
Appendix: Kernelized Online Imbalanced Learning with Fixed Budgets

Junjie Hu1,2, Haiqin Yang1,2, Irwin King1,2, Michael R. Lyu1,2, and Anthony Man-Cho So3

1Shenzhen Key Laboratory of Rich Media Big Data Analytics and Applications
Shenzhen Research Institute, The Chinese University of Hong Kong

2Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong
3Systems Engineering and Engineering Management, The Chinese University of Hong Kong, Hong Kong

{jjhu, hqyang, king, lyu}@cse.cuhk.edu.hk, manchoso@se.cuhk.edu.hk

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In the following, we provide self-contained proofs and more experimental descriptions for our proposed Kernelized Online
Imbalanced Learning (KOIL) with fixed budgets. The Appendix is organized as follows: In the section Main Theoretical
Results, we present the main theoretical results of our KOIL by exploiting the pair-wise hinge loss function as a surrogate of
AUC metric. In the section More Experiments, we present more detailed experimental descriptions and results. Finally, in the
section Pseudocodes, we show all pesudocodes of KOIL.

Main Theoretical Results
In the following, we first present the assumption and define the notation and the objective of KOIL. Next, we prove the bound
of the norm of the decision function, the bound of the pair-wise hinge loss function. We then present the sophisticated compen-
sation updating policy and the bound of the norm of the compensated updating decision function, f++

t . Finally, we prove the
regret bounds of our KOIL with pair-wise hinge loss function and infinite budgets and our proposed KOIL with corresponding
compensation updating policy.

Assumptions and Notation
In this work, we focus on learning a nonlinear decision function f : Rd → R from a sequence of imbalanced feature-labeled
pair instances in binary classification, {zt = (xt, yt) ∈ Z, t ∈ [T]}, where Z = X × Y , xt ∈ X ⊆ Rd, yt ∈ Y = {−1,+1}
and [T] = {1, . . . , T}. Without loss of generality, we assume the positive class is the minority class while the negative class
is the majority class. We denote N ỹ

t,k(z) as the set of feature-labeled pair instances which are the k-nearest neighbors of z and
have the label of ỹ. Here, the neighborhood is defined by the distance or the similarity between two instances, i.e., the smaller
the distance (or the more similarity) of instances, the close the neighbors. Besides, we define the index sets, I+t and I−t , to
record the indexes of positive support vectors and negative support vectors at the t-th trial. Moreover, for simplicity, we define
two buffers, K+

t and K−t , to store the learned information for two classes at the t-th trial, respectively:

K+
t .A = {α+

i,t |α
+
i,t 6= 0, i ∈ I+t }, K+

t .B = {zi | yi = +1, i ∈ I+t }, (1)

K−t .A = {α−i,t |α
−
i,t 6= 0, i ∈ I−t }, K−t .B = {zi | yi = −1, i ∈ I−t }, (2)

where αi,t denotes the weight of the support vector firstly occurred at the i-th trial and updated at the t-th trial. Here, we fix the
budgets, i.e., the buffer sizes, to N . That is, |I+| = |I−| = N .

The objective of KOIL is to seek a decision function at the t-th trial expressed as follows:

ft(x) =
∑

i∈I+t
α+
i,tk(xi,x) +

∑
j∈I−t

α−j,tk(xj ,x), (3)

where the information of support vectors is stored at K+
t and K−t , respectively. More generally, ft(x) is an element of a

Reproducing Kernel Hilbert Space (RKHS) (Schölkopf and Smola 2002) and can be expressed as ft(x) = 〈ft(·), k(x, ·)〉H.
The prediction of a new sample x is made by sgn(ft(x)).

Here, we adopt the pair-wise hinge loss function as the loss function for a convex surrogate of the AUC maximization (Gao
et al. 2013; Zhao et al. 2011), which is defined by,

`h(f, zt, zi) =

[
1− 1

2
(yt − yi)(f(xt)− f(xi))

]
+

, where [v]+ = max{0, v}. (4)

Our proposed Kernelized Online Imbalanced Learning (KOIL) aims at minimizing the localized instantaneous regularized
risk of AUC on a single instance zt, which is defined as:

L̂t(f) := L̂t(f) =
1

2
‖f‖2H + C

∑
zi∈N−yt

t,k (zt)
`h(f, zt, zi), (5)

where ‖f‖2H is the same as 〈f, f〉H.
Using the standard stochastic gradient descent method to update the decision function, we have f1 = 0 and the updating rule

as follows:
ft+1 := ft − η∂f L̂t(f)|f=ft , (6)

where η > 0 is the learning rate, and ∂f is shorthand for ∂/∂f (the gradient with respect to f). In the following, without further
explanation, ∂ implies ∂f .

The partial derivative in Eq. (6) is calculated by

∂L̂t(ft) = ft − C
∑

zi∈N−yt
t,k (zt)

I[`h(f, zt, zi) > 0] · ϕ(zt, zi), (7)

where ϕ(zt, zi) = yt(k(xt, ·)− k(xi, ·)).

For simplicity, we define the valid set Vt and its complementary set Vt at the t-th trial as follows:

Vt := {i ∈ I−ytt |zi ∈ N−ytt,k (zt) ∧ `h(f, zt, zi) > 0}, Vt := I−ytt \ Vt. (8)

Hence, the corresponding updating rule for the kernel weights at the t-th trial is derived as follows:

αi,t =

ηCyt|Vt|, i = t
(1− η)αi,t−1 − ηCyt, ∀i ∈ Vt
(1− η)αi,t−1, ∀i ∈ Iytt ∪ Vt

(9)

Details about the algorithms are in Algorithm 1 and UpdateKernel of Algorithm 2 in Section .

Proof of Lemma 1
We first present the bound of the norm of the decision function.

Lemma 1. Suppose for all x ∈ Rd, k(x,x) ≤ X2, where X > 0. Let ξ1 be in [0, X], such that k(xt,xi) ≥ ξ21 , ∀ zi =

(xi, yi) ∈ N−ytt (zt). With f1 = 0, we have

‖ft+1‖H ≤ Ck
√

2X2 − 2ξ21 . (10)

Proof. First, since zi is one of the k-nearest opposite support vectors to zt, i.e., zi ∈ N−ytt,k (zt), the assumption k(zt, zi) ≥ ξ21
with ξ21 > 0 makes sense. We then have

‖ϕ(zt, zi)‖H =
√
k(xt,xt)− 2k(xt,xi) + k(xi,xi) ≤

√
2X2 − 2ξ21 . (11)

Now we bound the norm of the decision function ft+1

‖ft+1‖H =

∥∥∥∥∥∥∥(1− η)ft + ηC
∑

zi∈N−yt
t,k (zt)

I[`h(f, zt, zi) > 0] · ϕ(zt, zi)

∥∥∥∥∥∥∥
H

≤ (1− η)‖ft‖H + ηC
∑

zi∈N−yt
t,k (zt)

I[`h(f, zt, zi) > 0] · ‖ϕ(zt, zi)‖H

≤ (1− η)‖ft‖H + ηC
∑

zi∈N−yt
t,k (zt)

I[`h(f, zt, zi) > 0] ·
√

2X2 − 2ξ21

≤ (1− η)‖ft‖H + ηCk
√

2X2 − 2ξ21 . (12)

In the above, the first equality is by substituting Eq. (7) into Eq. (6) to calculate ft+1. The first inequality is attained by the
triangle inequality. The second inequality is attained by Eq. (11). The third inequality holds since the number of elements in
N−ytt,k (zt) is at most k.

By expanding ‖ft‖H iteratively, we have

‖ft+1‖H ≤ (1− η)t‖f1‖H +

(
1− (1− η)t

η

)
ηCk

√
2X2 − 2ξ21 ≤ Ck

√
2X2 − 2ξ21 .

The second inequality holds when η < 1, 1− (1− η)t ≤ 1 for t ∈ [T] and f1 = 0.

Proof of Lemma 2
In the following, we prove that the pair-wise hinge loss function is bounded.

Lemma 2. With the same assumption in Lemma 1 and the pair-wise hinge loss function ` : H × Z × Z → [0, U] defined by
Eq. (4), we can determine the bound by

U = 1 + 2Ck(X2 − ξ21). (13)

Proof.

`h(ft, zt, zi) =

[
1− 1

2
(yt − yi)(ft(xt)− ft(xi))

]
+

≤ 1 + |ft(xt)− ft(xi)|
= 1 + |〈ft, k(xt, ·)− k(xi, ·)〉H|
≤ 1 + ‖ft‖H · ‖k(xt, ·)− k(xi, ·)‖H

≤ 1 + Ck
√

2X2 − 2ξ21 · ‖k(xt, ·)− k(xi, ·)‖H

≤ 1 + Ck
√

2X2 − 2ξ21 ·
√

2X2 − 2ξ21

= 1 + 2Ck(X2 − ξ21) (:= U).

In the above, the first inequality is valid due to the triangle inequality and yt − yi = −2, 0, or 2. The second inequality is due
to the Cauchy-Schwarz inequality. The third inequality is due to the bound of the decision function in Lemma 1. The forth
inequality is due to the assumption that k(xt,xi) ≥ ξ21 , ∀ zi = (xi, yi) ∈ N−ytt (zt) and Eq. (11).

Note: In Lemma 2, we only prove the bound for pair-wise hinge loss function. For other convex loss functions, the proof is
similar.

Proof of Lemma 3
In the following, we first present the sophisticated compensation updating policy. We then prove the bound of the norm of the
compensated decision function.

Update Buffers To avoid information loss, we need to design a compensation scheme. Let the removed support vector be
zr = (xr, yr), we find the most similar support vector zc = (xc, yc) with yc = yr in Kyrt and update its corresponding weight.
Note that at the t-th trial, the updating rule is Eq. (6). When the support vector zr is removed, the decision function becomes

f̂t+1(x) = ft+1(x)− αr,tk(xr,x).

Now we find the compensated support vector zc and determine its updated weight ∆αc,t. We want to keep track of all informa-
tion and do not change the decision function after the compensation:

ft+1(x) = f̂t+1(x) + ∆αc,t · k(xc,x) = ft+1(x)− αr,tk(xr,x) + ∆αc,t · k(xc,x). (14)

By Eq. (14), we set

∆αc,t = αr,t
k(xr,x)

k(xc,x)
≈ αr,t. (15)

The above approximation is due to the similarity of the removed support vector, xr and the compensated support vector, xc.
We then express the updating rule of ft+1 with compensation by f++

t+1 as:

f++
t+1 = (1− η)f++

t + η∂f L̂t(f)|f=f++
t

+ αr,t (k(xc, ·)− k(xr, ·)) , (16)

where f++
t is the previous decision function. When either buffer is not full, f++

t corresponds to the original decision function
without compensation, i.e., ft updated by Eq. (6). Ideally, if k(xc,x) equals k(xr,x), f++

t is equivalent to the one learned
with infinite budgets, which reserves all the revealed instances as support vectors. Hence, we call the replacement with the
compensation scheme as the extended updating policy. For the Reservoir Sampling policy, it is named RS++, while for the
FIFO policy, it is named FIFO++. Details about the compensation is shown in Algorithm 3.

Proof Now we show the bound of the norm of the decision function using the compensation technique. We assume that
∀i ∈ I+t ∪ I−t , |αi,t| ∈ [0, γη]. Otherwise, f++

t = 0 is a better solution as it may approach to infinity by the objective function
in Eq. (5). Similarly, we can use the projection operation in (Hoi et al. 2012) to project |αi,t| to [0, γη].

Lemma 3. Suppose for all x ∈ Rd, k(x,x) ≤ X2, where X > 0. ∀i ∈ I+t ∪ I−t , αi,t ∈ [0, γη]. Let ξ1 be in [0, X], such that
k(xt,xi) ≥ ξ21 , ∀ zi = (xi, yi) ∈ N−ytt (zt). Let xr and xc be the removed and compensated support vectors at the t-th trial
respectively such that k(xr,xc) ≥ ξ22 , where 0 < ξ2 ≤ X . With f++

1 = 0 and updating rule in Eq. (16), we have

‖f++
t ‖H ≤ Ck

√
2X2 − 2ξ21 + γ

√
2X2 − 2ξ22 . (17)

Proof. For every pair of removed and compensated support vectors at each trial, we have,

‖k(xc, ·)− k(xr, ·)‖H =
√
k(xr,xr)− 2k(xc,xc) + k(xr,xc) ≤

√
2X2 − 2ξ22 . (18)

Now we bound the norm of the decision function f++
t+1. We consider the following two cases:

Case I: When the buffer is full at the t-th trial, we have

‖f++
t+1‖H

=

∥∥∥∥∥∥∥(1− η)f++
t + ηC

 ∑
zi∈N−yt

t,k (zt)

I[`h(f, zt, zi) > 0] · ϕ(zt, zi)

+ αr,t(k(xc, ·)− k(xr, ·))

∥∥∥∥∥∥∥
H

≤ (1− η)‖f++
t ‖H + ηC

 ∑
zi∈N−yt

t,k (zt)

I[`h(f, zt, zi) > 0] · ‖ϕ(zt, zi)‖H

+ |αr,t|‖k(xc, ·)− k(xr, ·)‖H

≤ (1− η)‖f++
t ‖H + ηC

 ∑
zi∈N−yt

t,k (zt)

I[`h(f, zt, zi) > 0] ·
√

2X2 − 2ξ21

+ |αr,t|
√

2X2 − 2ξ22

≤ (1− η)‖f++
t ‖H + ηCk

√
2X2 − 2ξ21 + |αr,t|

√
2X2 − 2ξ22

≤ (1− η)‖f++
t ‖H + ηCk

√
2X2 − 2ξ21 + γη

√
2X2 − 2ξ22 . (19)

In the above, the first equality is by substituting Eq. (16) for ft+1. The first inequality is attained by the triangle inequality. The
second inequality is attained by Eq. (11) and Eq. (18). The third inequality holds since the number of elements in N−ytt,k (zt) is
at most k. The forth inequality holds since |αr,t| is bounded by γη.

Case II: When the buffer is not full at the t-th trail, f++
t+1 = ft+1. Similarly in Eq. (12), we have

‖f++
t+1‖H ≤ (1− η)‖f++

t ‖H + ηCk
√

2X2 − 2ξ21

≤ (1− η)‖f++
t ‖H + ηCk

√
2X2 − 2ξ21 + γη

√
2X2 − 2ξ22 . (20)

The above second inequality is due to γη
√

2X2 − 2ξ22 ≥ 0.
In sum, by Eq. (19) and Eq. (20), we have the following inequality:

‖f++
t+1‖H ≤ (1− η)‖f++

t ‖H + ηCk
√

2X2 − 2ξ21 + γη
√

2X2 − 2ξ22 . (21)

By expanding ‖f++
t ‖H iteratively, we have

‖f++
t+1‖H ≤ (1− η)t‖f++

1 ‖H +

t−1∑
i=0

(1− η)i
(
ηCk

√
2X2 − 2ξ21 + γη

√
2X2 − 2ξ22

)
≤ (1− η)t‖f++

1 ‖H +

(
1− (1− η)t

η

)(
ηCk

√
2X2 − 2ξ21 + γη

√
2X2 − 2ξ22

)
≤ Ck

√
2X2 − 2ξ21 + γ

√
2X2 − 2ξ22 .

The third inequality holds when η < 1, 1− (1− η)t ≤ 1 for t ∈ [1, T] and f++
1 = 0.

Proof of Theorem 1
We define the regret bound as the difference between the objective value up to the T -th step and the smallest objective value
from hindsight.

RT =
∑T

t=1
L̂t(ft)− L̂(f∗, zt), R++

T =
∑T

t=1
L̂(f++

t , zt)− L̂(f∗, zt), (22)

where f∗ is the optimal decision function obtained from hindsight, and ft and f++
t corresponds to the updating in Eq. (6) and

Eq. (16), respectively.

Theorem 1. Suppose for all x ∈ Rd, k(x,x) ≤ X2, where X > 0. Let ξ1 be in [0, X], such that k(xt,xi) ≥ ξ21 , ∀ zi =

(xi, yi) ∈ N−ytt (zt). Given k > 0, C > 0, η > 0 and a bounded convex loss function ` : H×Z × Z → [0, U] for ft updated
by Eq. (6), with f1 = 0, we have

RT ≤
‖f∗‖2H

2η
+ ηCk

T∑
t=1

(
(U − 1) + (k + 1)C(X2 − ξ21)

)
. (23)

Moreover, assume that ∀i ∈ I+t ∪ I−t , αi,t ∈ [0, γη] and k(xr,xc) ≥ ξ22 with 0 < ξ2 ≤ 0 for any removed support vector xr
and compensated support vector xc at any trial. With f1 = 0 and f++

t updated by Eq. (16), we have

R++
T ≤ RT + T

(
4γCk

√
(X2 − ξ22)(X2 − ξ21) + 2γ2(X2 − ξ22)

)
. (24)

Proof. Let f∗ be the optimal solution from hindsight. We define the distance between ft and f∗ at the t-th trial as ‖ft − f∗‖H.
Then we have

‖ft+1 − f∗‖2H − ‖ft − f∗‖2H
=‖ft − η∂L̂t(ft)− f∗‖2H − ‖ft − f∗‖2H
=η2‖∂L̂t(ft)‖2H − 2η〈∂L̂t(ft), ft − f∗〉H.

By summing over t = 1, . . . , T , we have

‖fT+1 − f∗‖2H − ‖f1 − f∗‖2H

=− 2η

T∑
t=1

〈∂L̂t(ft), ft − f∗〉H + η2
T∑
t=1

‖∂L̂t(ft)‖2H.

Due to the convexity of L̂t(ft), we have

RT ≤
T∑
t=1

〈∂L̂t(ft), ft − f∗〉H ≤
‖f1 − f∗‖2H

2η
− ‖fT+1 − f∗‖2H

2η
+
η

2

T∑
t=1

‖∂L̂t(ft)‖2H.

Since f1 = 0 and ‖fT+1 − f∗‖2H ≥ 0, we have

RT ≤
‖f∗‖2H

2η
+
η

2

T∑
t=1

‖∂L̂t(ft)‖2H.

We now bound ‖∂L̂t(ft)‖2H. That is

‖∂L̂t(ft)‖2H

=

∥∥∥∥∥∥∥ft − C
∑

zi∈N−yt
t,k (zt)

I[`h(f, zt, zi) > 0] · ϕ(zt, zi)

∥∥∥∥∥∥∥
2

H

=‖ft‖2H +

∥∥∥∥∥∥∥C
∑

zi∈N−yt
t,k (zt)

I[`h(f, zt, zi) > 0] · ϕ(zt, zi)

∥∥∥∥∥∥∥
2

H

− 2C
∑

zi∈N−yt
t,k (zt)

I[`h(f, zt, zi) > 0]〈ft, ϕ(zt, zi)〉H. (25)

From Lemma 1, we know that the first term of Eq. (25) is bounded by

‖ft‖2H ≤ C2k2(2X2 − 2ξ21). (26)

Now, we bound the second term of Eq.(25). For any zi ∈ N−ytt,k (zt), we have

‖ϕ(zt, zi)‖2H = k(xt,xt)− 2k(xt,xi) + k(xi,xi)

≤ 2X2 − 2ξ21 . (27)

Therefore, we have ∥∥∥∥∥∥∥C
∑

zi∈N−yt
t,k (zt)

I[`h(f, zt, zi) > 0] · ϕ(zt, zi)

∥∥∥∥∥∥∥
2

H

≤ C2
∑

zi∈N−yt
t,k (zt)

I[`h(f, zt, zi) > 0] · ‖ϕ(zt, zi)‖2H

≤ C2k(2X2 − 2ξ21). (28)

The first inequality holds due to the triangle inequality. The second inequality holds since the number of elements inN−ytt,k (zt)
is at most k and the bound derived in Eq. (27).

Next, we bound the third term of Eq.(25). First, using the facts that the decision function is an element of a Reproducing
Kernel Hilbert Space (RKHS) and the pairwise loss function ` : H×Z ×Z → [0, U] is bounded, we have

〈ft, ϕ(zt, zi)〉H =
1

2
(yt − yi) (ft(xt)− ft(xi))

≥ (1− U). (29)

Hence, we have

− 2C
∑

zi∈N−yt
t,k (zt)

I[`h(f, zt, zi) > 0]〈ft, ϕ(zt, zi)〉H

≤ 2C
∑

zi∈N−yt
t,k (zt)

I[`h(f, zt, zi) > 0](U − 1)

≤ 2Ck(U − 1). (30)

In the above, the first inequality holds due to the fact of Eq. (29). The second inequality holds since the number of elements in
N−ytt,k (zt) is at most k.

By combining Eq. (26), Eq. (28), and Eq. (30), we have a bound for Eq. (25). That is,

‖∂L̂t(ft)‖2H ≤ C2k(k + 1)(2X2 − 2ξ21) + 2Ck(U − 1).

We then obtain the bound of RT in Eq. (23) by summing ∂L̂t(ft) for all t ∈ [T].
Next, we proof the regret bound R++

T for decision function f++
t . We first define Gt(f) as follow:

Gt(f) = L̂(f, zt)− L̂(f∗, zt)

=

1

2
‖f‖2H + C

∑
zi∈N−yt

t,k (zt)

`h(f, zt, zi)

−
1

2
‖f∗‖2H + C

∑
zi∈N−yt

t,k (zt)

`h(f∗, zt, zi)

 . (31)

Hence, we have

RT =

T∑
i=1

Gt(ft).

Since Gt(f) is convex, we get

Gt(ft) ≥ Gt(f++
t) + 〈ft − f++

t , ∂Gt(f
++
t)〉H. (32)

Hence by reordering Eq. (32), we have,

Gt(f
++
t) ≤ Gt(ft) + 〈f++

t − ft, ∂Gt(f++
t)〉H

≤ Gt(ft) + ‖f++
t − ft‖H · ‖∂Gt(f++

t)‖H. (33)

From Eq. (6) and Eq. (14), we have,

‖f++
t − ft‖H =

∥∥∥∥∥
t∑
i=s

(1− η)t−iαr,i(k(xc,i, ·)− k(xr,i, ·))

∥∥∥∥∥
H

≤

∥∥∥∥∥
t∑
i=s

(1− η)t−iαr,i

√
2X2 − 2ξ22

∥∥∥∥∥
H

≤
t∑
i=s

(1− η)t−i|αr,i|
√

2X2 − 2ξ22

≤
t∑
i=s

(1− η)t−iγη
√

2X2 − 2ξ22

≤
(

1− (1− η)t−s+1

η

)
γη
√

2X2 − 2ξ22

≤ γ
√

2X2 − 2ξ22 . (34)

where s denotes the first trial that the replacement and the compensation are conducted, and xc,i and xr,i are the compensated
and the removed support vectors at the i-th trial.

Next, we have

‖∂Gt(f++
t)‖H =

∥∥∥∥∥∥∥f++
t − C

∑
zi∈N−yt

t,k (zt)

I[`h(f++
t , zt, zi) > 0] · ϕ(zt, zi)

∥∥∥∥∥∥∥
H

≤ ‖f++
t ‖H + C

∑
zi∈N−yt

t,k (zt)

I[`h(f++
t , zt, zi) > 0] · ‖ϕ(zt, zi)‖H

≤ ‖f++
t ‖H + Ck

√
2X2 − 2ξ21

≤ 2Ck
√

2X2 − 2ξ21 + γ
√

2X2 − 2ξ22 . (35)

In the above, the first inequality is due to the triangle inequality. The second inequality is due to the property of k-nearest
opposite support vectors. The third inequality is due to the bound derived in Lemma 3.

Hence by substitute Eq. (34) and Eq. (35) for Eq. (33), we have,

Gt(f
++
t) ≤ Gt(ft) + ‖f++

t − ft‖H · ‖∂Gt(f++
t)‖H

≤ Gt(ft) + γ
√

2X2 − 2ξ22

(
2Ck

√
2X2 − 2ξ21 + γ

√
2X2 − 2ξ22

)
≤ Gt(ft) + 4γCk

√
(X2 − ξ22)(X2 − ξ21) + 2γ2(X2 − ξ22). (36)

Hence by suming over t = 1, . . . , T , we have

R++
T ≤

T∑
t=1

(
Gt(ft) + 4γCk

√
(X2 − ξ22)(X2 − ξ21) + 2γ2(X2 − ξ22)

)

≤
T∑
t=1

Gt(ft) + T

(
4γCk

√
(X2 − ξ22)(X2 − ξ21) + 2γ2(X2 − ξ22)

)
= RT + T

(
4γCk

√
(X2 − ξ22)(X2 − ξ21) + 2γ2(X2 − ξ22)

)
.

Remarks. It is noted that although R++
T is a little larger than RT , if the compensated support vector is close enough to

the removed support vector, we have ξ2 = X , which yield the same regret bound. This result implies that the decision func-
tion learned by the replacement with compensation updating policy can seek the same decision function learned with infinite
budgets.

More Experiments
In this section, we conduct extensive experiments on benchmark real-world datasets to evaluate the performance of our proposed
KOIL 1 algorithm with fixed budgets.

Compared Algorithms
We compare our proposed KOIL with the state-of-the-art online learning algorithms. Since we only focus on online imbalanced
learning, for fair comparison, we do not compare with existing batch-trained imbalanced learning algorithms. Specifically, we
compare online linear algorithms and kernel-based online learning algorithms with a finite or infinite buffer size.
• “Perceptron”: the classical perceptron algorithm (Rosenblatt 1958);
• “OAMseq”: an online linear AUC maximization algorithm (Zhao et al. 2011);
• “OPAUC”: One-pass AUC maximization (Gao et al. 2013);
• “NORMA”: online learning with kernels (Kivinen, Smola, and Williamson 2004);
• “RBP”: Randomized budget perceptron (Cavallanti, Cesa-Bianchi, and Gentile 2007);
• “Forgetron”: a kernel-based perceptron on a fixed budget (Dekel, Shalev-Shwartz, and Singer 2008);
• “Projectron/Projectron++”: a bounded kernel-based perceptron (Orabona, Keshet, and Caputo 2009);
• “KOILRS++/KOILFIFO++”: our proposed kernelized online imbalanced learning algorithm with fixed budgets updated by

RS++ and FIFO++, respectively.

Experimental Setup
To make fair comparisons, all algorithms adopt the same setup. We set the learning rate to a small constant η = 0.01 and
apply a 5-fold cross validation to find the penalty cost C ∈ 2[−10:10]. For kernel-based methods, we use the Gaussian kernel
and tune its parameter σ ∈ 2[−10:10] by a 5-fold cross validation. For NORMA, we apply a 5-fold cross validation to select λ
and ν ∈ 2[−10:10]. For Projectron, we apply a similar 5-fold cross validation to select the parameter of projection difference
η ∈ 2[−10:10].

Table 1: Summary of the benchmark datasets.

Dataset Samples Dimensions T−/T+

sonar 208 60 1.144
australian 690 14 1.248
heart 270 13 1.250
ionosphere 351 34 1.786
diabetes 768 8 1.866
glass 214 9 2.057
german 1,000 24 2.333
svmguide2 391 20 2.342
segment 2,310 19 6.000
satimage 4,435 36 9.687
vowel 528 10 10.000
letter 15,000 16 26.881
poker 25,010 10 47.752
shuttle 43,500 9 328.546

Experiments on Benchmark Real-world Datasets
We conduct experiments on 14 benchmark datasets obtained from the UCI and LIBSVM websites. The imbalanced ratio ranges
from 1.144 to 328.546. The detailed statistics of the datasets is summarized in Table 1.

For each dataset, we conduct 5-fold cross validation on all the algorithms, where four folds of the data are used for training
while the rest for test. The 5-fold cross validation is independently repeated four times. We set the buffer size to 100 for each
class for all related algorithms, including OAMseq, RBP, and Forgetron. We then average the AUC performance of 20 runs and
report the results in Table 2.

Several observations can be drawn as described in the following:
• Our KOIL with RS++ and FIFO++ updating policies perform better than online linear AUC maximization algorithms in

most datasets. By examining the results of OAMseq on the datasets of australian, heart, diabetes, german, and shuttle and
those of OPAUC on australian and german, we speculate that for these datasets, a linear classifier is enough to achieve good
performance, while a nonlinear classifier can be affected by outliers.

1Demo codes in both C++ and Matlab can be downloaded in https://www.dropbox.com/sh/nuepinmqzepx54r/
AAAKuL4NSZe0IRpGuNIsuxQxa?dl=0.

Table 2: Average AUC performance (mean±std) on the benchmark datasets, •/◦ (-) indicates that both/one of KOILRS++ and
KOILFIFO++ are/is significantly better (worse) than the corresponding method (pairwise t-tests at 95% significance level).

Data KOILRS++ KOILFIFO++ Perceptron OAMseq OPAUC NORMA RBP Forgetron Projectron Projectron++
sonar .955±.028 .955±.028 .803±.083• .843±.056• .844±.077• .925±.044• .913±.032• .896±.054• .896±.049• .896±.049•
australian .923±.023 .922±.026 .869±.035• .925±.024 .923±.025 .919±.023 .911±.017• .912±.026• .923±.024 .923±.024
heart .908±.040 .910±.040 .876±.066• .912±.040 .901±.043◦ .890±.051• .865±.043• .900±.053 .902±.038 .905±.042
ionosphere .985±.015 .985±.015 .851±.056• .905±.041• .888±.046• .961±.016• .960±.030• .945±.031• .964±.025• .963±.027•
diabetes .826±.036 .830±.030 .726±.059• .827±.033 .805±.035• .792±.032• .828±.034 .820±.027◦ .832±.033 .833±.033
glass .887±.053 .884±.054 .810±.065• .827±.064• .800±.074• .811±.077• .811±.071• .813±.075• .811±.070• .781±.076•
german .769±.032 .778±.031 .748±.033• .777±.027 .787±.026 - .766±.032◦ .699±.038• .712±.054• .769±.028◦ .770±.024
svmguide2 .897±.040 .885±.043 .860±.037• .886±.045◦ .859±.050• .865±.046• .890±.038 .864±.045• .886±.044◦ .886±.045◦
segment .983±.008 .985±.012 .875±.020• .919±.020• .882±.019• .910±.042• .969±.017• .943±.038• .979±.013• .978±.016•
satimage .924±.012 .923±.015 .700±.015• .755±.018• .724±.016• .914±.025• .899±.018• .892±.032• .910±.015• .904±.011•
vowel 1.000±.0001.000±.001 .848±.070• .905±.024• .885±.034• .996±.005• .968±.017• .987±.027• .982±.013• .994±.019•
letter .933±.021 .942±.017 .767±.029• .827±.021• .823±.018• .910±.027• .928±.011◦ .815±.102• .926±.016• .926±.015•
poker .681±.031 .693±.032 .514±.030• .503±.024• .509±.031• .577±.040• .501±.031• .572±.029• .675±.027• .675±.027•
shuttle .950±.040 .956±.021 .520±.134• .999±.000 - .754±.043• .725±.053• .844±.041• .839±.060• .873±.063• .795±.063•

win/tie/loss 14/0/0 9/4/1 12/1/1 13/1/0 12/2/0 13/1/0 11/3/0 10/4/0

(a) diabetes (b) svmguide2 (c) german (d) segment

Figure 1: Average AUC performance of four datasets obtained by different updating policies of KOIL.

• In most datasets, kernel-based algorithms show better AUC performance than the linear algorithms in most of datasets. This
again demonstrates the power of kernel methods in classifying real-world datasets.

• Our proposed KOIL significantly outperforms all competing kernel-based algorithms in nearly all datasets. The results
demonstrate the effectiveness of our KOIL in imbalanced learning.

• We observe that the performance of OAMseq on satimage dataset is not as good as that in (Zhao et al. 2011) and (Yang et
al. 2013). We check that this is mainly due to the different partition of the training and test data.

Evaluation on Updating Policies
We test the improvement of our updating policies, RS++ and FIFO++, with the original updating policies, RS and FIFO. We
show in Figure 1 for the average AUC performance of 20 runs on four typical datasets. The results of KOILinf, i.e., learning
with infinite budgets, are provided for reference. We have the following observations:
• KOILRS++ and KOILFIFO++ attain nearly the same performance as KOILinf. The results confirm that the extended policies

maintain all available classification information during the training.
• Our KOIL with extended updating policies significant outperform the corresponding with original stream oblivious poli-

cy when either buffer is full. Without compensation, the performance fluctuates and is easily affected by noisy samples.
Differently, with compensation, KOIL can maintain the performance smoothly.

Sensitivity Evaluation of KOIL
We first test the performance of KOIL with different buffer sizes. From Figure 2, we observe that the performance increases
gradually with the increase of the buffer size and it is saturated when the size is relatively large. This is similar to the observations
in (Yang et al. 2013; Zhao et al. 2011).

Next, we test the performance of KOIL with different k, which determines the number of localized support vectors. From
Figure 3, we have the following observations:
• When k is extremely small, say k = 1, KOIL only considers the pairwise loss yielded by the nearest opposite support vector

of the new instance and can not fully utilize the localized information. The updating weight is similar to NORMA, which
adds a constant weight, |ηCyt|, to the misclassified new instance.

(a) (b) (c) (d)

Figure 2: Average AUC of KOIL with different buffer sizes.

(a) (b) (c) (d)

Figure 3: Average AUC of KOIL with different k. Here k = [1, 10:10:100] and the budget is 100 for each buffer.

• KOIL usually attains the best performance when k equals 10% of the buffer size. The performance decreases when k
increases. The results consistently show that by only utilizing the local information of the new instance indeed prevents the
effect of outliers.

• For some datasets, e.g., svmguide2 and german, the performance is not so sensitive to k. The reason may be that the learned
support vectors in these datasets are well-separated when the buffers are full. Hence, new instances play little influence on
seeking the decision function.

Pseudocodes
Here we present the pseudocode for our proposed KOIL algorithm and its key components UpdateKernel and UpdateBuffer.

Algorithm 1 Kernelized Online Imbalanced Learning (KOIL) with Fixed Budgets

1: Input:
• the penalty parameter C and the learning rate η
• the maximum budget sizeN+ andN−

• the number of nearest neighbors k
2: InitializeK+.A = K−.A = ∅,K+.B = K−.B = ∅,Np = Nn = 0

3: for t = 1 to T do
4: Receive a training sample zt = (xt, yt)

5: if yt = +1 then
6: Np = Np + 1

7: [K−,K+, α+
t]

= UpdateKernel(zt,K−,K+, C, η, k)

8: K+ = UpdateBuffer(α+
t , zt,K+, k,N+, Np)

9: else
10: Nn = Nn + 1

11: [K+,K−, α−t]

= UpdateKernel(zt,K+,K−, C, η, k)
12: K− = UpdateBuffer(α−t , zt,K−, k,N−, Nn)

13: end if
14: end for

Algorithm 3 shows the procedure of the extended Reservoir Sampling (RS++).
• In line 3 to line 4, if the buffer is not full, i.e., |K.B| < N , the new instance becomes a new support vector and is directly

added into the buffer K.
• In line 6 to line 10, if the buffer is full, reservoir sampling is performed. That is, with probability N

Nt
, we update the buffer

by randomly replacing one support vector zr in K.B with zt.
• In line 12, if replacement is not conducted, the new instance zt is set as the removed support vector zr.
• In line 14 to line 15, this is the extension of RS. We find the most similar support vector zc to the removed support vector

zr, update its weight and put its weight back to the buffer K.A.
Similarly, we can define the extended FIFO policy, namely FIFO++. For FIFO++, the line 6 to line 13 in Algorithm 3 is

replaced by removing the first support vector in the buffer and adding the new instance as a new support vector to the end of

Algorithm 2 UpdateKernel

1: Input:
• the newly received sample with label zt,
• K and K′ for support vectors with the opposite and the same label to zt re-

spectively,
• the penalty parameter C, the learning rate η, and the number of the nearest

neighbors k.
2: Output: the updatedK,K′ and the weight αt for zt

3: Initialize: Vt = ∅, compute ft by Eq. (3)
4: for i ∈ I−yt

t do
5: if 1 > yt(ft(xt)− ft(xi)) then
6: Vt = Vt ∪ {i}

7: end if
8: end for
9: if |Vt| > k then
10: Sim(i) = k(xt,xi), ∀ i ∈ Vt

11: [Sim′, idx] =Sort(Sim,’descend’)
12: idxk = idx(1 : k)

13: Vt = Vt(idxk)

14: end if
15: Update αi,t by Eq. (9)
16: returnK,K′, αt,t

Algorithm 3 UpdateBuffer–RS++

1: Input:
• the received sample zt and its weight αt

• the bufferK to be updated
• the buffer sizeN
• the number of instances received until trial t,Nt

2: Output: the updated bufferK
3: if |K.B| < N then
4: K.A = K.A ∪ {αt},K.B = K.B ∪ {zt}
5: else
6: Sample Z from a Bernoulli distribution with Pr(Z = 1) = N/Nt

7: if Z = 1 then

8: Uniformly select an instance zr

9: UpdateK.A:K.A = K.A \ {αr,t} ∪ {αt,t}
10: UpdateK.B:K.B = K.B \ {zr} ∪ zt

11: else
12: zr = zt, αr,t = αt,t

13: end if
14: Find zc = arg max

zi∈K.B
{k(xr,xi)}

15: Set αc,t = αc,t + αr,t and update αc,t inK.A
16: end if
17: returnK

the buffer.

References
Cavallanti, G.; Cesa-Bianchi, N.; and Gentile, C. 2007. Tracking the best hyperplane with a simple budget perceptron. Machine
Learning 69(2-3):143–167.
Dekel, O.; Shalev-Shwartz, S.; and Singer, Y. 2008. The Forgetron: A kernel-based perceptron on a budget. SIAM Journal on
Computing 37(5):1342–1372.
Gao, W.; Jin, R.; Zhu, S.; and Zhou, Z.-H. 2013. One-pass AUC optimization. In ICML, 906–914.
Hoi, S. C. H.; Wang, J.; Zhao, P.; Jin, R.; and Wu, P. 2012. Fast bounded online gradient descent algorithms for scalable
kernel-based online learning. In ICML.
Kivinen, J.; Smola, A. J.; and Williamson, R. C. 2004. Online learning with kernels. IEEE Transactions on Signal Processing
52(8):2165–2176.
Orabona, F.; Keshet, J.; and Caputo, B. 2009. Bounded kernel-based online learning. Journal of Machine Learning Research
10:2643–2666.
Rosenblatt, F. 1958. The Perceptron: a probabilistic model for information storage and organization in the brain. Psychological
review 65(6):386.
Schölkopf, B., and Smola, A. 2002. Learning with Kernels. Cambridge, MA: MIT Press.
Yang, H.; Hu, J.; Lyu, M. R.; and King, I. 2013. Online imbalanced learning with kernels. In NIPS Workshop on Big Learning.
Zhao, P.; Hoi, S. C. H.; Jin, R.; and Yang, T. 2011. Online AUC maximization. In ICML, 233–240.

