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Abstract

Online learning from imbalanced streaming data to cap-
ture the nonlinearity and heterogeneity of the data is sig-
nificant in machine learning and data mining. To tackle
this problem, we propose a kernelized online imbal-
anced learning (KOIL) algorithm to directly maximize
the area under the ROC curve (AUC). We address two
more challenges: 1) How to control the number of sup-
port vectors without sacrificing model performance; and
2) how to restrict the fluctuation of the learned decision
function to attain smooth updating. To this end, we in-
troduce two buffers with fixed budgets (buffer sizes) for
positive class and negative class, respectively, to store
the learned support vectors, which can allow us to cap-
ture the global information of the decision boundary.
When determining the weight of a new support vector,
we confine its influence only to its k-nearest opposite
support vectors. This can restrict the effect of new in-
stances and prevent the harm of outliers. More impor-
tantly, we design a sophisticated scheme to compensate
the model after replacement is conducted when either
buffer is full. With this compensation, the learned model
approaches the one learned with infinite budgets. We
present both theoretical analysis and extensive experi-
mental comparison to demonstrate the effectiveness of
our proposed KOIL.

Introduction
Learning binary classification models from imbalanced data,
where the number of instances from one class is significantly
larger than that from the other class, is an important topic
in both machine learning and data mining (Liang and Cohn
2013; Wu et al. 2008; Yang and King 2009). In the litera-
ture, area under the ROC curve (AUC) is an effective met-
ric to measure the performance of classifiers learned from
imbalanced data (Bradley 1997; Brefeld and Scheffer 2005;
Hanley and McNeil 1982; Joachims 2005). Recently, on-
line AUC maximization is proposed to tackle this prob-
lem when the data appears sequentially (Gao et al. 2013;
Yang et al. 2010; Zhao et al. 2011). However, these algo-
rithms only focus on seeking the decision function in a linear
form. They cannot capture nonlinearity and heterogeneity of
the data and miss the learning power of kernel methods.
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Here, we aim at developing kernelized online imbal-
anced learning techniques, which are less explored, but im-
portant in both theory and applications. We address two
more challenges. First, the learned kernel-based estimator
becomes more complex as the number of observations in-
creases (Kivinen, Smola, and Williamson 2004; Yang et al.
2011; 2012). Without suitable stream oblivious strategy, in
the extreme case, the number of learned support vectors can
be scaled to infinity. This is undesirable for large-scale ap-
plications. Although in the literature, refinement techniques,
e.g., Projectron (Orabona, Keshet, and Caputo 2009), and
online learning with fixed budgets algorithms, such as ran-
domized budget perceptron (Cavallanti, Cesa-Bianchi, and
Gentile 2007) and Forgetron (Dekel, Shalev-Shwartz, and
Singer 2008), have been proposed, it is non-trival to tackle
online imbalanced learning. Second, fluctuation by outliers
is unavoidable in online learning (Cesa-Bianchi and Lugosi
2006; Ross, Mineiro, and Langford 2013; Karampatziakis
and Langford 2011). How to attain smooth updating requires
additional effort.

To this end, we propose a Kernelized Online Imbalanced
Learning algorithm with fixed budgets, namely, KOIL, for
online nonlinear AUC maximization. Our contributions are
as follows:
• First, our proposed KOIL directly maximizes the AUC

metric representing by the kernel expansion with fixed
budgets, i.e., maintaining two buffers with the same
buffer sizes to store the most informative data from each
class as learned support vectors. This is an effective way
to handle imbalanced streaming data while capturing
their nonlinearity and heterogeneity (Kivinen, Smola,
and Williamson 2004; Yang et al. 2013) and also sets
it apart from Projectron (Orabona, Keshet, and Caputo
2009), which may include too many support vectors.
Another important and novel feature is that we update
the weights of the new and old support vectors by con-
fining the influence of a new instance to its k-nearest
opposite support vectors. This leads to smooth updat-
ing and makes KOIL different from previously proposed
online AUC maximization algorithms (Gao et al. 2013;
Zhao et al. 2011), which update the weight of a new in-
stance based on all information stored in the buffers.

• Second, other than the standard stream oblivious poli-
cies, such as First-In-First-Out (FIFO) and reservoir
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sampling (RS), which replace a support vector when ei-
ther buffer is full, we design a sophisticated scheme to
compensate the loss when a support vector is removed.
We show that after the compensation, the learned de-
cision function approaches the one learned with infi-
nite budgets, i.e., sufficiently exploiting all the informa-
tion along the training. This compensation scheme also
makes our KOIL different from currently proposed on-
line learning with fixed budgets algorithms (Cavallanti,
Cesa-Bianchi, and Gentile 2007; Dekel, Shalev-Shwartz,
and Singer 2008), which cast off information along train-
ing.

• Third, we demonstrate the effectiveness of confined up-
dating and compensation in KOIL via both theoretical
analysis and extensive experimental comparison.

KOIL for AUC Maximization
Notation and Problem Definition
We focus on learning a nonlinear decision function f :
Rd → R from a sequence of imbalanced feature-labeled pair
instances in binary classification, {zt = (xt, yt) ∈ Z, t ∈
[T ]}, where Z = X × Y , xt ∈ X ⊆ Rd, yt ∈ Y =
{−1,+1} and [T ] = {1, . . . , T}. Without loss of generality,
we assume the positive class is the minority class while the
negative class is the majority class. We denoteN ỹ

t,k(z) as the
set of feature-labeled pair instances which are the k-nearest
neighbors of z and have the label of ỹ at the t-th trial. Here,
the neighborhood is defined by the distance or the similar-
ity between two instances, i.e., the smaller the distance (or
the more similarity) of instances, the close the neighbors.
Besides, we define the index sets, I+t and I−t , to record the
indexes of positive support vectors and negative support vec-
tors at the t-th trial. Moreover, for simplicity, we define two
buffers,K+

t andK−t , to store the learned information for two
classes at the t-th trial, respectively:

Ks
t .A = {αs

i,t |αs
i,t 6= 0, i ∈ Ist },

Ks
t .B = {zi | yi = s1, i ∈ Ist },

where for simplicity, s denotes + or−, respectively, and αi,t
denotes the weight of the support vector firstly occurred at
the i-th trial and updated at the t-th trial. We fix the budgets,
i.e., the buffer sizes, to N . That is, |I+| = |I−| = N .

The objective of KOIL is to seek a decision function at
the t-th trial expressed as follows:

ft(x) =
∑

i∈I+t
α+
i,tk(xi,x) +

∑
j∈I−t

α−j,tk(xj ,x), (1)

where the information of support vectors is stored at K+
t

and K−t , respectively, and the prediction of a new sample
x can be made by sgn(ft(x)). More generally, ft(x) is an
element of a Reproducing Kernel Hilbert Space (RKHS) and
can be expressed as ft(x) = 〈ft(·), k(x, ·)〉H to capture the
nonlinearity and heterogeneity of the data (Schölkopf and
Smola 2002).

Learning with Kernels for AUC Maximization
Given the positive dataset D+ = {zi|yi = +1, i ∈ I+} and
the negative dataset D− = {zj |yj = −1, j ∈ I−}, the AUC

metric for a kernel representation function f is calculated
by:

AUC(f) =

∑
i∈I+

∑
j∈I− I[f(xi)− f(xj) > 0]

|I+||I−|
(2)

= 1−
∑
i∈I+

∑
j∈I− I[f(xi)− f(xj) ≤ 0]

|I+||I−|
,

where I[π] is the indicator function that equals 1 when π is
true and 0 otherwise. Hence, maximizing AUC(f) is equiv-
alent to minimizing

∑
i∈I+

∑
j∈I− I[f(x+

i )− f(x−j ) ≤ 0].
Since directly maximizing AUC score yields a combinatorial
optimization problem, which is NP-hard (Cortes and Mohri
2003), the indicator function is usually replaced by its con-
vex surrogate, e.g., the following pairwise hinge loss func-
tion (Gao et al. 2013; Zhao et al. 2011):

`h(f, z, z′) =
|y − y′|

2

[
1− 1

2
(y − y′)(f(x)− f(x′))

]
+

,

(3)
where [v]+ = max{0, v}.

Hence, finding the decision function in Eq. (1) for AUC
maximization is equivalent to minimizing the following ob-
jective function:

L(f) =
1

2
‖f‖2H + C

∑
i∈I+

∑
j∈I−

`h(f, zi, zj), (4)

where 1
2‖f‖

2
H is the regularization term controlling the func-

tional complexity and C > 0 is a penalty parameter balanc-
ing the functional complexity and training errors.

Online AUC Maximization by KOIL
In the online setting, our goal is to update the kernel deci-
sion function based on the arrival of a new instance zt. Con-
sidering the AUC approximation by its convex surrogate in
Eq. (3), we can transform the objective of Eq. (4) to the fol-
lowing instantaneous regularized risk of AUC on zt:

Lt(f) =
1

2
‖f‖2H + C

∑t−1

i=1
`h(f, zt, zi). (5)

Different from NORMA, only measuring the predictive er-
ror of a new instance, the risk defined in Eq. (5) involves
computing pairwise losses between zt and all previous in-
stances with the opposite label. Obviously, storing all previ-
ous instances is undesirable for large-scale applications.

To tackle the scalability issue, we introduce two buffers
for each class with fixed budgets as in (Yang et al. 2013;
Zhao et al. 2011) to keep track of the most informative pos-
itive and negative instances, which are also used as support
vectors to construct the kernel decision function in Eq. (1).
However, if the new instance counts all errors in the opposite
buffer as in (Yang et al. 2013), the decision function is eas-
ily affected by outliers, which will cause much more errors
and may yield decision functions fluctuated. To increase the
robustness of the model, we propose a novel setting in the
objective function, i.e., we only count the losses between
the new instance zt and its k-nearest opposite support vec-
tors, i.e., the k-nearest support vectors with the opposite la-
bel of the new instance. We then seek the decision function
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Algorithm 1 Kernelized Online Imbalanced Learning
(KOIL) with Fixed Budgets
1: Input:
• the penalty parameter C and the learning rate η
• the maximum budget sizeN+ andN−

• the number of nearest neighbors k
2: InitializeK+.A = K−.A = ∅,K+.B = K−.B = ∅,Np = Nn = 0

3: for t = 1 to T do
4: Receive a training sample zt = (xt, yt)

5: if yt = +1 then
6: Np = Np + 1

7: [K−,K+, α+
t ] = UpdateKernel(zt,K−,K+, C, η, k)

8: K+ = UpdateBuffer(α+
t , zt,K+, k,N+, Np)

9: else
10: Nn = Nn + 1

11: [K+,K−, α−
t ] = UpdateKernel(zt,K+,K−, C, η, k)

12: K− = UpdateBuffer(α−
t , zt,K−, k,N−, Nn)

13: end if
14: end for

by minimizing the following localized instantaneous regu-
larized risk of AUC on zt:

L̂t(f) := L̂(f, zt) =
1

2
‖f‖2H + C

∑
zi∈N−yt

t,k (zt)

`h(f, zt, zi).

(6)
Note that k is usually set as a small value, e.g., around 10%
of the budget. More importantly, this new setting contains
the following advantages: 1) Maintaining two buffers with
relatively larger budgets can keep track of the global in-
formation of the decision boundary; 2) only considering k-
nearest opposite support vectors of the new instance allows
us to utilize the local information around the new instance
and avoid the fluctuation of the decision function.

We show the framework of Kernelized Online Imbalanced
Learning with fixed budgets in Algorithm 1, which consists
of two key components, UpdateKernel and UpdateBuffer,
elaborated in the following. More detailed descriptions are
shown in the Appendix.

Update Kernels We apply the classical stochastic gradient
descent method to update the decision function at the t-th
trial as follows:

ft+1 := ft − η∂f L̂t(f)|f=ft , (7)
where ∂f is shorthand for ∂/∂f (the gradient with respect
to f ), and η > 0 is the learning rate which can be a constant
or decreases with the number of trials.

To compute the gradient of L̂t(f) with respect to f , we
first calculate the gradient of `h with respect to f , i.e.,
∂f `h(f, zt, zi), by

∂f `h(·) =

{
0, `h(f, zt, zi) ≤ 0,

−ϕ(zt, zi), `h(f, zt, zi) > 0
, (8)

where ϕ(zt, zi) = yt(k(xt, ·)− k(xi, ·)).
Hence, by substituting ft and Eq. (8) for the gradient of

Eq. (6), we obtain:

∂f L̂t(ft) = ft−C
∑

zi∈N−yt
t,k (zt)

I[`h(f, zt, zi) > 0]ϕ(zt, zi).

(9)

Practically, we initialize the first hypothesis to zero, i.e.,
f1 = 0 and express the decision function at the t-th trial
as a kernel expansion defined in Eq.(1) while updating the
(t+ 1)-th trial in an incremental mode,

ft+1(x) = ft(x) + αt,tk(xt,x). (10)

For simplicity, we define the valid set Vt satisfying the in-
dication function in Eq. (9) and its complementary set Vt at
the t-th trial as follows:

Vt := {i ∈ I−ytt | zi ∈ N−ytt,k (zt) ∧ `h(f, zt, zi) > 0},

Vt := I−ytt \ Vt. (11)

Hence, the corresponding updating rule for the kernel
weights at the t-th trial is derived as follows:

αi,t =

 ηCyt|Vt|, i = t
(1− η)αi,t−1 − ηCyt, ∀i ∈ Vt
(1− η)αi,t−1, ∀i ∈ Iytt ∪ Vt

(12)

The updating rule in Eq. (12) divides the data into three cases
and leads to a tight regret bound; see the Theoretical Analy-
sis section:
• For a new instance, we only count at most its k opposite

pairwise losses. This is a key to prevent the fluctuation
of the decision function. Otherwise, if we count all pair-
wise losses as (Yang et al. 2013), a new instance may
yield undesired updating on those remote support vec-
tors, which yield outlier effect.

• For the k-nearest opposite support vectors to the new in-
stance zt, i.e., the support vectors in N−ytt,k (zt), we add
their weights by |ηCyt|; see the second case in Eq. (12).
This will keep a balanced updating, which is in favor of
imbalanced data.

• When the new instance does not incur errors or the la-
bel of previously learned support vectors is the same as
that of the new instance, the updating rule is the same as
NORMA (Kivinen, Smola, and Williamson 2004), i.e.,
just decaying the weight by a constant factor, 1− η.

Update Buffers The setting of fixed budgets raises the
problem of updating the buffer when it is full. How to main-
tain the buffers with the most informative support vectors to
achieve stable model performance is a key challenge. Tradi-
tionally, First-In-First-Out (FIFO) and Reservoir Sampling
(RS) are two typical stream oblivious policies (Vitter 1985)
to update the buffers and have demonstrated their effective-
ness in online linear AUC maximization (Zhao et al. 2011).
However, they will degrade the performance of the kernel-
based online learning algorithms as they will cast off support
vectors (Yang et al. 2013).

To avoid information loss, we need to design a compen-
sation scheme. Let the removed support vector be zr =
(xr, yr), we find the most similar support vector zc =
(xc, yc) with yc = yr in Kyrt and update its correspond-
ing weight. By considering the updating rule in Eq. (10), we
obtain the new decision function as follows:

f̂t+1(x) = ft+1(x)− αr,tk(xr,x).
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We determine the updated weight ∆αc,t of the compen-
sated support vector zc by keeping track of all information
with changing the value of the decision function. That it,

ft+1(x) = f̂t+1(x) + ∆αc,t · k(xc,x)

= ft+1(x)− αr,tk(xr,x) + ∆αc,t · k(xc,x). (13)

Hence, we set ∆αc,t = αr,t
k(xr,x)
k(xc,x)

≈ αr,t due to the sim-
ilarity of the removed support vector, xr and the compen-
sated support vector, xc. We then obtain the updating rule of
ft+1 with its compensation, f++

t+1:

f++
t+1=(1−η)f++

t +η∂f L̂t(f)|f=f
++
t

+αr,t(k(xc,·)−k(xr,·)), (14)

where f++
t is the previously compensated decision func-

tion. When either buffer is not full, f++
t = ft, updated by

Eq. (7). Ideally, if k(xc,x) equals k(xr,x), f++
t reserves

all the support vectors and corresponds to the one learned
with infinite budgets. Hence, we call the replacement with
the compensation scheme as the extended updating policy.
For the Reservoir Sampling policy, it is named RS++, while
for the FIFO policy, it is named FIFO++. Significantly, the
extended updating policies are not heuristic because a regret
bound can be derived accordingly.

Theoretical Analysis
We define the regret bound as the difference between the
objective value up to the T -th step and the smallest objective
value from hindsight, i.e.,

RT =
T∑
t=1

L̂t(ft)−L̂t(f∗), R++
T =

T∑
t=1

L̂t(f++
t )−L̂t(f∗),

(15)
where f∗ is the optimal decision function obtained from
hindsight, and ft and f++

t correspond to the updating in
Eq. (7) and Eq. (14), respectively.

We can derive the regret bounds in the following theorem:
Theorem 1. Suppose for all x ∈ Rd, k(x,x) ≤ X2, where
X > 0. Let ξ1 be in [0, X], such that k(xt,xi) ≥ ξ21 , ∀ zi =

(xi, yi) ∈ N−ytt (zt). Given k > 0, C > 0, η > 0 and a
bounded convex loss function ` : H × Z × Z → [0, U ] for
ft updated by Eq. (7), with f1 = 0, we have

RT ≤
‖f∗‖2H
2η

+ ηCk

T∑
t=1

(
(U − 1) + (k + 1)C(X2 − ξ21)

)
.

(16)
Moreover, assume that ∀i ∈ I+t ∪ I−t , |αi,t| ∈ [0, γη] and
k(xr,xc) ≥ ξ22 with 0 < ξ2 ≤ X for any replaced support
vector xr and compensated support vector xc at any trial.
With f++

1 = 0 and f++
t updated by Eq. (14), we have

R++
T ≤RT+T

(
4γCk
√

(X2−ξ22)(X2−ξ21)+2γ2(X2−ξ22)
)
. (17)

Details of the proof and more results are given in the Ap-
pendix. Several remarks include:
• The assumption on the bound of the loss function is

valid. For the pair-wise hinge loss function in Eq. (3),
we can derive the bound U = 1 + 2Ck(X2 − ξ21). The
assumption on the bound of the weight α also makes
sense. Otherwise the sought optimal decision function is
worse than the initial one, i.e., f++

1 = 0.

(a) diabetes (b) svmguide2

(c) german (d) segment

Figure 1: Average AUC performance on four benchmark
datasets obtained via different updating policies of KOIL.

• By setting η to O(1/
√
T ), we can derive the regret

bounds, RT ∼ O(
√
T ), which is equivalent to the

O(1/
√
T ) convergence rate for KOIL. The bounds we

derived are the same as standard online learning algo-
rithms. By exploiting the smoothness of loss functions,
we can derive a fast convergence rate as in (Gao et al.
2013), i.e., O(1/T ) when L̂(f∗) = 0. It should be noted
that our derived regret bounds are also different from
the mistake bounds derived in (Cavallanti, Cesa-Bianchi,
and Gentile 2007; Dekel, Shalev-Shwartz, and Singer
2008; Orabona, Keshet, and Caputo 2009), which aims
at maximizing classification accuracy.

• The regret bound R++
T is larger than RT with an un-

desired term related to T . However, we argue that it
is meaningful as γ can be restricted to be proportional
to O(1/

√
T ), which yields a regret bound in O(

√
T ).

For better theoretical result, we leave it as future work.
Moreover, when ξ22 = X2, i.e., the compensated sup-
port vector is the same as the replaced support vector,
we can obtain R++

T = RT . This result implies that the
decision function learned by the replacement with com-
pensation updating strategy can approach the decision
function learned with infinite budgets. The experimental
results also verify this observation.

• The derived regret bounds are proportional to k, not N
(the budget). This is different from the regret bound de-
rived in online AUC maximization (Zhao et al. 2011).
Although the result implies that k = 1 can attain the
smallest theoretical regret bound, we observe the best k
is around 10% of the budget; see more details in the ex-
perimental section. We conclude that the bound derived
here is based on an approximate surrogate of the AUC
metric, i.e., the pair-wise hinge loss function. More pre-
cise theoretical results require more accurate measure of
the AUC metric.
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(a) (b)

(c) (d)

Figure 2: Average AUC of KOIL with different buffer sizes.

Experiments
In this section, we present extensive experimental results on
real-world datasets to demonstrate the effectiveness of our
proposed KOIL 1 algorithm with fixed budgets.

Compared Algorithms. Since we only focus on online
imbalanced learning, for fair comparison, we do not com-
pare with existing batch-trained imbalanced learning algo-
rithms. Specifically, we compare our proposed KOIL with
the state-of-the-art online learning algorithms, including on-
line linear algorithms and kernel-based online learning algo-
rithms with a finite or infinite buffer size:
• “Perceptron”: the classical perceptron algo-

rithm (Rosenblatt 1958);
• “OAMseq”: an online linear AUC maximization algo-

rithm (Zhao et al. 2011);
• “OPAUC”: One-pass AUC maximization (Gao et al.

2013);
• “NORMA”: online learning with kernels (Kivinen,

Smola, and Williamson 2004);
• “RBP”: Randomized budget perceptron (Cavallanti,

Cesa-Bianchi, and Gentile 2007);
• “Forgetron”: a kernel-based perceptron on a fixed bud-

get (Dekel, Shalev-Shwartz, and Singer 2008);
• “Projectron/Projectron++”: a bounded kernel-based

perceptron (Orabona, Keshet, and Caputo 2009);
• “KOILRS++/KOILFIFO++”: our proposed kernelized on-

line imbalanced learning algorithm with fixed budgets
updated by RS++ and FIFO++, respectively.

Experimental Setup. To make fair comparisons, all al-
gorithms adopt the same setup. We set the learning rate to
a small constant η = 0.01 and apply a 5-fold cross valida-
tion to find the penalty cost C ∈ 2[−10:10]. For kernel-based
methods, we use the Gaussian kernel and tune its parameter

1Demo codes in both C++ and Matlab can be down-
loaded in https://www.dropbox.com/sh/nuepinmqzepx54r/
AAAKuL4NSZe0IRpGuNIsuxQxa?dl=0.

σ ∈ 2[−10:10] by a 5-fold cross validation. For NORMA, we
apply a 5-fold cross validation to select λ and ν ∈ 2[−10:10].
For Projectron, we apply a similar 5-fold cross validation to
select the parameter of projection difference η ∈ 2[−10:10].

Experiments on Benchmark Datasets. We conduct ex-
periments on 14 benchmark datasets obtained from the UCI
and the LIBSVM websites. The imbalanced ratio ranges
from 1.144 to 328.546. For each dataset, we conduct 5-fold
cross validation for all the algorithms, where four folds of
the data are used for training while the rest for test. The 5-
fold cross validation is independently repeated four times.
We set the buffer size to 100 for each class for all related al-
gorithms, including OAMseq, RBP, and Forgetron. We then
average the AUC performance of 20 runs and report the re-
sults in Table 1. Several observations can be drawn as fol-
lows:

• Our KOIL with RS++ and FIFO++ updating policies
perform better than online linear AUC maximization al-
gorithms in most datasets. By examining the results of
OAMseq on the datasets of australian, heart, diabetes,
german, and shuttle and those of OPAUC on australian
and german, we speculate that for these datasets, a linear
classifier is enough to achieve good performance, while
a nonlinear classifier may be easily affected by outliers.

• Kernel-based online learning algorithms, especially Pro-
jectron/Projectron++, show better AUC performance
than the linear online learning algorithms in most
datasets. This again demonstrates the power of kernel
methods in classifying real-world datasets.

• Our proposed KOIL significantly outperforms all com-
peting kernel-based online learning algorithms in nearly
all datasets. The results demonstrate the effectiveness of
our KOIL in online nonlinear imbalanced learning.

Evaluation on Updating Policies. We compare the ex-
tended updating policies, RS++ and FIFO++, with the orig-
inal updating policies, RS and FIFO. We show in Figure 1
for the average AUC performance of 20 runs on four typical
datasets. The results of KOILinf, i.e., learning with infinite
budgets, are provided for reference. We have the following
observations:

• KOILRS++ and KOILFIFO++ attain nearly the same perfor-
mance as KOILinf. The results confirm that the extended
updating policies maintain all available revealed infor-
mation during the training.

• Our KOIL with compensation updating policy signifi-
cant outperforms the corresponding with original stream
oblivious policy when either buffer is full. Without com-
pensation, the performance fluctuates and is easily af-
fected by noisy instances. On the other hand, with com-
pensation, KOIL can attain stable performance.
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Table 1: Average AUC performance (mean±std) on the benchmark datasets, •/◦ (-) indicates that both/one of KOILRS++ and
KOILFIFO++ are/is significantly better (worse) than the corresponding method (pairwise t-tests at 95% significance level).

Data KOILRS++ KOILFIFO++ Perceptron OAMseq OPAUC NORMA RBP Forgetron Projectron Projectron++
sonar .955±.028 .955±.028 .803±.083• .843±.056• .844±.077• .925±.044• .913±.032• .896±.054• .896±.049• .896±.049•
australian .923±.023 .922±.026 .869±.035• .925±.024 .923±.025 .919±.023 .911±.017• .912±.026• .923±.024 .923±.024
heart .908±.040 .910±.040 .876±.066• .912±.040 .901±.043◦ .890±.051• .865±.043• .900±.053 .902±.038 .905±.042
ionosphere .985±.015 .985±.015 .851±.056• .905±.041• .888±.046• .961±.016• .960±.030• .945±.031• .964±.025• .963±.027•
diabetes .826±.036 .830±.030 .726±.059• .827±.033 .805±.035• .792±.032• .828±.034 .820±.027◦ .832±.033 .833±.033
glass .887±.053 .884±.054 .810±.065• .827±.064• .800±.074• .811±.077• .811±.071• .813±.075• .811±.070• .781±.076•
german .769±.032 .778±.031 .748±.033• .777±.027 .787±.026 - .766±.032◦ .699±.038• .712±.054• .769±.028◦ .770±.024
svmguide2 .897±.040 .885±.043 .860±.037• .886±.045◦ .859±.050• .865±.046• .890±.038 .864±.045• .886±.044◦ .886±.045◦
segment .983±.008 .985±.012 .875±.020• .919±.020• .882±.019• .910±.042• .969±.017• .943±.038• .979±.013• .978±.016•
satimage .924±.012 .923±.015 .700±.015• .755±.018• .724±.016• .914±.025• .899±.018• .892±.032• .910±.015• .904±.011•
vowel 1.000±.0001.000±.001 .848±.070• .905±.024• .885±.034• .996±.005• .968±.017• .987±.027• .982±.013• .994±.019•
letter .933±.021 .942±.017 .767±.029• .827±.021• .823±.018• .910±.027• .928±.011◦ .815±.102• .926±.016• .926±.015•
poker .681±.031 .693±.032 .514±.030• .503±.024• .509±.031• .577±.040• .501±.031• .572±.029• .675±.027• .675±.027•
shuttle .950±.040 .956±.021 .520±.134• .999±.000 - .754±.043• .725±.053• .844±.041• .839±.060• .873±.063• .795±.063•

win/tie/loss 14/0/0 9/4/1 12/1/1 13/1/0 12/2/0 13/1/0 11/3/0 10/4/0

(a) (b)

(c) (d)

Figure 3: Average AUC of KOIL with different k. Here k =
[1, 10:10:100] and the budget is 100 for each buffer.

Sensitivity Analysis of KOIL. We first test the perfor-
mance of KOIL with different buffer sizes. From Figure 2,
we observe that the performance increases gradually with
the increase of the buffer size and it is saturated when the
size is relatively large. This is similar to the observations
in (Yang et al. 2013; Zhao et al. 2011). Next, we test the per-
formance of KOIL with different k, which determines the
number of localized support vectors. From Figure 3, we have
the following observations:
• When k is extremely small, say k = 1, KOIL only con-

siders the pairwise loss yielded by the nearest opposite
support vector of the new instance and can not fully
utilize the localized information. In this case, the up-
dating weight is a constant, |ηCyt|, which is the same
value of the initial weight for the misclassified instance
in NORMA.

• KOIL usually attains the best performance when k

equals 10% of the buffer size. The performance de-
creases when k increases. The results consistently show
that by only utilizing the local information of new in-
stances indeed prevents the effect of outliers.

• For some datasets, e.g., svmguide2 and german, the per-
formance is not so sensitive to k. The reason may be
that the learned support vectors in these datasets are
well-separated when the buffers are full. Hence, new in-
stances play little influence on seeking the decision func-
tion.

Conclusion
We proposed a kernel-based online learning algorithm to
tackle the imbalanced binary classification problem. We
maintain two buffers with fixed budgets to control the num-
ber of support vectors, which keep track of the global infor-
mation of the decision boundary. We update the weight of a
new support vector by confining its influence only on its k-
nearest opposite support vectors. More importantly, we de-
sign a sophisticated compensation scheme to avoid informa-
tion loss by transferring the weight of the removed support
vector to its most similar one, when either buffer is full. We
show that this compensation can make our learning decision
function approach the one learned with infinite budgets. We
provide theoretical analysis on the regret bounds and con-
duct extensive experiments to demonstrate the effectiveness
of our proposed KOIL.

Several challenging and promising directions can be con-
sidered in the future: First, the current regret bounds only
provide standard results. How to seek more advance math-
ematical tools to derive better regret bounds for imbalanced
learning deserves investigation. Second, our current KOIL
mainly presents the results of the pair-wise hinge loss func-
tion. Exploring more accurate surrogate functions for the
AUC metric contain both theoretical and practical merits.
Third, how to select a good kernel or similarly, how to bor-
row the idea of multiple kernel learning for online imbal-
anced learning is a potential way to improve the model per-
formance.
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