
System Reliability Analysis of an N-version Programming
Application

Joanne Bechta Dugan

Department of Electrical Engineering
University of Virginia

Charlottesville, VA 22903-2442

Abstract

This paper presents a quantitative reliability anal-
ysis of a system designed t o tolerate both hardware
and software faults. The system being studied achieves
integrated fault tolerance by implementing N- Version
Programming (NVP) on redundant hardware. The
analysis of the system consaders independent soft-
ware faults, related software faults, transient hardware
faults, permanent hardware faults, and imperfect cov-
erage. The overall model is a Markov reward model
in which the states of the Markov chain represent
the long-term evolution of the structure of the sys-
tem. For each operational configuration, a fault tree
model captures the effects of software faults and tran-
sient hardware faults on the task computation. The
fault tree models define the reward structure f o r the
overall model. The software fault model is parame-
terized using experimental data associated with a re-
cent implementation of an N V P system using the cur-
rent design paradigm, in which the predictions of soft-
ware failures are very close to the empirical data. The
hardware model is parameterized b y considering typical
failure rates associated with hardware faults and cov-
erage parameters. Results from our study show that it
is important to consider both hardware and software
faults in the reliability analysis of an NVP system,
since these estimates increase with time. Moreover,
the function for error detection and recovery is ez-
tremely important to fault-tolerant software. Several
orders of magnitude improvement in the overall sys-
tem reliability can be observed i f this function is pro-
vided promptly.

1 Introduction

Computer systems used for critical applications,
such as flight control, air-traffic control, patient moni-

Michael R. Lyu

Bell Communications Research
445 South Street

Morristown, NJ 07960

toring or power plant monitoring, are designed to tol-
tirate faults in the software as well as in the hardware.
1 Xstinguishing between hardware and software faults
can be difficult, as symptoms of transient hardware
faults and those of software design faults are often
Fery similar [4]. Current fault tolerant system design-
ers thus advocate a unified treatment of hardware and
software faults.

Three recent systems provide an integrated ap-
proach to hardware and software fault tolerance. The
Ilistributed Recovery Blocks (DRB) scheme [4] com-
bines both distributed processing and Recovery Block
(RB) [8] concepts to provide a unified approach to
tolerating both hardware and software faults. Archi-
tectural considerations for the support of N-version
programming (NVP) [l] were addressed in [5], in
which the FTP-AP system is described. The FTP-AP
ssptem achieves hardware and software design diver-
sity by attaching application processors (AP) to the
b yzantine resilient hard core Fault Tolerant Processor
(FTP). N self-checking programming (NSCP) [SI uses
diverse hardware and software in self-checking groups
tl> detect hardware and software induced errors. The
h SCP concept forms the basis of the flight control sys-
ts:m used on the Airbus A310 and A320 aircraft, and
mas analyzed in [2].

In this paper we analyze a system which uses N-
version programming on redundant hardware. A com-
bination of fault tree and Markov models provides a
fiamework for the analysis of hardware and software
filult tolerant systems. The overall system model is
a Markov reward model in which the states of the
Markov chain represent the evolution of the hardware
configuration as permanent faults occur. A fault tree
niodel captures the effects of software bugs and tran-
sient hardware faults, and defines the reward struc-
tiire for the overall model. This hierarchical approach
simplifies the development, solution and understand-

103
0-8186410-3/93 $03.00 0 1993 IEEE

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 15:17:25 UTC from IEEE Xplore. Restrictions apply.

I -
L

L

SERVO-
L

I 1

I

CONTROL/
COMMAND

4

L

MOMTOR B SERVOS

LANEC
OMPUTATIO I , ,

COMMAND
MONITOR C

AIRPLANE/ SENSORS I
LANDING GEOMETRY

-

Figure 1: 3-channel flight simulation configuration

ing of the modeling process. The model is parameter-
ized using actual data derived from an experimental
implementation of a real-world automatic (i.e., com-
puterized) airplane landing system, or so-called “au-
topilot .” The software systems of this project were de-
veloped and programmed by 15 programming teams
at the University of Iowa and the Rockwell/Collins
Avionics Division. A total of 40 students (33 from
ECE and CS departments at the University of Iowa, 7
from the Rockwell International) participated in this
project to independently design, code, and test the
computerized airplane landing system, as described in
the Lyu-He study [7].

2 System Description

The software project in the Lyu-He study was
scheduled and conducted in six phases: (1) Initial de-
sign phase for four weeks; (2) Detailed design phase
for two weeks; (3) Coding phase for three weeks; (4)
Unit testing phase for one week; (5) Integration test-
ing phase for two weeks; (6) Acceptance testing phase
for two weeks. It is noted that the acceptance testing
was a two-step formal testing procedure. In the first
step (ATl), each program was run in a test harness of
four nominal flight simulation profiles. For the second

step (AT2), one extra simulation profile, representing
an extremely difficult flight situation, was imposed.
By the end of the acceptance testing phase, 12 of the
15 programs passed the acceptance test successfully
and were engaged in operational testing for further
evaluations. The average size of these programs were
1564 lines of uncommented code, or 2558 lines when
comments were included. The average fault density
of the program versions which passed AT1 was 0.48
faults per thousand lines of uncommented code. The
fault density for the final versions was 0.05 faults per
thousand lines of uncommented code.

2.1 The NVP operational environment

The operational environment for the application
was conceived as airplane/autopilot interacting in a
simulated environment, as shown in figure 1. Three
channels of diverse software independently computed
a surface command to guide a simulated aircraft along
its flight path. To ensure that significant command
errors could be detected, random wind turbulences of
different levels were superimposed in order to repre-
sent difficult flight conditions. The individual com-
mands were recorded and compared for discrepancies
that could indicate the presence of faults.

This configuration of a 3-channel flight simulation

104

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 15:17:25 UTC from IEEE Xplore. Restrictions apply.

, Version Id I Number of failures 1 Prob. by case I prob. by time
P I 510 I 0.51 I 0.000096574
7
€

c
e
B

IC

x
c1
v
€
0

Average

0
0
0
1

360
0

730
140
0
0
0

145.1

0.0
0.0
0.0

0.001
0.36
0.0

0.73
0.14
0.0
0.0
0.0

0.1451
-
-

0.0
0.0
0.0
0 .OOOOOO 189
0.000068 169
0.0
0.000138233
0.000026510
0.0
0.0
0.0
0.000027472

Table 1: Errors in three-vetsion configurations

system consisted of three lanes of control law compu-
tation, three command monitors, a servo control, an
Airplane model, and a turbulence generator. The lane
computations and the command monitors would be
the accepted software versions generated by the pro-
gramming teams. Each lane of independent computa-
tion monitored the other two lanes. However, no sin-
gle lane could make the decision as to whether another
lane was faulty. A separate servo control logic func-
tion was required to make that decision. The aircraft
mathematical model provided the dynamic response of
current medium size, commercial transports in the ap-
proach/landing flight phase. The three control signals
from the autopilot computation lanes were inputs to
three elevator servos. The servos were force-summed
at their outputs, so that the mid-value of the three in-
puts became the final elevator command. The Land-
ing Geometry and Turbulence Generator were models
associated with the Airplane simulator.

In summary, one run of flight simulation was char-
acterized by the following five initial values regarding
the landing position of an airplane: (1) initial altitude
(about 1500 feet); (2) initial distance (about 52800
feet); (3) initial nose up relative to velocity (range
from 0 to 10 degrees); (4) initial pitch attitude (range
from -15 to 15 degrees); and (5) vertical velocity for
the wind turbulence (0 to 10 ft/sec). One simulation
consisted of about 5280 iterations of lane command
computations (50 milliseconds each) for a total land-
ing time of approximately 264 seconds.

2.2 Operational error distribution

During the operational phase, 1000 flight simula-
tions, or over five million program executions, were

conducted. For a conservative estimation of software
failures in the NVP system, we took the program ver-
sions which passed the AT1 for study. The reason
behind this was that had the Acceptance Test not in-
cluded an extreme situation of AT2, more faults would
have remained in the program versions. We were in-
tc:rested in seeing how the remaining faults would be
manifested during the operational testing, and how
they would or would not be tolerated in various NVP
configurations.

Table 1 shows the software failures encountered in
e x h single version, while Tables 2 and 3 show differ-
ent software error categories under all combinations
olf %version configurations. We examine two levels of
granularity in defining software execution errors and
correlated errors: "by case" or "by time." The first
level was defined based on test cases (1000 in total).
If a version failed at any time in a test case, it was
considered failed for the whole case. If two or more
vczsions failed in the same test case (no matter at the
same time or not), they were said to have coincident
errors for that test case. The second level of gran-
ularity was defined based on execution time frames
(E1,280,920 in total). Errors were counted only at the
time frame upon which they manifested themselves,
arid coincident errors were defined to be the multiple
pi-ogram versions failing at the same time in the same
test case (with or without the same variables and val-

In Table 1 we can see that the average failure prob-
ability for single version is 0.145 measured by case,
or 0.000027 measured by time. Table 2 shows that
when measured by case, for all the 3-version combi-
niitions the failure probability is 0.0214 (sum of error
categories 3 and 4), an improvement over the single

ues).

105

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 15:17:25 UTC from IEEE Xplore. Restrictions apply.

Category I No. of incidents
1 - no errors I 163370
2 - single error 51930
3 - two errors
4 - three errors
Total 220000

Probability
0.7426
0.2360
0.0202
0.0012

Table 2: Errors by case in three-version configurations

Category No. of incidents
1 - no errors 1160743500
2 - single error 1056200
3 - two errors

0.000909
0.000002

4 - three errors I 0 I 0.0
Total I 1161802400 1 1.0

Table 3: Errors by time in three-version configurations

version by a factor of 7.
In Table 3 we see that when measured by time, for

all the 3-version combinations, the failure probability
is 0.000002 (sum of error categories 3 and 4). This
is a reduction of roughly 13 when compared with the
single version execution.

The above software failure probability estimations
were obtained by empirical program execution results.
In the next section we will derive a general reliability
model for an integrated fault tolerant system, which
gives a more detailed breakdown of the system. We
verify our reliability model with the empirical results.

3 Model Description

A reliability model of an integrated fault tolerant
system must include at least three different consider-
ations: computation errors, system structure and cov-
erage modeling. In this paper we concentrate on the
first two, as coverage modeling has been addressed in
detail elsewhere [3].

3.1 Computation error model

The computation process is assumed to consist of a
single software task that is executed repeatedly. The
software component designed to perform the task is
designed to be fault tolerant. During a single task
iteration, two types of events can interfere with the
computation. First, the particular set of inputs could
activate a software fault in one or more of the software
versions and/or the decider (a decider is a computing

routine which determines the correct results from the
multiple software versions using consensus). Second,
a hardware transient fault could upset the computa-
tion but not cause permanent hardware damage. The
combinations of software faults and hardware tran-
sients that can cause an erroneous output for a single
computation is modeled with a fault tree.

Figure 2 shows the fault tree model for the com-
putation error process when the system is fully op-
erational. The basic events are labeled with the sym-
bol which represents the probability of occurrence; the
symbols are defined in table 4.

An erroneous output can result from software fail-
ure, hardware failure or a combination. The software
fails if independent faults are activated in two or three
versions by the same test case, or if a related fault is
activated between any two or three versions, or if a
fault in the decider is activated. The hardware causa
a computation error in the resident software if a tran-
sient fault occurs during a computation. Any combi-
nation of hardware and software faults affecting two
of the three versions leads to an unacceptable output.

If a permanent hardware fault disables one of the
host processors, then the system is reconfigured to a
simplex system. In the simplex mode, an unaccept-
able result results from either an independent soft-
ware fault activation, or a hardware transient. The
fault tree model showing the computation error pro-
cess while in the simplex mode is shown in figure 3.

3.2 System structure model

The longer-term system behavior is affected by the
arrival (activation, manifestation) of permanent faults
which require system reconfiguration to a degraded
mode of operation. The system structure is modeled
by a Markov reward process, where the Markov states
and transitions model the evolution of the system.
Each state in the Markov process represents a par-
ticular configuration of hardware and software com-
ponents and thus a different level of redundancy.

For the NVP-system being modeled in this paper,
there are two operational states and one absorbing fail-
ure state. The initial state of the system represents the
original system configuration, with three software ver-
sions hosted on three different processors. When one
of the processors experiences a hard fault, the system
is reconfigured to a simplex system, with a single soft-
ware version running on a single processor.

Figure 4 shows the Markov model for this system.
The two operational states show the hardware and
software error confinement areas associated with the
system structure. The hardware error confinement

106

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 15:17:25 UTC from IEEE Xplore. Restrictions apply.

1 I

Figure 2: Fault tree model of computation errors in full-up state

ERRONEOUS OUTPUT

Figure 3: Fault tree model of computation errors in
simplex state

area (HECA) is the lightly shaded region, the software
error confinement area (SECA) is the darkly shaded
region. The HECA or SECA covers the region of the
system affected by faults in that component. For ex-
ample, HECA covers the software component since the
software component will fail if that hardware experi-
ences a fault. The SECA covers only the software
component since no other components will be affected
by a fault in that component.

The reconfiguration from the TMR-system to a
simplex system is successful with probability c, the

3h(I -c)\

Figure 4: Markov model of system structure

107

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 15:17:25 UTC from IEEE Xplore. Restrictions apply.

Fault Tree basic event probabilities
Independent software fault in 1 version
Related software fault between 2 versions
Related fault between all versions

A/
PRV
PRALL
P D Independent decider fault activation
P H Hardware transient fault

By case By time
0.0958 0.0003
0.0 6 x
0.003 0.0
0.0001 1 x 10-7
7.3 x 10-6 2.8 x 10-9

coverage parameter. If the reconfiguration is unsuc-
cessful, the system fails.

A
C

3.3 Combining the models

Markov model parameters
activation rate of permanent hardware fault 0.00001 0.00001
coverage probability 0.999 0.999

For each state in the Markov chain, there is a differ-
ent combination of hardware transients and software
faults that can cause an erroneous output. The re-
ward structure of the process captures the probability
that a single computation will result in an erroneous
output. The reward for a given state is the solution
of the fault tree model for the computation process in
that state.

The fault tree model solution produces, for each
state i in the Markov model, the probability qi that
an output error occurs during a single task computa-
tion. The Markov model solution produces Pi(t) , the
probability that the system is in state i at time t . The
reward model combines these two measures to pro-
duce Q(t) , the probability that an unacceptable result
is produced at time t .

4 Parameterization and Results

The methodology used for estimating the parame-
ters, as well as a discussion of the assumptions made
are detailed in the following. A summary of the re-
sulting parameter values is shown in table 4.

4.1 Software parameters

The experimental results from the Lyu-He study
[7], shown in tables 2 and 3, were used to estimate the
probabilities associated with the activation of software
faults.

Let pV be the probability of an independent fault
activation; PRV be the probability of the activation of
a related fault between any two versions; and PRALL
be the probability of the activation of a related fault
affecting all versions. The probability that no errors
occur in a three-version configuration, which we will
label C1 since it relates to Category 1 in tables 2 and
3, is given by

CI = (1 - ~ ~) ~ (1 - P ~ V) ~ (I - PRALL). (1)

Similarly, the probability that a single fault is acti-
vated is given by the probability that only one inde-
pendent fault is activated (and no related faults are
activated).

c 2 = 3Pv(l - pV)2(1 - PRV)3(1 - PRALL) (2)
Dividing equation (1) by equation (2) yields an equa-
tion which is dependent only on pV, and thus can be
used to estimate the probability of the activation of
an independent fault.

c2
3C1+ C2

Pv = (3)

The data from table 2 yields an estimate of 4. =
0.0958 for the probability of activation of an indepen-
dent fault in a 3-version configuration. Table 5 com-
pares the probability of activation of 1, 2 and 3 faults
as predicted by a model assuming independence be-
tween versions, with the observed values. The ob-
served probability of two simultaneous errors is lower
than predicted by the independent model, while the
observed probability of three simultaneous errors is
higher than predicted. For this set of data we will as-
sume therefore that PRV = 0 and will instead derive
an estimate for PRALL.

Using the assumption that PRV = 0, the proba-
bility that three simultaneous errors are activated is
given by

c 4 = h3 + PRALL - PV’PRALL, (4)

108

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 15:17:25 UTC from IEEE Xplore. Restrictions apply.

I No. errors
activated

0
1
2
3

Table 6: Comparison of independent model with ob-
served data (by time)

Independent Observed
model Probability
0.7393 0.7426
0.2350 0.2360
0.0249 0.0202
0.0009 0.0012

yielding an estimate of PRALL = 0.0003 for the by-
case data.

The by-time data in table 3, when used in equation
(3) produces PV = 0.0003 as an estimate. For this
by-time data, when the failure probabilities which are
predicted by the independent model are compared to
the actual data (table 6), the observed probability of
two errors is an order of magnitude higher than the
predicted probability. There were no cases for which
all three programs produced erroneous results. Thus,
we will estimate PRALL = 0 and derive an estimate
for P R V . To derive an estimate for PRV, consider the
case where two errors are produced. This event could
be caused by either the activation of two simulkane-
ous independent faults, or by the activation of a re-
lated fault. Also, it depends on the non-failure of the
remaining version, either by independent or related
fault. Then, considering the three combinations of
two failures which can occur, we can use the observed
probability of two errors to estimate PRV .

c 3 = 3(P; + PRV - P;PRV)X (5)
(1 - pv)(l- P R V) ~ (~ - PRALL)

Equations (3) and (6) can be used to produce the es-
timate PRV = 6 x loT7 .

For both the by-case and by-time scenarios, the pa-
rameters derived from the data were applied to the
fault tree model shown in figure 5. For the by-case pa-
rameters, the fault tree model predicts a failure proba-
bility of 0.0261, while the observed failure probability
was 0.0214. Using the by-time parameters, the fault
tree model predicts a failure probability of 2.07 x lov6

No. errors
activated

0
1

3
2

U
Independent Observed

0.999090 0.7426
0.000909 0.2360

3 x 10-11 0.0

model Probability

3 x 10-7 2 x 10-6

[V E R S d FAILS 1
ob-

l’igure 5: Fault tree model of NVP software system

while the observed failure probability was 2.3 x
Iili the system analysis section, these parameters will
be combined with hardware parameters to predict the
oslrerall NVP system reliability.

4.2 Hardware parameters

Typical permanent failure rates for processors
range in the per hour range, with transients per-
hzps an order of magnitude larger. Thus we will use
A,, = l ow5 per hour for the Markov model.

In the by-case scenario, a typical test case con-
tained 5280 time frames, each time frame being 50
ITLS., so a typical computation executed for 264 sec-
onds. Assuming that hardware transients occur at a
rike At = (10-4/3600) per second, we see that the
pi-obability that a hardware transient occurs during a
tj,pical test case is

(6)
1 - e-Xrx264 seconds - 7 333 10-6 - .

We conservatively assume that a hardware transient
tliat occurs anywhere during the execution of a task
disrupts the entire computation running on the host.

For the by-time data, the probability that a tran-
simt occurs during a time frame is

(7)
1 - e - X t ~ O 05 seconds = 1.4 10-9

If we further assume that the lifetime of a transient
fault is one second, then a transient can affect as many
B 20 time frames. We thus take the probability of a
transient to be 20 times the value calculated in equa-
tiiw 7, or 2.8 x

109

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 15:17:25 UTC from IEEE Xplore. Restrictions apply.

Figure 6: Probability of producing an unacceptable
result during a test case, by-case data

Finally, for both the by-case and by-time scenar-
ios, we assume a fairly typical value for the coverage
parameter in the Markov model, c = 0.999.

4.3 Model solution

The full model, including the two fault trees (figures
2 and 3) and the Markov model (figure 4) were solved
using the parameters listed in table 4. The results are
shown in figures 6 and 7.

Figure 6 shows, for the by-case data, the time de-
pendent probability of the NVP system producing an
unacceptable result at any time during a test case.
The length of a typical test case is 264 seconds, about
4.4 minutes. Initially, in the full-up state, the proba-
bility of an unacceptable result is 0.0262, increasing to
0.0454 after 1000 hours, as the probability of operat-
ing in the simplex mode or the failure state increases.
The probability of producing an unacceptable result
while in the simplex mode is 0.0958; and the proba-
bility of producing an unacceptable result while in the
absorbing failure state is 1.0.

Figure 7 shows, for the by-time data, the time de-
pendent probability of the NVP system producing an
unacceptable result during a 50 ms. time frame. In
the full up state, the probability of an unacceptable
result is 2.17 x increasing three orders of magni-
tude to 6.83 x at 1000 hours. The probability of
producing an unacceptable result while in the simplex
mode is 3 x

Figure 7: Probability of producing an unacceptable
result during a single time frame, by-time data

5 Summary and Conclusions

An integrated model was presented for the anal-
ysis of a system intended to tolerate both hardware
and software faults. The model included such aspects
as software and hardware transients, permanent hard-
ware faults and imperfect coverage.

The software failure parameters for the model were
estimated from probabilistic calculations on actual
data from an N-version programming experiment con-
ducted at the the University of Iowa and Rockwell.
Two scenarios were considered. First, the by-case data
counted as a software failure the occurrence of an er-
ror in two of the three versions at any point in the
264 second test run. The by-time data, as the other
scenario, only counted simultaneous (i.e. in the same
frame) errors as a failure.

hardware failures)
was parameterized by considering fairly typical failure
rates. The overall models were solved for time-varying
estimates of the probability of producing an unaccept-
able result. The results show that it is important to
consider both hardware and software faults, as the es-
timates increased with increasing time.

These models were parameterized by considering
the results of a single experimental study. The models
fit the experimental data in this case, but more data
is needed in order to further validate the modeling
methodology. Of interest in this particular data set are
the relatively low values for the probability of related
software faults.

The most interesting result comes from the com-
parison of the by-case and by-time estimates of the
probability of an unacceptable result. The several or-

The rest of the model (i.e.

110

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 15:17:25 UTC from IEEE Xplore. Restrictions apply.

ders of magnitude difference points to the importance
of detecting and correcting errors promptly. If errors
are detected only at the end of each simulation run
(as in the by-case data) there may be a substantial
loss in reliability (four orders of magnitude) as com-
pared with more frequent error detection (as in the
by-time data where comparisons were made at each
time frame).

181 Brian Randell. System structure for software fault
tolerance. IEEE fiansactions on Software EngC
neering, SEl(2):220-232, June 1975.

191 R. Sahner and K. S. Trivedi. Reliability modeling
using SHARPE. IEEE fiansactions on Reliability,
R-36(2):186-193, June 1987.

6 Acknowledgements

This work was partially funded by NASA AMES
Research Center under grant number NCA2-617. The
models presented in this paper were solved using
SHARPE [9].

References

[l] Algirdas Aviiienis. The N-version approach to
fault-tolerant software. IEEE fiansactions on
Software Engineering, SE-11(12):1491-1501, De-
cember 1985.

[2] Joanne Bechta Dugan and Randy Van Buren. Reli-
ability evaluation of fly-by-wire computer systems.
Journal of Systems and Software, to appear.

[3] Joanne Bechta Dugan and K. S. Trivedi. Cover-
age modeling for dependability analysis of fault-
tolerant systems. IEEE Tkansactions on Comput-
ers, 38(6):775-787, 1989.

[4] K.H. Kim and Howard 0. Welch. Distributed exe-
cution of recovery blocks: An approach for uniform
treatment of hardware and software faults in real-
time applications. IEEE Transactions on Comput-
ers, 38(5):626-636, May 1989.

[5] Jaynarayan H. Lala and Linda S. Alger. Hard-
ware and software fault tolerance: A unified archi-
tectural approach. In Proc. IEEE Int. Symp. on
Fault- Tolerant Computing, FTCS-18, pages 240-
245, June 1988.

[6] Jean-Claude Laprie, Jean Arlat, Chris-
tian Beounes, and Karama Kanoun. Definition and
Analysis of Hardware- and Software- Fault Toler-
ant Architectures. IEEE Computer, pages 39-51,
July 1990.

[7] Michael R. Lyu and Yu-Tao He. Improving the
N-version programming process through the evo-
lution of a design paradigm. IEEE Transactions
on Reliability, June 1993.

111

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 15:17:25 UTC from IEEE Xplore. Restrictions apply.

