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Abstract 

This paper presents a quantitative reliability anal- 
ysis of a system designed t o  tolerate both hardware 
and software faults. The system being studied achieves 
integrated fault tolerance by  implementing N- Version 
Programming (NVP) on redundant hardware. The 
analysis of the system consaders independent soft- 
ware faults, related software faults, transient hardware 
faults, permanent hardware faults, and imperfect cov- 
erage. The overall model is a Markov reward model 
in which the states of the Markov chain represent 
the long-term evolution of the structure of the sys- 
tem. For each operational configuration, a fault tree 
model captures the effects of software faults and tran- 
sient hardware faults on the task computation. The 
fault tree models define the reward structure f o r  the 
overall model. The software fault model is parame- 
terized using experimental data associated with a re- 
cent implementation of an N V P  system using the cur- 
rent design paradigm, in which the predictions of soft- 
ware failures are very close to the empirical data. The 
hardware model is parameterized b y  considering typical 
failure rates associated with hardware faults and cov- 
erage parameters. Results from our study show that it 
is important to consider both hardware and software 
faults in the reliability analysis of an NVP system, 
since these estimates increase with time. Moreover, 
the function for error detection and recovery is ez- 
tremely important to fault-tolerant software. Several 
orders of magnitude improvement in the overall sys- 
tem reliability can be observed i f  this function is pro- 
vided promptly. 

1 Introduction 

Computer systems used for critical applications, 
such as flight control, air-traffic control, patient moni- 

Michael R. Lyu 

Bell Communications Research 
445 South Street 

Morristown, NJ  07960 

toring or power plant monitoring, are designed to tol- 
tirate faults in the software as well as in the hardware. 
1 Xstinguishing between hardware and software faults 
can be difficult, as symptoms of transient hardware 
faults and those of software design faults are often 
Fery similar [4]. Current fault tolerant system design- 
ers thus advocate a unified treatment of hardware and 
software faults. 

Three recent systems provide an integrated ap- 
proach to hardware and software fault tolerance. The 
Ilistributed Recovery Blocks (DRB) scheme [4] com- 
bines both distributed processing and Recovery Block 
(RB) [8] concepts to provide a unified approach to 
tolerating both hardware and software faults. Archi- 
tectural considerations for the support of N-version 
programming (NVP) [l] were addressed in [5], in 
which the FTP-AP system is described. The FTP-AP 
ssptem achieves hardware and software design diver- 
sity by attaching application processors (AP) to the 
b yzantine resilient hard core Fault Tolerant Processor 
( FTP). N self-checking programming (NSCP) [SI uses 
diverse hardware and software in self-checking groups 
tl> detect hardware and software induced errors. The 
h SCP concept forms the basis of the flight control sys- 
ts:m used on the Airbus A310 and A320 aircraft, and 
mas analyzed in [2]. 

In this paper we analyze a system which uses N- 
version programming on redundant hardware. A com- 
bination of fault tree and Markov models provides a 
fiamework for the analysis of hardware and software 
filult tolerant systems. The overall system model is 
a Markov reward model in which the states of the 
Markov chain represent the evolution of the hardware 
configuration as permanent faults occur. A fault tree 
niodel captures the effects of software bugs and tran- 
sient hardware faults, and defines the reward struc- 
tiire for the overall model. This hierarchical approach 
simplifies the development, solution and understand- 
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Figure 1: 3-channel flight simulation configuration 

ing of the modeling process. The model is parameter- 
ized using actual data derived from an experimental 
implementation of a real-world automatic (i.e., com- 
puterized) airplane landing system, or so-called “au- 
topilot .” The software systems of this project were de- 
veloped and programmed by 15 programming teams 
at the University of Iowa and the Rockwell/Collins 
Avionics Division. A total of 40 students (33 from 
ECE and CS departments at the University of Iowa, 7 
from the Rockwell International) participated in this 
project to independently design, code, and test the 
computerized airplane landing system, as described in 
the Lyu-He study [7]. 

2 System Description 

The software project in the Lyu-He study was 
scheduled and conducted in six phases: (1) Initial de- 
sign phase for four weeks; (2) Detailed design phase 
for two weeks; (3) Coding phase for three weeks; (4) 
Unit testing phase for one week; (5) Integration test- 
ing phase for two weeks; (6) Acceptance testing phase 
for two weeks. It is noted that the acceptance testing 
was a two-step formal testing procedure. In the first 
step (ATl), each program was run in a test harness of 
four nominal flight simulation profiles. For the second 

step (AT2), one extra simulation profile, representing 
an extremely difficult flight situation, was imposed. 
By the end of the acceptance testing phase, 12 of the 
15 programs passed the acceptance test successfully 
and were engaged in operational testing for further 
evaluations. The average size of these programs were 
1564 lines of uncommented code, or 2558 lines when 
comments were included. The average fault density 
of the program versions which passed AT1 was 0.48 
faults per thousand lines of uncommented code. The 
fault density for the final versions was 0.05 faults per 
thousand lines of uncommented code. 

2.1 The NVP operational environment 

The operational environment for the application 
was conceived as airplane/autopilot interacting in a 
simulated environment, as shown in figure 1. Three 
channels of diverse software independently computed 
a surface command to guide a simulated aircraft along 
its flight path. To ensure that significant command 
errors could be detected, random wind turbulences of 
different levels were superimposed in order to repre- 
sent difficult flight conditions. The individual com- 
mands were recorded and compared for discrepancies 
that could indicate the presence of faults. 

This configuration of a 3-channel flight simulation 
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Table 1: Errors in three-vetsion configurations 

system consisted of three lanes of control law compu- 
tation, three command monitors, a servo control, an 
Airplane model, and a turbulence generator. The lane 
computations and the command monitors would be 
the accepted software versions generated by the pro- 
gramming teams. Each lane of independent computa- 
tion monitored the other two lanes. However, no sin- 
gle lane could make the decision as to whether another 
lane was faulty. A separate servo control logic func- 
tion was required to make that decision. The aircraft 
mathematical model provided the dynamic response of 
current medium size, commercial transports in the ap- 
proach/landing flight phase. The three control signals 
from the autopilot computation lanes were inputs to 
three elevator servos. The servos were force-summed 
at their outputs, so that the mid-value of the three in- 
puts became the final elevator command. The Land- 
ing Geometry and Turbulence Generator were models 
associated with the Airplane simulator. 

In summary, one run of flight simulation was char- 
acterized by the following five initial values regarding 
the landing position of an airplane: (1) initial altitude 
(about 1500 feet); (2) initial distance (about 52800 
feet); (3) initial nose up relative to velocity (range 
from 0 to 10 degrees); (4) initial pitch attitude (range 
from -15 to 15 degrees); and (5) vertical velocity for 
the wind turbulence (0 to 10 ft/sec). One simulation 
consisted of about 5280 iterations of lane command 
computations (50 milliseconds each) for a total land- 
ing time of approximately 264 seconds. 

2.2 Operational error distribution 

During the operational phase, 1000 flight simula- 
tions, or over five million program executions, were 

conducted. For a conservative estimation of software 
failures in the NVP system, we took the program ver- 
sions which passed the AT1 for study. The reason 
behind this was that had the Acceptance Test not in- 
cluded an extreme situation of AT2, more faults would 
have remained in the program versions. We were in- 
tc:rested in seeing how the remaining faults would be 
manifested during the operational testing, and how 
they would or would not be tolerated in various NVP 
configurations. 

Table 1 shows the software failures encountered in 
e x h  single version, while Tables 2 and 3 show differ- 
ent software error categories under all combinations 
olf %version configurations. We examine two levels of 
granularity in defining software execution errors and 
correlated errors: "by case" or "by time." The first 
level was defined based on test cases (1000 in total). 
If a version failed at any time in a test case, it was 
considered failed for the whole case. If two or more 
vczsions failed in the same test case (no matter at the 
same time or not), they were said to have coincident 
errors for that test case. The second level of gran- 
ularity was defined based on execution time frames 
(E1,280,920 in total). Errors were counted only at the 
time frame upon which they manifested themselves, 
arid coincident errors were defined to be the multiple 
pi-ogram versions failing at the same time in the same 
test case (with or without the same variables and val- 

In Table 1 we can see that the average failure prob- 
ability for single version is 0.145 measured by case, 
or 0.000027 measured by time. Table 2 shows that 
when measured by case, for all the 3-version combi- 
niitions the failure probability is 0.0214 (sum of error 
categories 3 and 4), an improvement over the single 

ues). 
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Category I No. of incidents 
1 - no errors I 163370 
2 - single error 51930 
3 - two errors 
4 - three errors 
Total 220000 

Probability 
0.7426 
0.2360 
0.0202 
0.0012 

Table 2: Errors by case in three-version configurations 

Category No. of incidents 
1 - no errors 1160743500 
2 - single error 1056200 
3 - two errors 

0.000909 
0.000002 

4 - three errors I 0 I 0.0 
Total I 1161802400 1 1.0 

Table 3: Errors by time in three-version configurations 

version by a factor of 7. 
In Table 3 we see that when measured by time, for 

all the 3-version combinations, the failure probability 
is 0.000002 (sum of error categories 3 and 4). This 
is a reduction of roughly 13 when compared with the 
single version execution. 

The above software failure probability estimations 
were obtained by empirical program execution results. 
In the next section we will derive a general reliability 
model for an integrated fault tolerant system, which 
gives a more detailed breakdown of the system. We 
verify our reliability model with the empirical results. 

3 Model Description 

A reliability model of an integrated fault tolerant 
system must include at least three different consider- 
ations: computation errors, system structure and cov- 
erage modeling. In this paper we concentrate on the 
first two, as coverage modeling has been addressed in 
detail elsewhere [3]. 

3.1 Computation error model 

The computation process is assumed to consist of a 
single software task that is executed repeatedly. The 
software component designed to perform the task is 
designed to be fault tolerant. During a single task 
iteration, two types of events can interfere with the 
computation. First, the particular set of inputs could 
activate a software fault in one or more of the software 
versions and/or the decider (a decider is a computing 

routine which determines the correct results from the 
multiple software versions using consensus). Second, 
a hardware transient fault could upset the computa- 
tion but not cause permanent hardware damage. The 
combinations of software faults and hardware tran- 
sients that can cause an erroneous output for a single 
computation is modeled with a fault tree. 

Figure 2 shows the fault tree model for the com- 
putation error process when the system is fully op- 
erational. The basic events are labeled with the sym- 
bol which represents the probability of occurrence; the 
symbols are defined in table 4. 

An erroneous output can result from software fail- 
ure, hardware failure or a combination. The software 
fails if independent faults are activated in two or three 
versions by the same test case, or if a related fault is 
activated between any two or three versions, or if a 
fault in the decider is activated. The hardware causa 
a computation error in the resident software if a tran- 
sient fault occurs during a computation. Any combi- 
nation of hardware and software faults affecting two 
of the three versions leads to an unacceptable output. 

If a permanent hardware fault disables one of the 
host processors, then the system is reconfigured to a 
simplex system. In the simplex mode, an unaccept- 
able result results from either an independent soft- 
ware fault activation, or a hardware transient. The 
fault tree model showing the computation error pro- 
cess while in the simplex mode is shown in figure 3. 

3.2 System structure model 

The longer-term system behavior is affected by the 
arrival (activation, manifestation) of permanent faults 
which require system reconfiguration to a degraded 
mode of operation. The system structure is modeled 
by a Markov reward process, where the Markov states 
and transitions model the evolution of the system. 
Each state in the Markov process represents a par- 
ticular configuration of hardware and software com- 
ponents and thus a different level of redundancy. 

For the NVP-system being modeled in this paper, 
there are two operational states and one absorbing fail- 
ure state. The initial state of the system represents the 
original system configuration, with three software ver- 
sions hosted on three different processors. When one 
of the processors experiences a hard fault, the system 
is reconfigured to a simplex system, with a single soft- 
ware version running on a single processor. 

Figure 4 shows the Markov model for this system. 
The two operational states show the hardware and 
software error confinement areas associated with the 
system structure. The hardware error confinement 
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1 I 

Figure 2: Fault tree model of computation errors in full-up state 

ERRONEOUS OUTPUT 

Figure 3: Fault tree model of computation errors in 
simplex state 

area (HECA) is the lightly shaded region, the software 
error confinement area (SECA) is the darkly shaded 
region. The HECA or SECA covers the region of the 
system affected by faults in that component. For ex- 
ample, HECA covers the software component since the 
software component will fail if that hardware experi- 
ences a fault. The SECA covers only the software 
component since no other components will be affected 
by a fault in that component. 

The reconfiguration from the TMR-system to a 
simplex system is successful with probability c, the 

3h(I -c)\ 

Figure 4: Markov model of system structure 
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Fault Tree basic event probabilities 
Independent software fault in 1 version 
Related software fault between 2 versions 
Related fault between all versions 

A/ 
PRV 
PRALL 
P D  Independent decider fault activation 
P H  Hardware transient fault 

By case By time 
0.0958 0.0003 
0.0 6 x 
0.003 0.0 
0.0001 1 x 10-7 
7.3 x 10-6 2.8 x 10-9 

coverage parameter. If the reconfiguration is unsuc- 
cessful, the system fails. 

A 
C 

3.3 Combining the models 

Markov model parameters 
activation rate of permanent hardware fault 0.00001 0.00001 
coverage probability 0.999 0.999 

For each state in the Markov chain, there is a differ- 
ent combination of hardware transients and software 
faults that can cause an erroneous output. The re- 
ward structure of the process captures the probability 
that a single computation will result in an erroneous 
output. The reward for a given state is the solution 
of the fault tree model for the computation process in 
that state. 

The fault tree model solution produces, for each 
state i in the Markov model, the probability qi that 
an output error occurs during a single task computa- 
tion. The Markov model solution produces Pi(t ) ,  the 
probability that the system is in state i at time t .  The 
reward model combines these two measures to pro- 
duce Q(t) ,  the probability that an unacceptable result 
is produced at time t .  

4 Parameterization and Results 

The methodology used for estimating the parame- 
ters, as well as a discussion of the assumptions made 
are detailed in the following. A summary of the re- 
sulting parameter values is shown in table 4. 

4.1 Software parameters 

The experimental results from the Lyu-He study 
[7], shown in tables 2 and 3, were used to estimate the 
probabilities associated with the activation of software 
faults. 

Let pV be the probability of an independent fault 
activation; PRV be the probability of the activation of 
a related fault between any two versions; and PRALL 
be the probability of the activation of a related fault 
affecting all versions. The probability that no errors 
occur in a three-version configuration, which we will 
label C1 since it relates to Category 1 in tables 2 and 
3, is given by 

CI = (1 - ~ ~ ) ~ ( 1 -  P ~ V ) ~ ( I  - PRALL). (1) 

Similarly, the probability that a single fault is acti- 
vated is given by the probability that only one inde- 
pendent fault is activated (and no related faults are 
activated). 

c 2  = 3Pv(l - pV)2(1 - PRV)3(1 - PRALL) (2) 
Dividing equation (1) by equation (2) yields an equa- 
tion which is dependent only on pV, and thus can be 
used to estimate the probability of the activation of 
an independent fault. 

c2 
3C1+ C2 

Pv = (3) 

The data from table 2 yields an estimate of 4. = 
0.0958 for the probability of activation of an indepen- 
dent fault in a 3-version configuration. Table 5 com- 
pares the probability of activation of 1, 2 and 3 faults 
as predicted by a model assuming independence be- 
tween versions, with the observed values. The ob- 
served probability of two simultaneous errors is lower 
than predicted by the independent model, while the 
observed probability of three simultaneous errors is 
higher than predicted. For this set of data we will as- 
sume therefore that PRV = 0 and will instead derive 
an estimate for PRALL. 

Using the assumption that PRV = 0, the proba- 
bility that three simultaneous errors are activated is 
given by 

c 4  = h3 + PRALL - PV’PRALL, (4) 
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I No. errors 
activated 

0 
1 
2 
3 

Table 6: Comparison of independent model with ob- 
served data (by time) 

Independent Observed 
model Probability 
0.7393 0.7426 
0.2350 0.2360 
0.0249 0.0202 
0.0009 0.0012 

yielding an estimate of PRALL = 0.0003 for the by- 
case data. 

The by-time data in table 3, when used in equation 
( 3 )  produces PV = 0.0003 as an estimate. For this 
by-time data, when the failure probabilities which are 
predicted by the independent model are compared to 
the actual data (table 6), the observed probability of 
two errors is an order of magnitude higher than the 
predicted probability. There were no cases for which 
all three programs produced erroneous results. Thus, 
we will estimate PRALL = 0 and derive an estimate 
for P R V .  To derive an estimate for PRV,  consider the 
case where two errors are produced. This event could 
be caused by either the activation of two simulkane- 
ous independent faults, or by the activation of a re- 
lated fault. Also, it depends on the non-failure of the 
remaining version, either by independent or related 
fault. Then, considering the three combinations of 
two failures which can occur, we can use the observed 
probability of two errors to estimate PRV . 

c 3  = 3(P; + PRV - P;PRV)X ( 5 )  
(1 - pv)(l- P R V ) ~ ( ~  - PRALL)  

Equations (3) and (6) can be used to produce the es- 
timate PRV = 6 x loT7 .  

For both the by-case and by-time scenarios, the pa- 
rameters derived from the data were applied to the 
fault tree model shown in figure 5. For the by-case pa- 
rameters, the fault tree model predicts a failure proba- 
bility of 0.0261, while the observed failure probability 
was 0.0214. Using the by-time parameters, the fault 
tree model predicts a failure probability of 2.07 x lov6 

No. errors 
activated 

0 
1 

3 
2 

U 
Independent Observed 

0.999090 0.7426 
0.000909 0.2360 

3 x 10-11 0.0 

model Probability 

3 x 10-7 2 x 10-6 

[ V E R S d  FAILS 1 
ob- 

l’igure 5: Fault tree model of NVP software system 

while the observed failure probability was 2.3 x 
Iili the system analysis section, these parameters will 
be combined with hardware parameters to predict the 
oslrerall NVP system reliability. 

4.2 Hardware parameters 

Typical permanent failure rates for processors 
range in the per hour range, with transients per- 
hzps an order of magnitude larger. Thus we will use 
A,, = l ow5  per hour for the Markov model. 

In the by-case scenario, a typical test case con- 
tained 5280 time frames, each time frame being 50 
ITLS., so a typical computation executed for 264 sec- 
onds. Assuming that hardware transients occur at a 
rike At = (10-4/3600) per second, we see that the 
pi-obability that a hardware transient occurs during a 
tj,pical test case is 

(6) 
1 - e-Xrx264 seconds - 7 333 10-6 - .  

We conservatively assume that a hardware transient 
tliat occurs anywhere during the execution of a task 
disrupts the entire computation running on the host. 

For the by-time data, the probability that a tran- 
simt occurs during a time frame is 

(7) 
1 - e - X t ~ O  05 seconds = 1.4 10-9 

If we further assume that the lifetime of a transient 
fault is one second, then a transient can affect as many 
B 20 time frames. We thus take the probability of a 
transient to be 20 times the value calculated in equa- 
tiiw 7, or 2.8 x 
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Figure 6: Probability of producing an unacceptable 
result during a test case, by-case data 

Finally, for both the by-case and by-time scenar- 
ios, we assume a fairly typical value for the coverage 
parameter in the Markov model, c = 0.999. 

4.3 Model solution 

The full model, including the two fault trees (figures 
2 and 3) and the Markov model (figure 4) were solved 
using the parameters listed in table 4. The results are 
shown in figures 6 and 7. 

Figure 6 shows, for the by-case data, the time de- 
pendent probability of the NVP system producing an 
unacceptable result at any time during a test case. 
The length of a typical test case is 264 seconds, about 
4.4 minutes. Initially, in the full-up state, the proba- 
bility of an unacceptable result is 0.0262, increasing to 
0.0454 after 1000 hours, as the probability of operat- 
ing in the simplex mode or the failure state increases. 
The probability of producing an unacceptable result 
while in the simplex mode is 0.0958; and the proba- 
bility of producing an unacceptable result while in the 
absorbing failure state is 1.0. 

Figure 7 shows, for the by-time data, the time de- 
pendent probability of the NVP system producing an 
unacceptable result during a 50 ms. time frame. In 
the full up state, the probability of an unacceptable 
result is 2.17 x increasing three orders of magni- 
tude to 6.83 x at 1000 hours. The probability of 
producing an unacceptable result while in the simplex 
mode is 3 x 

Figure 7: Probability of producing an unacceptable 
result during a single time frame, by-time data 

5 Summary and Conclusions 

An integrated model was presented for the anal- 
ysis of a system intended to tolerate both hardware 
and software faults. The model included such aspects 
as software and hardware transients, permanent hard- 
ware faults and imperfect coverage. 

The software failure parameters for the model were 
estimated from probabilistic calculations on actual 
data from an N-version programming experiment con- 
ducted at the the University of Iowa and Rockwell. 
Two scenarios were considered. First, the by-case data 
counted as a software failure the occurrence of an er- 
ror in two of the three versions at any point in the 
264 second test run. The by-time data, as the other 
scenario, only counted simultaneous (i.e. in the same 
frame) errors as a failure. 

hardware failures) 
was parameterized by considering fairly typical failure 
rates. The overall models were solved for time-varying 
estimates of the probability of producing an unaccept- 
able result. The results show that it is important to 
consider both hardware and software faults, as the es- 
timates increased with increasing time. 

These models were parameterized by considering 
the results of a single experimental study. The models 
fit the experimental data in this case, but more data 
is needed in order to further validate the modeling 
methodology. Of interest in this particular data set are 
the relatively low values for the probability of related 
software faults. 

The most interesting result comes from the com- 
parison of the by-case and by-time estimates of the 
probability of an unacceptable result. The several or- 

The rest of the model (i.e. 
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ders of magnitude difference points to the importance 
of detecting and correcting errors promptly. If errors 
are detected only at the end of each simulation run 
(as in the by-case data) there may be a substantial 
loss in reliability (four orders of magnitude) as com- 
pared with more frequent error detection (as in the 
by-time data where comparisons were made at each 
time frame). 
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