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Abstract

Text revision refers to a family of natural language generation
tasks, where the source and target sequences share moder-
ate resemblance in surface form but differentiate in attributes,
such as text formality and simplicity. Current state-of-the-
art methods formulate these tasks as sequence-to-sequence
learning problems, which rely on large-scale parallel training
corpus. In this paper, we present an iterative in-place editing
approach for text revision, which requires no parallel data.
In this approach, we simply fine-tune a pre-trained Trans-
former with masked language modeling and attribute clas-
sification. During inference, the editing at each iteration is
realized by two-step span replacement. At the first step, the
distributed representation of the text optimizes on the fly to-
wards an attribute function. At the second step, a text span
is masked and another new one is proposed conditioned on
the optimized representation. The empirical experiments on
two typical and important text revision tasks, text formaliza-
tion and text simplification, show the effectiveness of our ap-
proach. It achieves competitive and even better performance
than state-of-the-art supervised methods on text simplifica-
tion, and gains better performance than strong unsupervised
methods on text formalization. Our code and model are re-
leased at https://github.com/jingjingli01/OREO.

Introduction
Text revision refers to an important series of text generation
tasks, including but not limited to text style transfer (Shen
et al. 2017), text simplification (Xu et al. 2016), counterfac-
tual debiasing (Zmigrod et al. 2019), grammar error correc-
tion (Sun et al. 2022), sentence fusion (Malmi et al. 2019)
and argument reframing (Chakrabarty, Hidey, and Mure-
san 2021), which revises an input sentence into another one
with the desired attribute (e.g., formality or simplicity). As
the most popular solution, sequence-to-sequence (seq2seq)
learning achieves state-of-the-art results on many text revi-
sion tasks today. However, it becomes less applicable when
there is no large-scale annotated parallel data for training.

On the other hand, recent breakthroughs in self-
supervised learning have enabled the pre-trained Trans-
former models (Vaswani et al. 2017), such as BERT (Devlin
et al. 2018), RoBERTa (Liu et al. 2019) and GPT (Radford
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et al. 2018), to learn sufficient distributed representation of
natural language, which is universally transferable to a wide
range of downstream tasks even without labeled data (Ten-
ney, Das, and Pavlick 2019; Zhang et al. 2019; Wu et al.
2020). In this paper, we ask the question, can we borrow the
power of a pre-trained Transformer for text revision without
any parallel data?

There exist some efforts on developing unsupervised text
generation methods with only non-parallel data, such as us-
ing reinforcement learning (RL) (Yu et al. 2017) and varia-
tional auto-encoders (Hu et al. 2017a). However, these meth-
ods suffer from issues of unstable (Bowman et al. 2016) and
computationally expensive training. It is even more chal-
lenging to apply them with large pre-trained models. For
instance, to fine-tune a GPT-3 summarization model with
RL, it takes thousands of labeler hours for learning a reli-
able reward function and 320 GPU-days to train the policy
and value nets (Stiennon et al. 2020).

In this work, we propose OREO, a method of On-the-
fly REpresentation Optimization for text revision. Instead of
generating an entire sequence of tokens from scratch, OREO
first detects partial text span to be edited, then conducts in-
place span revision, which is realized by iterative mask-and-
infill editing on the input sentence. As shown in Figure 1, at
each iteration, a fine-tuned RoBERTa encodes the input sen-
tence into a distributed representation, then optimizes it in-
formed by an attribute head of the same pretrained RoBERTa
model. After that, OREO masks a span and infills a new one
conditioned on the updated representation. As for the train-
ing, our model, OREO fine-tunes RoBERTa with two sim-
ple tasks, masked language modeling and attribute classifi-
cation.

The contribution of this work is three-fold:

1. We propose an efficient mask-and-infill method with on-
the-fly optimized representation for text revision. In this
work, we tackle two important tasks: text simplification
and text formalization. Additionally, this framework can
be directly adapted to other text revision tasks.

2. To enable on-the-fly representation optimization, we de-
sign simple fine-tuning methods that balance efficiency
and efficacy. The fine-tuning can be finished within 8
GPU-hours at most in our experiments.

3. Our proposed OREO has strong performance on text for-
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Figure 1: A simplified illustration of two-step span revision in OREO. In this example, the input is “Your work so dope u should
publish it!”. The informal textual span “so dope u” is selected to revise. To allow for a potentially longer replacement, we
append 2 [LM-MASK] tokens to the span and use this sequence for two-step revision. Step 1: Representation Optimization. (a)
The fine-tuned RoBERTa model encodes an input sentence to calculate the likelihood of target attribute Pθ(z∗|X). (b) After
calculating and backpropagating the loss between estimated and target attribute value, the hidden states (in green) are optimized
on the fly. Step 2: Span replacement. The span to be edited is replaced with [LM-MASK] tokens (we use [M] for short). We
fix the optimized hidden representations in Step 1 (in green) and let RoBERTa’s LM head propose an alternative text span
autoregressively.

malization dataset GYAFC-fr (Rao and Tetreault 2018),
surpassing unsupervised baseline methods, one of which
also utilizes RoBERTa; and achieves competitive perfor-
mance with state-of-the-art supervised methods on text
simplification dataset NEWSELA-TURK (Maddela, Alva-
Manchego, and Xu 2020).

Methods
Problem Formulation
Text revision aims to revise an input sentence X with at-
tribute z to another one X∗ with the target attribute z∗,
while other features fixed as much as possible. In this work,
we address text simplification and text formalization, where
the target attributes are simplicity and formality respectively.
The training data is a non-parallel corpus with attribute la-
bels.

Preliminary: Pre-trained Transformer Models for
Natural Language
Self-supervised learning with massive unlabeled text data
makes powerful pre-trained Transformers for natural lan-
guage processing. We adopt the RoBERTabase (Liu et al.
2019) model in this work.

RoBERTa is a stack of L Transformer layers trained with
masked language modeling with unlabeled text data. Given a
sequence of tokens [x1, ..., xT ] with length T that is partially
masked (e.g. xt is replaced by a special [MASK] token),
RoBERTa constructs hidden states H l

t at l-th layer for token
xt. On top of the Transformer layers of RoBERTa, there is
a language model (LM) head that takes as input the hidden
states HL

t at the final layer corresponding to the masked to-
ken, and recovers the masked token xt by maximizing:

PWLM(xt|HL
t ) = Softmax(WT

LMH
L
t ), (1)

where WLM is the parameter of LM head and H\t is hid-
den states at positions other than t. Ht has intensive inter-

action with H\t through self-attention module. Therefore,
RoBERTa is able to infill context-aware tokens.

Training for OREO: Multi-task Fine-tuning
The hidden states produced by RoBERTa, or in general, pre-
trained Transformer models, have been proven to encode a
wide range of linguistic features, such as morphology (Li
and Eisner 2019), syntax (Wu et al. 2020), semantics (Zhang
et al. 2019) and etc. Motivated by this, we fine-tune the
RoBERTa to model the task-specific attributes. Concretely,
we adopt two fine-tuning tasks, masked language model-
ing (MLM) and attribute classification. The former one is
to force RoBERTa to infill a span consistent with the seman-
tics and attributes encoded in the hidden states, and the latter
one is to help RoBERTa update the hidden states towards a
specific attribute.

Masked language modeling The original MLM objective
adopted by RoBERTa does not model the length of tokens to
be infilled. Inspired by Malmi, Severyn, and Rothe (2020),
we let the model do variant-length span replacement. Specif-
ically, there are three modifications for the MLM objective:
1) We introduce a new special token [LM-MASK] for span
infilling; 2) Before each iteration of span replacement, we
append K additional masks to pad the selected span to a
fixed length; 3) RoBERTa can predict [PAD], another new
special token, as a placeholder to be removed directly from
the output text. As such, a selected span of length N can be
replaced by a new one, whose length is between 0 andN+K.

We modify the strategy for MLM training data construc-
tion accordingly. A continuous span is masked, and we ran-
domly insert [LM-MASK] and [PAD] tokens in the source
and target spans, respectively. We provide an example and
more details in Appendix A.

Meanwhile, we still follow the original masking strategy,
where tokens are masked independently and replaced by
[MASK] token, creating another set of MLM training data.
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Algorithm 1: Text revision with OREO

Input: An input sentence X(0);
Set target attribute z∗, threshold δ, maximum

iteration number I;
A fine-tuned RoBERTa with parameters θ,

including an attribute head WAtt and a LM head WLM
Output: An output sentence X∗

Initialize: i = 0, ζ(0) = Pθ(z
∗|X(0))

while i < I and ζ(i) < δ do
I Span selection
Calculate ζ(i) = Pθ(z

∗|X(i)) and L (4)
Calculate a(i) (6) and select t,N = argmax

t,N
a
(i)
t:t+N

I Representation optimization
Insert K [LM-MASK]s after X(i)

t:t+N , then we have
X ′(i) as the input of RoBERTa at the next step

Calculate H(i), PWAtt(z
∗|H(i)) and L′ (4)

Update H(i+1) with ∇H(i)L′ (3)
I Span replacement
Replace the selected span X ′(i)t:t+N with [LM-MASK]s
X

(i+1)

\t:t+N+K = X
′(i)
\t:t+N+K

I The unselected part keep fixed
Infill a new span
X

(i+1)
t:t+N+K=argmax

Xt:t+N+K

PWLM(Xt:t+N+K|H(i+1)

\t:t+N+K)

I Approximate by greedy decoding
Remove the [PAD] tokens in the new span, then we

have X(i+1)

Return: X∗ = X(j), where j = argmax
j

ζ(j)

We fine-tune RoBERTa and its LM head with two sets of
training data jointly.

Attribute classification In addition, we create a new at-
tribute head, parallel to the LM head, on top of RoBERTa as
an attribute classifier. The conventional fine-tuning approach
takes as input the outputs of the final layer at position t = 0.
In our preliminary experiment, we find this approach sub-
optimal. Inspired by the evidence found in (Tenney, Das, and
Pavlick 2019) that the different layers of pre-trained Trans-
former capture different categories of features, we concate-
nate the hidden states of the [CLS] token from all layers
as the input of attribute head. Specifically, given an input
sentence X , RoBERTa with parameters θ predicts the prob-
ability distribution over attribute candidates Z as:

Pθ(Z|X) = Softmax(WT
Att[H

0
0 , H

1
0 , ...,H

L
0 ]) (2)

where WAtt denotes parameters of the attribute head, and
[H0

0 , H
1
0 , ...,H

L
0 ] is the concatenation of hidden states from

all layers at the position t = 0. Then the RoBERTa is tuned
to maximize the likelihood of ground-truth attribute labels.

Inference: On-the-fly Representation Optimization
Most of the existing work on unsupervised text generation
incorporate task-specific constraints, such as reconstruction
objective and discriminator networks (Surya et al. 2018), on

the generation model explicitly. In contrast, we steer the dis-
tributed representation of text directly. The hypothesis is that
the pre-training and fine-tuning make RoBERTa an intrin-
sic multi-task model, which has already learned sufficient
features for text revision: the hidden states can be used to
recognize the attribute, and meanwhile inform the LM head
to select tokens consistent to a certain attribute and context.
All we need further is to keep other attributes, especially the
semantics, fixed as much as possible during modification.

To this end, OREO conducts text revision by iteratively
replacing spans on the input sequence. At each iteration, a
span is selected for editing; then the revision is done in two
steps. At the first step, RoBERTa encodes the input sentence
into hidden states, conditioned on which the attribute head
measures the probability of target attributes. Then RoBERTa
adjusts the hidden states towards increasing the target at-
tribute probability. At the second step, the selected span is
masked out, after which RoBERTa uses the LM head to fill
in the blank, conditioned on updated hidden states. These
two steps repeatedly iterate until a maximum iteration num-
ber I is reached, or the attribute value exceeds a predefined
threshold δ. The complete revision procedure of OREO is
formalized in Algorithm 1.

In the following sections, we detail two steps of text re-
vision in OREO respectively. An illustration is provided in
Figure 1. Then we introduce our method of span selection.

Step 1: Representation optimization Given an input sen-
tence X(i) at the i-th iteration, RoBERTa parameterized by
θ transforms it to a sequence of hidden states H(i), condi-
tioned on which the attribute head estimates the probability
of target attribute PWAtt(z

∗|H(i)). However, blindly finding
a H∗ that optimizes PWAtt(z

∗|H∗) can corrupt or even elim-
inate other useful features encoded in the original hidden
states, and we may not want those features to be greatly in-
fluenced. Thus, for each revision, we find a small local per-
turbation on H(i) that maximally increases the likelihood of
target attribute. As such, the update rule of hidden states is:

H(i+1) = H(i) − λ ∇H(i)L
‖∇H(i)L‖2

, (3)

where λ is a hyper-parameter that controls the norm of per-
turbation, and

L = − logPWAtt(z
∗|H(i)). (4)

The perturbation, also known as the normalized gradient
of L with respect to hidden states, can be calculated with
standard backpropagation techniques. The parameters of
RoBERTa is frozen during this gradient computation. There-
fore, the representation is optimized on-the-fly.

Even though we apply a small perturbation, there are still
risks that other coupled attributes change accordingly. We
address this issue by only replacing one span at each itera-
tion, and encoding the complete sentence into hidden states
before masking a span. This issue can be further eliminated
by other advanced techniques, such as representation dis-
entanglement (Chen et al. 2019) and neural adapter mod-
ules (Madotto et al. 2020). We leave the exploration of more
advanced solutions for future work.
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Step 2: Span replacement Once the hidden states are up-
dated, OREO conducts span replacement. The selected span
X

(i)
t:t+N of length N is replaced by [LM-MASK] tokens.

And hence the span to be infilled is X(i)
t:t+N+K (we ap-

pendK [LM-MASK] tokens before updating hidden states).
RoBERTa takes as input the masked sequence, and predicts
a new span autoregressively with the previously updated hid-
den states:

PWLM(X
(i+1)
t:t+N+K |H

(i+1)
\t:t+N+K) =

N+K∏
n=1

PWLM(x
(i+1)
t+n |H

(i+1)
\t:t+N+K , X

(i+1)
t:t+n),

(5)

where x(i+1)
t+n is the predicted token at step n, H(i+1)

\t:t+N+K

is the optimized hidden states of unselected text. Informed
by the updated hidden states, the revised span is expected to
meet target attribute and meanwhile maintain other informa-
tion, e.g. semantics, of the original span.

Span selection strategy The span selection in OREO is
done before the text revision at each iteration. It is motivated
by three reasons: 1) The selection strategy can be agnostic
to the text revision algorithm, increasing the flexibility of
OREO; 2) It allows us to insert [LM-MASK] tokens in the se-
lected span in advance, so that RoBERTa can infill a longer
span. 3) It enables human-in-the-loop generation, where the
user can indicate which part should be revised.

In this work, we use the magnitude of the ∇H(i)L, where
L is calculated with (4), as a measurement of disagreement
for span selection. Specifically, at iteration i, we calculate
a
(i)
t for each token with respect to the attribute head as:

a
(i)
t = ‖∇

H0(i)
t

L‖2, (6)

where H0 is the hidden states at the word embedding layer.
Intuitively, a token whose modification can maximally in-
crease the target attribute value should be revised.

Then we calculate an N-gram (n ≤ 4) score as:

a
(i)
t:t+N =

∑N
n=1 a

(i)
t+n

N + c
, (7)

where we add a smoothing constant c, otherwise only one
token is chosen. In practice, we set c as 1. To further pre-
vent serious corruption of the original sentence, we remove
named entities from the selected span. As mentioned above,
we finally append K [LM-MASK] tokens to the selected
span for the two-step span replacement.

Experiment Setting
Implementation
We experiment with OREO in two real-world text revision
tasks, text simplification and text formalization. We imple-
ment RoBERTa based on Huggingface transformers (Wolf
et al. 2020). For all experiments, we fine-tune the RoBERTa
base (Liu et al. 2019) with a task-specific corpus. We pri-
marily adopted the default hyperparameters with a fixed

learning rate of 5e-5. The numbers of fine-tuning epochs
are 6 and 2 for text simplification and formalization, re-
spectively. It takes 8-GPU hours to fine-tune RoBERTa on
one Tesla V100 for both tasks. The maximum iteration I
was set to 4 for efficiency purpose, although the final per-
formance can increase slightly with more iterations. λ was
selected from {0.8, 1.2, 1.6, 2.0} and set to 1.6. These pa-
rameters are validated only on the text formalization. We
do not perform further tuning on text simplification. The at-
tribute threshold δ is task-dependent. It was selected from
from {0.1, 0.2, . . . , 0.5} and set to 0.5 for text simplification
and 0.3 for text formalization. K = 1 for both tasks.

Text Simplification
Text simplification is to revise the complex text into sim-
pler language with easy grammar and word choice while
keeping the meaning unchanged (Saggion 2017). Based on
the widely used corpora Newsela (Xu, Callison-Burch, and
Napoles 2015), Jiang et al. (2020) constructs a reliable cor-
pus consisting of 666K complex-simple sentence pairs1. As
our model does not rely on the complex-simple alignments,
we remove the duplicated sentences. The final dataset con-
sists of 269K train, 28K development and 29K test sen-
tences. As discussed in (Jiang et al. 2020; Maddela, Alva-
Manchego, and Xu 2020; Alva-Manchego et al. 2017), pre-
vious supervised methods tend to behave conservatively by
simply deleting words and lack the ability to conduct ef-
fective phrasal simplification, we follow (Maddela, Alva-
Manchego, and Xu 2020) and adopt NEWSELA-TURK for
evaluation, a test set with high-quality human-written ref-
erences emphasizing lexical and phrasal simplification for
each complex sentence. Although it is challenging for OREO
to conduct structural simplification, there is an off-the-shelf
resource (Niklaus et al. 2019) focused on sentence splitting
and deletion that we can utilize as a pre-processing of com-
plex sentences. To keep this work focused, we leave struc-
tural transformation for future work.

We report SARI (Xu et al. 2016), Flesch-Kincaid grade
level (FKGL) readability (Kincaid et al. 1975) and average
sentence length (SLen) as evaluation metrics. SARI calcu-
lates the average of F1/precision of n-grams added, kept and
deleted between system output and reference sentences (n ∈
{1, 2, 3, 4}). We report the F1 score of each edit operation.
FKGL measures the readability of sentences. We do not re-
port BLEU because it does not correlate well with human
judgement (Xu et al. 2016).

We compare our OREO to both supervised and unsu-
pervised approaches. For unsupervised baselines, we adopt
UNTS (Surya et al. 2018), which is based on adversarial
training and variational auto-encoder. We also compare our
model with the following state-of-the-art supervised meth-
ods: (i) TFMBERT (Rothe, Narayan, and Severyn 2020), a
Transformer whose encoder is initialized with the BERT
model. (ii) EditNTS (Dong et al. 2019), which models
edit operations explicitly with sequence-to-sequence learn-
ing. (iii) Hybrid-NG (Narayan and Gardent 2014), a hy-

1Dataset available at https://github.com/chaojiang06/wiki-auto.
Newsela dataset can be requested from https://newsela.com/data/
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Methods SARI Add Keep Delete FKGL↓ SLen

Supervised

Complex (Input) 22.3 0.0 67.0 0.0 12.8 23.2

TFMBERT 36.0 3.3 54.9 49.8 8.9 16.1
EditNTS 37.4 1.6 61.0 49.6 9.5 16.9
Hybird-NG 38.2 2.8 57.0 54.8 10.7 21.6
CtrlSimp 41.0 3.4 63.1 56.6 11.5 22.2

Unsupervised

UNTS 39.9 1.5 60.5 57.7 11.2 22.0
OREO (ours) 45.2 2.3 69.4 64.0 11.4 23.5

Table 1: Automatic evaluation results on NEWSELA-TURK.
↓The smaller, the better.

Methods† BLEU Formality H-mean G-mean

Reference 100.0 95.20 97.49 97.52

CrossAlign 4.77 75.9 8.98 19.03
StyleEmbded 8.71 28.3 13.32 15.70
MultiDec 14.04 21.32 16.93 17.30
UnsupMT 37.36 76.88 50.28 53.59
MASKER 47.73 58.86 52.71 53.00

OREO (ours) 57.63 80.71 67.24 68.20

Table 2: Automatic evaluation results on text formalization.

brid system including a probabilistic model for splitting and
deletion, and a monolingual machine translation model for
phrase replacement and reordering. (iv) CtrlSimp (Maddela,
Alva-Manchego, and Xu 2020), the current state-of-the-art
method composed of structural simplification module and
lexical/phrasal simplification model. We also report the per-
formance of the strategy that blindly copies the original
complex sentence.

Text Formalization
We then move on to the next task, text formalization. Since
the informal sentence is much noisier than the pre-training
data of RoBERTa, this task can test the robustness of our
OREO. To compare with previous work, we experimented
with the domain of Family & Relationships in Grammarly’s
Yahoo Answers Formality Corpus (GYAFC-fr) (Rao and
Tetreault 2018). There are 100K, 5K and 2.5K informal-
formal2 pairs in GYAFC. Again, we only use non-parallel
sentences and their associated formality labels to fine-tune
RoBERTa. Considering the gap between informal text and
pre-training corpus, we augment the training data with 880K
automatically extracted sentences from the same domain by
Xu, Ge, and Wei (2019).

The evaluation of formalization involves multiple aspects.
Following previous literature (Luo et al. 2019; Xu et al.

2The informal text in GYAFC is collected from casual chats in
web forums. It includes few offensive statements, such as slang,
vulgarity, harassment, etc. These statements may cause discomfort
or upset to the user of the dataset.

2018), we report BLEU (Papineni et al. 2002) as the mea-
surement of content preservation and fluency. The formality
attribute is evaluated by a separately trained RoBERTa clas-
sifier which obtains accuracy at 94% on the validation set.
To obtain an overall performance of the system, we calcu-
late the harmonic mean (H-mean) and geometric mean (G-
mean) of BLEU and formality accuracy and consider them
as the main metric for this task.

We compare OREO with the following widely adopted
unsupervised baseline methods: (i) CrossAlign (Shen et al.
2017) disentangles the style of text and contents via shared
latent space for style revision. (ii) StyleEmbeddedc (Fu
et al. 2018) and (iii) MultiDec (Fu et al. 2018) extract
out style information from text and encode it into embed-
dings and decoders respectively. (iv) UnsupMT (Zhang et al.
2018) adopts machine translation methods to deliver pseudo
training pairs for sequence-to-sequence transduction. (v)
MASKER (Malmi, Severyn, and Rothe 2020), a recently pro-
posed unsupervised method for text style transfer, is clos-
est to OREO. It employs a BERT which masks the span ac-
cording to the disagreement of language models conditioned
on different attributes and fills in a new span for the tar-
get attribute. For a fair comparison, we use RoBERTa as
their base model. In our preliminary experiment, we find that
RoBERTa leads to better performance on text formalization.

Experiment Results
Automatic Evaluation
Text simplification Table 1 presents the automatic eval-
uation results for text simplification on NEWSELA-TURK.
As for the main metric of text simplification, our method
achieves the highest SARI score, surpassing the supervised
and unsupervised baseline by a large margin. According to
(Maddela, Alva-Manchego, and Xu 2020), Add is an impor-
tant metric to indicate the model’s capability in paraphras-
ing. OREO gains a higher Add score than the supervised
edit-based method, EditNTS. Although UNTS is on a par
with OREO in FKGL scores, its Add score is 0.8 points lower
than OREO, indicating that our model has a better trade-off
between simplicity and meaning preservation as well as flu-
ency. Our method’s high score in Keep and Delete oper-
ations demonstrates that gradient-guided span selection can
detect the complex span accurately.

Text formalization Table 2 shows the evaluation results
for text formalization. Our approach outperforms all of
the unsupervised baseline models in both content preser-
vation and accuracy of style transfer. Notably, the signif-
icant margin of OREO and MASKER demonstrates the ne-
cessity of hidden states optimization. Although both meth-
ods directly conduct span replacement, OREO additionally
performs on-the-fly update on hidden representations of its
context, which is steered by an attribute head. This leads
to a large improvement in formality. Additionally, MASKER
proposes phrasal replacement based on an incomplete input,
without accessing the semantics of the original span. This
leads to semantic loss. While our span infilling is condi-
tioned on the representations encoded the semantics of the
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Formality Coherency Fluency

MASKER 2.74 2.94 3.31
OREO 3.42 3.33 3.41

Human 3.69 3.67 3.78

Table 3: Human evaluation on text formalization

BLEU Formality H-mean G-mean

Full 57.63 80.71 67.24 68.20

(1) Infill w/o H(i) 55.50 69.67 61.78 62.18
(2) Update H(i) w/ noise 56.55 69.14 62.21 62.53
(3) Fix H(i) 56.47 67.94 61.68 61.94
(4) Random span selection 45.30 55.03 49.69 49.93

Table 4: Model ablation study on text formalization.

original input, OREO has a large improvement on BLEU
score.

Human Evaluation
To verify the improvement of OREO, we conduct human
evaluation on text formalization in Table 3. We randomly
sample 80 examples from each model’s output and human-
written reference. Due to the budget limits, we only compare
to the baseline that is closest to our work. We invited six an-
notators with advanced linguistic backgrounds to evaluate
formality, semantic coherence and language fluency of each
sentence in a blind manner. Formality indicates to how much
degree the output satisfies the formal attribute. Semantic co-
herence means whether the output preserves the original se-
mantics of input text. And language fluency measures the
grammatical correctness of the output text. Each annotator
is asked to provide scores from 1 to 4 for all three criteria.
Each sentence is rated by two annotators 3 and we report
the averaged ratings. In Table 3, OREO is significantly better
than MASKER in terms of formality and coherency (p-value
< 0.01), which is consistent with automatic evaluation re-
sults. However, there is still improvement space for OREO
when compared to human reference. Two edit-based meth-
ods have the same score of language fluency, mostly because
both of them recruit RoBERTa as the base model to propose
new span.

Analysis
Ablation study We evaluate different variants of OREO in
Table 4. To verify the necessity of infilling conditioned on
updated hidden states and the gradient information for the
update, we compare to variants as 1) without fixing any hid-
den state when infilling span; 2) updating the hidden states
with Gaussian noise; 3) without updating the hidden states.
To evaluate the effect of our span selection strategy, we also
try (4) randomly selecting span.

3The annotators’ ratings are positively correlated with p-value
< 0.1 across models and metrics.

With fixed or incorrectly updated hidden states, the for-
mality of revised text drops sharply. It indicates that opti-
mizing hidden states efficiently is crucial to infilling a span
that satisfies the target attribute.

When the hidden states are removed, there is a signifi-
cant drop in terms of the BLEU score due to the loss of se-
mantic information. Both BLEU score and formality drop
drastically when the span is replaced randomly. It indicates
that our gradient-guided span selection is helpful in detect-
ing spans that are opposite to the target attribute.

Case study Table 5 exhibits the examples generated by
baseline methods and OREO in both tasks. Compared to
other baseline methods, our OREO is able to produce accu-
rate and fluent revision. More surprisingly, it can even con-
duct knowledgeable revision. For instance, “a think tank” is
simplified as “a group that studies people”. OREO also has
decent performance encountering noisy text. In Example 3,
MASKER fails to correct the abbreviation and typos, while
OREO correctly revises “u” to “you”, and “kno” to “know”.

However, we also notice that OREO sometimes fails to
hold semantics. For instance, it revises “critics” to “support-
ers” in Example 2. This is a common problem that language
models are not sensitive to negation. More efforts could be
made in future work.

Then we explore human-in-the-loop generation, where a
user selects a phrase to be replaced; based on which OREO
conducts the revision. We find that this interactive genera-
tion can help OREO conduct better revision. Examples are in
Table 6 in the Appendix B.

Inference efficiency An obvious concern of OREO is the
inference efficiency, given that it updates the hidden states
in a large Transformer on the fly and conducts revision in
multiple iterations. Therefore, we report the inference speed
here. For text formalization, it takes an average of 0.12 sec-
ond to revise a sentence in one iteration in OREO and 4.18
seconds in MASKER. We argue that this is acceptable given
training in OREO is simple and time-saving. Moreover, to
further reduce the inference duration, we can employ OREO
to construct pseudo-parallel datasets, and learn a conven-
tional sequence generation model as in Malmi, Severyn, and
Rothe (2020).

Related Work
Unsupervised text generation Neural text generation
with non-parallel data has received great attention. One ap-
proach is defining a pre-defined reward function to guide the
training of policy for text generation (Siddique, Oymak, and
Hristidis 2020). Another one is based on variational auto-
encoders, transferring the attributes, such as sentiment (Hu
et al. 2017b), syntax (Chen et al. 2019), and toxicity (dos
Santos, Melnyk, and Padhi 2018), by modeling and manip-
ulating the latent variables.

In this work, we consider the approaches with much sim-
pler training methods. Recently, an approach based on itera-
tive local edit for text revision has been developed. This ap-
proach sets an objective function, randomly proposes a set of
candidates, and employs discrete optimization algorithms,
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# Complex Input UNTS OREO

1 still, recent trends suggest seattle is do-
ing a better job of holding onto those
kids, according to sightline institute, a
think tank based in seattle.

still, recent trend suggest seattle is do-
ing a better job of holding guns of those
kids, according to unc, a think tank in
seattle.

still, recent studies suggest seattle is doing a
better job of holding onto those kids, according
to sightline institute, a group that studies people
in seattle.

2 critics of the program say the eisen-
hower deportation program’s condi-
tions were anything but humane.

critics of the program say the nsa oper-
ation program’s conditions’s conditions
were anything.

some supporters of the program say the eisen-
hower school program’s rules were anything but
for children.

# Informal Input MASKER OREO

3 tell him, and it wouldn’t seem psycho
cuz u have kno each other for a long
time

It wouldn’t seem psycho cuz u have kno
each other for a long time

Tell him, and it will not even seem awkward you
two have known each other for a long time

4 Intellect - a chick with brains is just
sexy!

Intellect - is just sexy! I think a woman endowed with brains is just
sexy!

Table 5: Examples of outputs from baseline methods and OREO on text simplification and text formalization. Both successful
and erroneous cases are reported.

such as Metropolis–Hastings sampling (Miao et al. 2019)
and simulated annealing (Liu et al. 2020; Li et al. 2020), to
accept or reject proposed candidates. Though the training of
this approach is simple, the inference is computationally ex-
pensive. It has to evaluate a large set of randomly proposed
candidates and train multiple neural models for evaluation.
Our OREO, however, is much more efficient thanks to the
optimized hidden states when revising text.

Steering pre-trained models for text generation Our
work is also closely related to a brand-new line of research,
steering a pre-trained language model to control text gener-
ation. Multiple methods of steering have been proposed, one
of which is steered by prompt. Wallace et al. (2019) finds a
universal prompt to trigger a GPT-2 model to generate toxic
content. Chan et al. (2020) incorporates content-conditioner
block into the GPT-2 model to do a fine-grained control of
the attribute for open-domain text generation.

In this work, we adopt a different approach, steering the
hidden states of the pre-trained Transformer. Plug-and-play
language model (Dathathri et al. 2019) is related to our
OREO in the sense that it also updates the hidden states dur-
ing inference. We highlight the difference between them in
two aspects. First, they tackle the task of open-domain text
generation, while we consider text revision, which has a con-
straint from the source (input) text. And hence, we have dif-
ferent generation methods (our iterative span replacement
v.s. their conventional left-to-right decoding) and choices of
base model (our bi-directional RoBERTa v.s. their unidirec-
tional GPT-2). Second, the steering of hidden states is dif-
ferent. While they employ an additional plug-in module, we
let RoBERTa update according to its own estimation.

Text simplification Most of the existing work on text sim-
plification relies on the parallel corpus. For instance, Zhang
and Lapata (2017) casts simplification into the framework of
reinforcement learning. Dong et al. (2019) suggests explic-
itly modeling the edit operations. Maddela, Alva-Manchego,
and Xu (2020) proposes a pipeline, where the first part fo-

cuses on syntactic simplification, while the second part fo-
cuses on lexical and phrasal simplification. Recently, there
have been efforts made for unsupervised text simplifica-
tion. Surya et al. (2018) employs the idea of variational auto-
encoder. Kumar et al. (2020) parses the sentence to a con-
stituency tree, conditioned on which they conduct syntactic
simplification. None of those work optimizes the distributed
representation of text.

Text style transfer Variational auto-encoder (VAE) and
adversarial learning (Shen et al. 2017; Hu et al. 2017a; Fu
et al. 2018) are well-adopted ideas for text style transfer,
which aims to disentangle the style and content of texts in
latent space. Due to the issue of computational inefficiency
and unstable training, some simpler approaches propose to
edit partial texts of input. Li et al. (2018) replaces the styl-
ized n-grams with retrieved alternative words with target
style. Reid and Zhong (2021) constructs pseudo parallel cor-
pus to train a tagger model and predict token-level edit oper-
ations to guide revision. Malmi, Severyn, and Rothe (2020)
is relatively close to OREO in the way that it conducts in-
place span replacement for style transfer. However, their re-
placement is not conditioned on on-the-fly optimized hidden
states, which has been found in our experiments to be crit-
ical for transferring the attribute and preserving semantics.
And we use a totally different span selection method.

Conclusion
In this paper, we propose a new method for text revision with
iterative in-place span replacement. With simple fine-tuning
methods, the hidden states of RoBERTa can be optimized to-
wards the target attribute on the fly. Both the automatic eval-
uation and the human evaluation demonstrate the effective-
ness of the proposed method in real-world applications, text
simplification and text formalization. In the future, we would
like to apply this method to more challenging attributes, e.g.
modifying syntax for paraphrasing (Chen et al. 2019) and
question generation (Li et al. 2019; Gao et al. 2020).
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