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Abstract
Intelligent code completion has become an essen-
tial research task to accelerate modern software
development. To facilitate effective code com-
pletion for dynamically-typed programming lan-
guages, we apply neural language models by learn-
ing from large codebases, and develop a tailored at-
tention mechanism for code completion. However,
standard neural language models even with atten-
tion mechanism cannot correctly predict the out-
of-vocabulary (OoV) words that restrict the code
completion performance. In this paper, inspired
by the prevalence of locally repeated terms in pro-
gram source code, and the recently proposed point-
er copy mechanism, we propose a pointer mix-
ture network for better predicting OoV words in
code completion. Based on the context, the pointer
mixture network learns to either generate a within-
vocabulary word through an RNN component, or
regenerate an OoV word from local context through
a pointer component. Experiments on two bench-
marked datasets demonstrate the effectiveness of
our attention mechanism and pointer mixture net-
work on the code completion task.

1 Introduction
Integrated development environments (IDEs) have become
essential paradigms for modern software engineers, as IDEs
provide a set of helpful services to accelerate software devel-
opment. Intelligent code completion is one of the most useful
features in IDEs, which suggests next probable code tokens,
such as method calls or object fields, based on existing code in
the context. Traditionally, code completion relies heavily on
compile-time type information to predict next tokens [Tu et
al., 2014]. Thus, it works well for statically-typed languages
such as Java. Yet code completion is harder and less sup-
ported for dynamically-typed languages like JavaScript and
Python, due to the lack of type annotations.

To render effective code completion for dynamically-typed
languages, recently, researchers turn to learning-based lan-
guage models [Hindle et al., 2012; White et al., 2015;
Bielik et al., 2016]. They treat programming languages as
natural languages, and train code completion systems by

learning from large codebases (e.g., GitHub). In particular,
neural language models such as Recurrent Neural Networks
(RNNs) can capture sequential distributions and deep seman-
tics, hence become very popular. However, these standard
neural language models are limited by the so-called hidden
state bottleneck: all the information about current sequence
is compressed into a fixed-size vector. The limitation makes
it hard for RNNs to deal with long-range dependencies, which
are common in program source code such as a class identifier
declared many lines before it is used.

Attention mechanism [Bahdanau et al., 2014] provides one
solution to this challenge. With attention, neural language
models learn to retrieve and make use of relevant previous
hidden states, thereby increasing the model’s memorization
capability and providing more paths for back-propagation. To
deal with long-range dependencies in code completion, we
develop a tailored attention mechanism which can exploit the
structure information on program’s abstract syntax tree (AST,
see Figure 1), which will further be described.

But even with attention, there is another critical issue called
unknown word problem. In general, the last component of
neural language models is a softmax classifier, with each out-
put dimension corresponding to a unique word in the prede-
fined vocabulary. As computing high-dimensional softmax
is computational expensive, a common practice is to build
the vocabulary with only K most frequent words in the cor-
pus and replace other out-of-vocabulary (OoV) words with a
special word, i.e., UNK. Intuitively, standard softmax based
neural language models cannot correctly predict OoV words.
In code completion, simply recommending an UNK token of-
fers no help to the developers. The unknown word problem
restricts the performance of neural language models, espe-
cially when there are a large number of unique words in the
corpus like program source code.

For our code completion task, we observe that when writ-
ing programs, developers tend to repeat locally. For exam-
ple, the variable name my salary in Figure 1 may be rare
and marked as UNK with respect to the whole corpus. But
within that specific code block, it repeats several times and
has a relatively high frequency. Intuitively, when predicting
such unknown words, our model can learn to choose one lo-
cation in local context and copy the word at that location as
our prediction. Actually, the recently proposed Pointer Net-
works [Vinyals et al., 2015] can do so, which employ atten-
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my_salary = 0
for i in range(12):
    my_salary += 1
print(my_salary)
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Figure 1: A Python program and its corresponding abstract syntax tree (AST). The dashed arrow points to a parent node.

tion scores to select a word from the input sequence as output.
Although pointer networks can make better predictions on un-
known words or rare words, they are unable to predict words
beyond current input sequence, i.e., lacking the global view.
Therefore they may not work well in our code completion.

In this paper, to facilitate effective code completion, we
propose a pointer mixture network, which can predict next
word by either generating one from the global vocabulary or
copying a word from the local context. For the former, we ap-
ply a standard RNN with attention, which we call the global
RNN component. For the latter, we employ a pointer network
which we call the local pointer component. Actually the two
components share the same RNN architecture and attention
scores. Our pointer mixture network is a weighted combina-
tion of the two components. At each prediction, a switcher
is learned based on the context information, which can guide
the model to choose one component for generating the next
word. In this way, our model learns when and where to copy
an OoV word from the local context as the final prediction.

The main contributions of this work are as follows:

• We propose a pointer mixture network for better predict-
ing OoV words in code completion, which learns to gen-
erate next word from either the global vocabulary or the
local context.

• We develop an attention mechanism for code comple-
tion, which makes use of the AST structure information
(specially, the parent-children information).

• We evaluate our models on two benchmarked datasets
(JavaScript and Python). The experimental results show
great improvements upon the state-of-the-arts.

2 Approach
2.1 Program Representation
In our corpus, each program is represented in the form of
abstract syntax tree (AST). Any programming language has
an unambiguous context-free grammar, which can be used
to parse source code into an AST. Further, the AST can be
converted back into source code in a one-to-one correspon-
dence. Processing programs in the form of ASTs is a typi-
cal practice in Software Engineering (SE) [Mou et al., 2016;
Li et al., 2017].

Figure 1 shows an example Python program and its cor-
responding AST. We can see that each AST node contain-
s two attributes: the type of the node and an optional val-

ue. For each leaf node, “:” is used as a separator be-
tween type and value. For each non-leaf node, we ap-
pend a special EMPTY token as its value. As an exam-
ple, consider the AST node NameLoad:my salary in Fig-
ure 1 where NameLoad denotes the type and my salary
is the value. The number of unique types is rela-
tive small (hundreds in our corpus), with types encoding
the program structure, e.g., Identifier,IfStatement,
SwitchStatement, etc. Whereas there are infinite possibil-
ities for values, which encode the program text. A value may
be any program identifier (e.g. jQuery), literal (e.g. 66),
program operator (e.g., +,-,*), etc.

Representing programs as ASTs rather than plain text en-
ables us to predict the structure of the program, i.e., type of
each AST node. See the example in Figure 1 again, when
the next token is a keyword for, the corresponding next AST
node is For(:EMPTY), which corresponds to the following
code block:
for __ in __:
## for loop body

In this way, successfully predicting next AST node completes
not only the next token for, but also the whole code block in-
cluding some trivial tokens like in and “:”. Such structure
completion enables more flexible code completion at differ-
ent levels of granularity.

To apply statistical sequence models, we flatten each AST
as a sequence of nodes in the in-order depth-first traversal.
To make sure the sequence can be converted back to the orig-
inal tree structure thus converted back to the source code, we
allow each node type to encode two additional bits of infor-
mation about whether the AST node has a child and/or a right
sibling. If we define a word as wi = (Ti, Vi) to represent an
AST node, with Ti being the type and Vi being the value, then
each program can be denoted as a sequence of words wn

i=1.
Thus our code completion problem is defined as: given a se-
quence of words w1, ..., wt−1, our task is to predict the next
word wt. Obviously, we have two kinds of tasks: predicting
the next node type Tt and predicting the next node value Vt.
We build one model for each task and train them separately.
We call this AST-based code completion.

2.2 Neural Language Model
The code completion task can be regarded as a language mod-
eling problem, where recurrent neural networks (RNNs) have
achieved appealing success in recent years. LSTM [Hochre-
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Figure 2: The attentional LSTM. The inputs fed to each LSTM cell
are composed of two kinds of embeddings (green for Type and yel-
low for Value). Here ⊗ represents the element-wise multiplication.

iter and Schmidhuber, 1997] is proposed to mitigate the gra-
dients vanishing/exploding problem in RNNs, by utilizing
gating mechanisms. A standard LSTM cell is defined as
ht = f(xt, ht−1). At each time step t, an LSTM cell takes
current input vector xt and previous hidden state ht−1 as in-
puts, then produces the current hidden state ht which will be
used to compute the prediction at time step t.

2.3 Attention Mechanism
Standard neural language models suffer from hidden state
bottleneck [Cheng et al., 2016]. To alleviate the problem,
attention mechanism is proposed to retrieve and make use
of relevant previous hidden states. It is incorporated into
standard LSTM which we call attentional LSTM in this pa-
per, as illustrated in Figure 2.
Context Attention Traditional attention mechanism makes
use of previous hidden states within a context window [Bah-
danau et al., 2014], which we call the context attention. For-
mally, we keep an external memory of L previous hidden
states, which is denoted as Mt = [ht−L, ..., ht−1] ∈ Rk∗L.
At time step t, the model uses an attention layer to compute
the relation between ht and hidden states in Mt, represented
as attention scores αt, and then produces a summary context
vector ct. We design our context attention for code comple-
tion as follows:

At = vT tanh(WmMt + (Whht)1
T
L), (1)

αt = softmax(At), (2)

ct =Mtα
T
t , (3)

where Wm,Wh ∈ Rk∗k and v ∈ Rk are trainable parame-
ters. k is the size of the hidden state, i.e. dimension of ht. 1L
represents an L-dimensional vector of ones.
Parent Attention Besides the traditional context attention,
we also propose a parent attention for the AST-based code
completion. Intuitively, different hidden states within the
context window should have different degrees of relevance
to the current prediction. As our sequence is flattened from a
tree (i.e., AST, see Figure 1), a parent node should be of great
relevance to a child node. But the flattened AST has lost the
parent-children information. To exploit such structure infor-
mation, when flattening the AST, we record the parent loca-
tion pl of each AST node, i.e., how many nodes before it.
Then at time step t, our model retrieves a parent vector pt
from the external memory Mt, which is the hidden state at
the parent location, i.e., ht−pl

1. The information of parent

1If pl is larger than L, we set pl as 1.

...

RNN distribution:   

Pointer distribution:   
1-

Output distribution:   

...

...

LSTM

    

...

...

...

LSTM

      

LSTM

  
    

Figure 3: The pointer mixture network. We reuse the attention s-
cores αt (see Figure 2) as the pointer distribution lt. The switcher
produces st ∈ [0, 1] to balance lt and wt. The final distribution
is generated by concatenating the two scaled distributions. Here ⊕
indicates the concatenation operation.

code segments can benefit our model to make more confident
predictions.

When predicting next word at time step t, we condition the
decision on not only the current hidden state ht but also the
context vector ct and parent vector pt. The output vector Gt

encodes the information about next token which is then pro-
jected into the vocabulary space, followed by a softmax func-
tion to produce the final probability distribution yt ∈ RV :

Gt = tanh(W g[ht; ct; pt]), (4)
yt = softmax(W vGt + bv), (5)

where W g ∈ Rk∗3k and W v ∈ RV ∗k are two trainable pro-
jection matrices and bv ∈ RV is a trainable bias vector. Note
that V represents the size of vocabulary and “;” denotes the
concatenation operation.

2.4 Pointer Mixture Network
Inspired by the prevalence of locally repeated tokens in pro-
gram source code, we propose to leverage the pointer net-
works to predict OoV tokens in code completion, by copy-
ing a token from previous input sequence. Specifically, we
propose a pointer mixture network that combines a standard
RNN and a pointer network, as shown in Figure 3.

Our pointer mixture network consists of two major compo-
nents (global RNN component and local pointer component),
and one switcher to strike a balance between them. For glob-
al RNN component, it is an attentional LSTM that predicts
the next token from a predefined global vocabulary. For lo-
cal pointer component, it points to previous locations in local
context according to the learned location weights. Our point-
er mixture network combines the two components by con-
catenating the two components’ output vectors. Before con-
catenation, the two individual outputs are scaled by a learned
switcher based on the context, thus our model learns how to
choose a certain component at each prediction. Specifically,
the switcher produces a scalar st ∈ [0, 1] which indicates the
probability to use the global RNN component, and then 1−st
is the probability to use the local pointer component.

After concatenating the two scaled vectors, we pick one
output dimension with the highest probability. If this dimen-
sion belongs to the RNN component, then the next token is
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Vocabulary Size JS 1k JS 10k JS 50k PY 1k PY 10k PY 50k
OoV Rate / Localness 20% / 8% 11% / 3.7% 7% / 2% 24% / 9.3% 16% / 5.2% 11% / 3.2%

Vanilla LSTM 69.9% 75.8% 78.6% 63.6% 66.3% 67.3%
Attentional LSTM (ours) 71.7% 78.1% 80.6% 64.9% 68.4% 69.8%

Pointer Mixture Network (ours) 73.2% 78.9% 81.0% 66.4% 68.9% 70.1%

Table 1: Accuracies on next value prediction with different vocabulary sizes. The out-of-vocabulary (OoV) rate denotes the percentage of
AST nodes whose value is beyond the global vocabulary. Localness is the percentage of values who are OoV but occur in the context window.

generated from the global vocabulary. Otherwise, the next
token is copied from the local context.

Formally, at time step t, the global RNN component pro-
duces a probability distribution wt ∈ RV for the next token
xt within the vocabulary according to formula 5. The local
pointer component points to the locations inside a memory
according to the distribution lt ∈ RL, where L is the length
of the memory. In order to reduce the parameters and accel-
erate the training, we reuse the attention scores (see formula
2) as lt in practice.

The switcher is a sigmoid function conditioned on the cur-
rent hidden state ht and context vector ct:

st = σ(W s[ht; ct] + bs), (6)

where W s ∈ R2k∗1 and bs ∈ R1 are trainable weights.
st ∈ [0, 1] is a scalar to balance wt and lt. Finally, the mod-
el completes by concatenating the two scaled distributions to
produce the final prediction:

yt = [stwt; (1− st)lt]. (7)

3 Evaluation
3.1 Dataset
We evaluate different approaches on two benchmarked
datasets: JavaScript (JS) and Python (PY), which are summa-
rized in Table 2. Collected from GitHub, both two dataset-
s are publicly available2 and used in previous work [Bielik
et al., 2016; Raychev et al., 2016; Liu et al., 2016]. Both
datasets contain 150,000 program files which are stored in
their corresponding AST formats, with the first 100,000 used
for training and the remaining 50,000 used for testing. Af-
ter serializing each AST in the in-order depth-first traversal,
we generate multiple queries used for training and evaluation,
one per AST node, by removing the node (plus all the nodes
to the right) from the sequence and then attempting to predict
the node.

The numbers of unique node types in JS and PY are 44 and
181 originally. By adding information about children and sib-
lings as discussed in Section 2.1, we increase the numbers to
95 and 330 respectively. As shown in Table 2, the number of
unique node values in both datasets are too large to directly
apply neural language models, thus we only choose K most
frequent values in each training set to build the global vocabu-
lary, where K is a free parameter. We further add three special
values: UNK for out-of-vocabulary values, EOF indicating the
end of each program, and EMPTY being the value of non-leaf
AST nodes.

2http://plml.ethz.ch

JS PY
Training Queries 10.7 ∗ 107 6.2 ∗ 107

Test Queries 5.3 ∗ 107 3.0 ∗ 107
Type Vocabulary 95 330
Value Vocabulary 2.6 ∗ 106 3.4 ∗ 106

Table 2: Dataset Statistics

3.2 Experimental Setup
Configuration Our base model is a single layer LSTM net-
work with unrolling length of 50 and hidden unit size of 1500.
To train the model, we use the cross entropy loss function and
mini-batch SGD with the Adam optimizer [Kingma and Ba,
2014]. We set the initial learning rate as 0.001 and decay it by
multiplying 0.6 after every epoch. We clip the gradients’ nor-
m to 5 to prevent gradients exploding. The size of attention
window is 50. The batch size is 128 and we train our model
for 8 epochs. Each experiment is run for three times and the
average result is reported.

We divide each program into segments consisting of 50
consecutive AST nodes, with the last segment being padded
with EOF if it is not full. The LSTM hidden state and mem-
ory state are initialized with h0, c0, which are two trainable
vectors. The last hidden and memory states from the previ-
ous LSTM segment are fed into the next one as initial states
if both segments belong to the same program. Otherwise,
the hidden and memory states are reset to h0, c0. We initial-
ize h0, c0 to be all-zero vectors while all other variables are
randomly initialized using a uniform distribution over [-0.05,
0.05]. We employ accuracy as our evaluation metric, i.e., the
proportion of correctly predicted next node types/values.
Preprocessing and Training Details As each AST node
consists of a type and a value, to encode the node and in-
put it to the LSTM, we train an embedding vector for each
type (300 dimensions) and value (1200 dimensions) respec-
tively, then concatenate the two embeddings into one vector.
Since the number of unique types is relatively small in both
datasets, there is no unknown word problem when predicting
next AST node type. Therefore, we only apply our pointer
mixture network on predicting next AST node value.

For each dataset, we build the global vocabulary for AST
node values with K most frequent values in the training set,
and mark all out-of-vocabulary node values in training set and
test set as OoV values. Before training, if an OoV value ap-
pears exactly the same as another previous value within the
attention window, then we label that OoV value as the cor-
responding position in the attention window. Otherwise, the
OoV value is labeled as UNK. If there are multiple matches in
the attention window, we choose the position label as the last
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JS PY
TYPE VALUE TYPE VALUE

Vanilla LSTM 87.1% 78.6% 79.3% 67.3%
Attentional LSTM (no parent attention) 88.1% 80.5% 80.2% 69.8%

Attentional LSTM (ours) 88.6% 80.6% 80.6% 69.8%
Pointer Mixture Network (ours) - 81.0% - 70.1%

LSTM [Liu et al., 2016] 84.8% 76.6% - -
Probabilistic Model [Raychev et al., 2016] 83.9% 82.9% 76.3% 69.2%

Table 3: Comparisons against the state-of-the-arts. The upper part is the results from our experiments while the lower part is the results from
the prior work. TYPE means next node type prediction and VALUE means next node value prediction.

occurrence of the matching value in the window, which is the
closest one. For within-vocabulary values, we label them as
the corresponding IDs in the global vocabulary. During train-
ing, whenever the ground truth of a training query is UNK, we
set the loss function to zero for that query such that our model
does not learn to predict UNK. In both training and evaluation,
all predictions where the target value is UNK are treated as
wrong predictions, i.e., decrease the overall accuracy.

3.3 Experimental Results
For each experiment, we run the following models for com-
parison, which have been introduced in Section 2:

• Vanilla LSTM: A standard LSTM network without any
attention or pointer mechanisms.

• Attentional LSTM: An LSTM network equipped with
our (context and parent) attention mechanism which at-
tends to last 50 hidden states at each time step.

• Pointer Mixture Network: Our proposed mixture net-
work which combines the above attentional LSTM and
the pointer network.

OoV Prediction We first evaluate our pointer mixture net-
work’s ability to ease the unknown word problem when pre-
dicting next AST node value. For each of the two datasets,
we create three specific datasets by varying the global vocab-
ulary size K for node values to be 1k, 10k, and 50k, resulting
in different out-of-vocabulary (OoV) rates. We also measure
how often OoV values can occur in previous context window
thus be labeled as the corresponding positions. We call this
measure as localness, which is the upper-bound of the perfor-
mance gain we can expect from the pointer component. We
run the above models on each specific dataset. Table 1 lists
the corresponding statistics and experimental results.

As Table 1 shows in the column, on each specific dataset,
the vanilla LSTM achieves the lowest accuracy, while the at-
tentional LSTM improves the performance upon the vanilla
LSTM, and our pointer mixture network achieves the highest
accuracy. Besides, we can see that by increasing the vocabu-
lary size in JS or PY dataset, the OoV rate decreases, and the
general accuracies on different models increase due to more
available information. We also notice a performance gain by
our pointer mixture network over the attentional LSTM, and
the gain is the largest with 1k vocabulary size. We attribute
this performance gain to correctly predicting some OoV val-
ues through the local pointer component. Therefore, the re-
sults demonstrate the effectiveness of our pointer mixture net-

work to predict OoV values, especially when the vocabulary
is small and the OoV rate is large.
State-of-the-Art Comparison As there are already prior in-
vestigations conducting code completion on the two bench-
marked datasets, to validate the effectiveness of our proposed
approaches, we need to compare them against the state-of-
the-art. Particularly, Liu et al. [2016] employ a standard
LSTM on the JS dataset, without attention or pointer mecha-
nisms. Raychev et al. [2016] build a probabilistic model for
code based on probabilistic grammars and achieve the state-
of-the-art accuracies for code completion on the two datasets.

Specifically, we conduct experiments on next AST node
type prediction and next AST node value prediction respec-
tively. For the former, there is no unknown word problem
due to the small type vocabulary, so we only use the vanilla
LSTM and the attentional LSTM. For the latter, we set the
value vocabulary size to 50k to make the results comparable
with [Liu et al., 2016], and employ all the three models. The
results are shown in Table 3.

The upper part of Table 3 shows our results in this work,
while the lower part lists the results from the prior work. Note
that Liu et al. [2016] only apply LSTM on the JS dataset, so
they do not have results on the PY dataset. For next type pre-
diction, our attentional LSTM achieves the highest accuracy
on both datasets, significantly improving the best records of
the two datasets. For next value prediction on JS dataset, our
pointer mixture network achieves comparable performance
with Raychev et al.’s [2016], which is a probabilistic model
based on domain-specific grammars. However, our approach-
es outperform Liu et al. [2016] that is also based on neural
networks. On PY dataset, our pointer mixture network for
next value prediction outperforms the previous best record.
Therefore, we conclude that our attentional LSTM and point-
er mixture network are effective for code completion, achiev-
ing three state-of-the-art performances out of the four tasks.

3.4 Discussion
Why attention mechanism works? When writing program-
s, it is quite common to refer to a variable identifier declared
many lines before. In this work, the mean program length
(i.e., the number of AST nodes) is around 1000 in JS dataset
and 600 in PY dataset. Therefore in our code completion task,
we need the attention mechanism to capture the long depen-
dencies. Furthermore, we measure how our proposed parent
attention influence the final prediction by only using the con-
text attention (see formula 4). As shown in Table 3, parent at-
tention can effectively contribute to the type prediction while
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class Operator(Employee):
  def __init__(self, name, employee_id):

 super(Operator, self).__init__(name, Rank.OPERATOR)
 self.employee_id = employee_id

  def _dispatch_call(self, call, employees):
 for employee in employees:
   employee.take_call(call)

  def record_path(self, base_name):
 return os.path.join(base_name, str(self.  ?  ))

Figure 4: A code completion example showing predicting an OoV value.

JS 1k PY 1k
Pointer Random Network 71.4% 64.8%
Attentional LSTM 71.7% 64.9%
Pointer Mixture Network 73.2% 66.4%

Table 4: Showing why pointer mixture network works.

has little effect on the value prediction.
Why pointer mixture network works? In both training and
evaluation, all predictions where the target value is UNK are
treated as wrong predictions. After incorporating the point-
er network, we predict OoV values by copying a value from
local context and that copied value may be the correct pre-
diction. Thus we observe a performance gain in our pointer
mixture network. However, one may argue that no matter how
capable the pointer component is, the accuracy will definitely
increase as long as we get chances to predict OoV values.

To verify the copy ability of our pointer component, we
develop a pointer random network where the pointer distri-
bution lt (see Figure 3) is a random distribution instead of
reusing the learned attention scores. We conduct comparisons
on value prediction in JS and PY datasets with 1k vocabulary
size. The results are listed in Table 4, where the pointer ran-
dom network achieves lower accuracies than the pointer mix-
ture network. Thus we demonstrate that our pointer mixture
network indeed learns when and where to copy some OoV
values. However, the pointer random network performs even
worse than the attentional LSTM. We think the reason lies
in the switcher which is disturbed by the random noise and
cannot always choose the correct component (i.e., the RNN
component), thus influencing the overall performance.

3.5 Case Study
We depict a code completion example in Figure 4. In this
example, the target prediction employee id is an OoV val-
ue with respect to the whole training corpus. We show the
top five predictions of each model. For vanilla LSTM, it just
produces EMPTY which is the most frequent node value in
our corpus. For attentional LSTM, it learns from the context
that the target has a large probability to be UNK, but fails to
produce the real value. Pointer mixture network successfully
identifies the OoV value from the context, as it observes the
value appearing in the previous code.

4 Related Work
Statistical Code Completion There is a body of recent work
that explores the application of statistical learning and se-

quence models on the code completion task, such as n-gram
models [Hindle et al., 2012; Tu et al., 2014], and probabilistic
grammars [Allamanis and Sutton, 2014; Bielik et al., 2016;
Raychev et al., 2016]. Recently, neural networks become
very popular to model source code [Raychev et al., 2014;
White et al., 2015; Allamanis et al., 2016]. In particular,
Bhoopchand et al. [2016] proposed a sparse pointer mech-
anism for RNN, to better predict identifiers in Python source
code. Nevertheless, their pointer component targets at iden-
tifiers in Python source code, rather than OoV tokens in our
work. The OoV tokens include not only identifiers but also
other types such as VariableDeclarator. Besides, they directly
serialize each program as a sequence of code tokens, while in
our corpus each program is represented as a sequence of AST
nodes to facilitate more intelligent structure prediction.
Neural Language Modeling Deep learning techniques such
as RNNs have achieved the state-of-the-art results in the lan-
guage modeling task [Mikolov et al., 2010; Zaremba et al.,
2014]. The soft attention or memory mechanisms [Bah-
danau et al., 2014; Cheng et al., 2016; Tran et al., 2016]
have been proposed to ease the gradient vanishing problem
in standard RNNs. Pointer is another mechanism proposed
recently [Vinyals et al., 2015] which gives RNNs the ability
to “copy”. The pointer mechanism is shown to be helpful in
tasks like summarization [Gu et al., 2016], neural machine
translation [Luong et al., 2014], code generation [Ling et al.,
2016], and language modeling [Merity et al., 2016].

Specially, Gulcehre et al. [2016] also propose to gener-
ate new words at each time step based on an RNN compo-
nent and a local pointer component. However, their scenario
is sequence-to-sequence tasks like neural machine translation
while our scenario is language modeling. Merity et al. [2016]
also share a similar idea. But they employ the pointer compo-
nent to effectively reproduce rare words which are still IDs in
the global vocabulary, rather than out-of-vocabulary words.
Further, the two work’s corpora are natural language while
our corpus is program source code.

5 Conclusion
In this paper, we apply neural language models on the code
completion task, and develop an attention mechanism which
exploits the parent-children information on program’s AST.
To deal with the OoV values in code completion, we propose
a pointer mixture network which learns to either generate a
new value through an RNN component, or copy an OoV value
from local context through a pointer component. Experimen-
tal results demonstrate the effectiveness of our approaches.
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