem are demonstrated.
In particular, assume the components are adopted from [6]
and the estimated parameters ai, ri, in Section 3.3.1, for
i=1,…, 10, in the software system are summarized in Table
2. Moreover, the control flows of the three systems of
interest are similar to the cases in Section 3 and the
weighting vector vi in Eq. (3), for i=1,…, 10, are also listed
in Table 2.

4.2.1. Minimizing the number of remaining faults.
Assume the total amount of testing-effort expenditures W is
50,000. One has to allocate the expenditures to each
component to minimize the number of remaining faults.
Using the algorithm 1 in Section 4.1, the optimal

testing-effort expenditures for three systems are estimated
and shown in Table 3. Furthermore, the number of initial
faults and the number of remaining faults estimated for
three examples are also shown in Table 4.

Table 2: The estimated values of a, ri and vi.

ai ri (10-4) vi in
Example1

vi in
Example 2

vi in
Example 3

1 89 4.1823 1 1 0.5
2 25 5.0923 1.4717 0.6 0.5
3 27 3.9611 1.3254 0.6845 0.6730
4 45 2.2956 0.5289 0.3581 0.4057
5 39 2.5336 1.9784 1.0077 0.9853
6 39 1.7246 0.3173 0.2149 0.2434
7 59 0.8819 1.7433 0.4676 0.4672
8 68 0.7274 1.3155 0.6326 0.6228
9 37 0.6824 0.9669 0.0645 0.073

10 14 1.5309 1 0.5324 0.5327

Table 3: The optimal solution using Algorithm1.
*

iW for example 1 *
iW for example 2 *

iW for example 3

1 6215 8112 6512
2 3756 3552 3241
3 4125 4459 4477
4 2964 4721 5396
5 7718 8261 8192
6 0 835 1697
7 13465 7538 7800
8 11757 1598 12713
9 0 0 0

10 0 0 0

Table 4: The reduction in the number of faults.
Initial faults Remaining faults Reduction (%)

Example 1 517.0 173.6 33.6
Example 2 266.7 67.5 25.3
Example 3 221.4 66.4 30.0

Table 5: The optimal solution using Algorithm2.
*

iW for example 1 *
iW for example 2 *

iW for example 3

1 7700 6954 5340
2 4976 2602 2278
3 5692 3237 3239
4 5669 2612 3233
5 10168 6275 6256
6 2096 0 0
7 20505 2046 2240
8 20293 5943 5971
9 7265 0 0

10 2388 0 0

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 06:52:24 UTC from IEEE Xplore. Restrictions apply.

4.2.2. Minimizing the total testing-effort expenditures.
Assume the total number of remaining faults Z 100. One
has to allocate the expenditures to each component to
minimize the total amount of testing-effort expenditures.
Using algorithm 2 in Section 4.2 and Table 2, the optimal
solutions for Section 3.3.2 are derived and shown in Table 5.
Furthermore, the relationship between the total amount of
testing-effort expenditures and the reduction rate of
remaining faults is depicted in Figure 4.

Figure 4: The reduction rate of remaining faults v.s. the
total testing-effort expenditures.

5. Conclusions

This paper presents a new approach to analyzing the
reliability of a component-based software, based on the
reliabilities of the individual components and the
architecture of the system. Furthermore, we derive some
useful mathematical properties to show that the model is
indeed very powerful. Three general cases are utilized to
validate the proposed approach. On the other hand, two
testing-effort allocation problems are also studied and
efficient solutions are provided. Experimental results show
that the proposed methods can solve the testing-effort
allocation problems and improve the quality and reliability
of the software system.

Acknowledgment

This research was supported by the National Science
Council, Taiwan, ROC., under Grant NSC
90-2213-E-002-113 and also substantially supported by a
grant from the Research Grant Council of the Hong Kong
Special Administrative Region (Project No.
CUHK4222/01E). Further, we thank the anonymous
referees for their critical review and comments.

References

[1] M. R. Lyu. Handbook of Software Reliability Engineering.
McGraw-Hill, 1996.

[2] S. S. Gokhale, "Analysis of Software Reliability and
Performance," Ph.D. Dissertation, Department of Electrical
and Computer Engineering, Duke University, Durham, 1998.

[3] J. D. Musa, A. Iannino, and K. Okumoto (1987). Software
Reliability, Measurement, Prediction and Application.
McGraw-Hill.

[4] J. D. Musa (1998). Software Reliability Engineering: More
Reliable Software, Faster Development and Testing.
McGraw-Hill.

[5] P. Kubat and H. S. Koch, "Managing Test-Procedure to
Achieve Reliable Software," IEEE Trans. on Reliability, vol.
32, No. 3, pp. 299-303, September 1983.

[6] H. Ohtera and S. Yamada, "Optimal Allocation & Control
Problems for Software-testing Resources," IEEE Trans. on
Reliability, 39, vol. 2, pp. 171-176, June 1990.

[7] Y. W. Leung, "Software Reliability Growth Model with
Debugging Efforts," Microelectron. Reliab. Vol. 32, No. 5,
pp. 699-704, 1992.

[8] R. H. Hou, S. Y. Kuo, and Y. P. Chang, " Needed Resources
for Software Module Test, Using the Hyper-Geometric
Software Reliability Growth Model," IEEE Trans. on
Reliability, Vol. 45, No. 4, pp. 541-549, December 1996.

[9] Michael R. Lyu and Aad P. A. van Moorsel, "Optimization of
Reliability Allocation and Testing Schedule for Software
Systems," Proceedings of the 8th International Symposium
on Software Reliability Engineering, pp. 336-347, November
1997, Los Almitos, California.

[10] C. Y. Huang, J. H. Lo, S. Y. Kuo, and Michael R. Lyu,
"Software Reliability Modeling and Cost Estimation
Incorporating Testing-Effort and Efficiency," Proceedings of
the 10th International Symposium on Software Reliability
Engineering, pp. 62-72, November 1999, Florida.

[11] R. C. Cheung, "A User-Oriented Software Reliability
Model," IEEE Trans. on Software Engineering, SE-6(2), pp.
118-125, March 1980.

[12] W. L. Wang, Y. Wu, and M. H. Chen, "An
Architecture-Based Software Reliability Model,"
Proceedings of the Pacific Rim International Symposium on
Dependable Computing, pp. 143-150, Dec. 1999, HongKong.

[13] S. Krishnamurthy and A. P. Mathur, "On the Estimation of
Reliability of a Software System using Reliabilities of its
Component", Proceedings of the 8th International
Symposium on Software Reliability Engineering, pp. 146-155,
November 1997, Albuquerque, New Mexico.

[14] B. Littlewood, "Software Reliability Model for Modular
Program Structure", IEEE Trans. on Reliability, vol. 28, No.
3, pp. 241-246, August 1979.

[15] K. S. Trivedi. Probability and Statistics with Reliability,
Queuing and Computer Science Applications. Prentice-Hall,
Englewood Cliffs, New Jersey, 1982.

[16] M. Xie and C. Wohlin, "An additive Reliability Model for the
Analysis of Modular Software Failure Data," Proceedings of
the 6th International Symposium on Software Reliability
Engineering, pp. 188-194, October 1995, Toulouse, France.

[17] M. S. Bazaraa and C. M. Shetty, Nonlinear Programming:
Theory and Algorithm, John Wiley & Sons, 1993.

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 06:52:24 UTC from IEEE Xplore. Restrictions apply.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

