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Abstract
Overlapping community detection has drawn much
attention recently since it allows nodes in a
network to have multiple community member-
ships. A standard framework to deal with over-
lapping community detection is Matrix Factoriza-
tion (MF). Although all existing MF-based ap-
proaches use links as input to identify communities,
the relationship between links and communities is
still under-investigated. Most of the approaches
only view links as consequences of communities
(community-to-link) but fail to explore how nodes’
community memberships can be represented by
their linked neighbors (link-to-community). In
this paper, we propose a Homophily-based Non-
negative Matrix Factorization (HNMF) to model
both-sided relationships between links and com-
munities. From the community-to-link perspec-
tive, we apply a preference-based pairwise func-
tion by assuming that nodes with common com-
munities have a higher probability to build links
than those without common communities. From
the link-to-community perspective, we propose a
new community representation learning with net-
work embedding by assuming that linked nodes
have similar community representations. We con-
duct experiments on several real-world networks
and the results show that our HNMF model is able
to find communities with better quality compared
with state-of-the-art baselines.

1 Introduction
Network is an abstraction representing relationships among
real-world objects. A typical pattern of a network is that
there are groups of nodes closely connected within the group
but rarely making connections with nodes outside the group.
Such groups are defined as communities [Girvan and New-
man, 2002]. The task of finding such communities from com-
plex networks is referred as community detection, an impor-
tant research topic in web mining for more than a decade.
Usually, the more complex a network is, the more challeng-

ing it will be to identify such communities. It is mainly due
to the infeasibility of visualization and the variety of com-
munity structure. Classic graph-partition-based community
detection approaches assume that a node belongs to one and
only one community, which contradicts with the fact that a
node often appears with multiple memberships. To relax this
unrealistic constraint, several new algorithms for overlapping
community detection have been proposed in recent years.

A majority of existing methods for overlapping commu-
nity detection is based on Matrix Factorization (MF) [Pso-
rakis et al., 2011; Wang et al., 2011; Zhang and Yeung, 2012;
Zhang et al., 2015], which has been a standard technique in
other areas such as recommender systems and natural lan-
guage processing. The basic idea of MF here is to use
low-dimensional latent vectors to represent nodes’ features
in networks. MF naturally fits into overlapping community
detection since the dimensions of factorized latent vectors
of nodes can be interpreted as their community member-
ship and hence are no longer latent. The MF-based over-
lapping community detection can be summarized into three
steps: (1) assign the number of communities, (2) compute
the node-community weight matrix F through a learning
objective, and (3) obtain the final community set accord-
ing to F . Here the most important part is the selection of
learning objective. The simplest way is to recover the ad-
jacency matrix of original network A by F with minimum
error, i.e., to minimize ||A � FF

T || [Psorakis et al., 2011;
Wang et al., 2011]. However, an entry in A is a label (ei-
ther 0 or 1) whereas an entry in F is a real value. The
mismatch between label and entry does not make sense. To
fix it, recent approaches such as [Yang and Leskovec, 2013;
Zhang et al., 2015] adopt generative objectives, which are
based on the intuition that a node is more likely to build a
link with another node inside its community than outside.

When we look into this intuition, it implicitly reveals that
links are the consequence of communities (community-to-
link), i.e., if two nodes share common communities, they
will have a higher probability to be linked. However, the
investigation in reverse perspective (link-to-community) is
largely ignored, i.e., whether a node’s community member-
ship can be represented by its neighbors’ community mem-
bership. Taking MF as an example, the link-to-community
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perspective can be interpreted as to learn a node’s commu-
nity representation via the community representations of its
neighbors. Here we use the word homophily, the tendency
of an individual node to associate with similar others [Tang et
al., 2013], to recapitulate both perspectives.

In this paper, we propose a Homophily-based Non-negative
MF (HNMF) to explicitly model the effect of homophily from
both perspectives. From the community-to-link perspective,
we apply a pairwise objective function in the Preference-
based Non-negative MF (PNMF) model [Zhang et al., 2015].
From the link-to-community perspective, we develop a novel
generative objective function based on unsupervised repre-
sentation learning and network embedding. We combine
both objective functions into a joint learning objective, in
which parameter learning can be easily parallelized using
asynchronous stochastic gradient descent. Through exper-
iments on various real-world datasets, we demonstrate that
our model can identify communities with better quality com-
pared with state-of-the-art baselines and can be applied to
large datasets.
Contributions. We summarize our main contribution of this
paper as follows,

1. Our work is the first to explore the link-to-community
side of homophily effect between links and communi-
ties in overlapping community detection. We justify it
via observation on real-world datasets with ground-truth
communities;

2. We propose a new learning objective to model both
perspectives of homophily within the non-negative MF
framework. Experiments show that our HNMF model
can detect overlapping communities with better quality.

2 Problem Definition and Data Observation
In this section, we first provide several definitions about com-
munity and community detection. Then we conduct a data
observation on two large real-world networks to strengthen
our motivation.

2.1 Problem Definition
Suppose we have a network G(V,E), where V and E are
node and edge sets respectively. A community in G is usu-
ally considered as a group of densely connected nodes with a
common feature, e.g., students from a university, employees
from a company, etc. The task of community detection can
be defined as follows.
Definition 2.1 (Community Detection). Community detec-
tion is a process that takes a network G as input and produce
a set of communities S as output to maximize a particular
objective function f , i.e.,

argmax

S
f(G,S), (1)

where S = {Ci|Ci 6= ;, Ci 6= Cj , 1  i, j  |S|}.
While classic community detection requires that Ci 6= Cj

if i 6= j, overlapping community detection does not set any
constraints on S. This relaxation matches the nature of real-
world networks better but brings big challenges since clas-
sic garph-partition-based algorithms are no longer feasible.

Dataset |V| |E| |S| M A

Amazon 335k 926k 49k 100.0 14.83
DBLP 317k 1.0M 2.5k 429.8 2.57

Table 1: Data statistics. |V|: number of nodes, |E|: number
of links, |S|: number of ground-truth communities, M: aver-
age number of nodes per community, A: average community
memberships per node.

Thus, new approaches are proposed to tackle this problem
in recent years. In this paper, we mainly focus on matrix-
factorization-based approaches for overlapping community
detection.
Definition 2.2 (Overlapping Community Detection via
MF). Overlapping community detection via MF is a process
that takes the adjacency matrix A 2 {0, 1}|V |⇥|V | of a net-
work G as input and produces a node-community weight ma-
trix F 2 R|V |⇥|S| whose entry Fu,c represents the weight of
node u 2 V in community c 2 S to minimize a particular
loss function l, i.e.,

argmin

F
l(A,FF

T
), (2)

where S is the set of communities. In the end, we obtain S

according to F .
As we mentioned, the simplest l is in the form of ||A �

FF

T ||. The main target of this paper is to seek for a better l
that can capture the nature of communities more precisely.

2.2 Data Observation
In order to validate the link-to-community perspective, we
observe two large network datasets with ground-truth com-
munities1 [Yang and Leskovec, 2012] to see whether linked
node pairs have more similar community representations than
non-linked ones. These two datasets are:

• Amazon: a products co-purchasing network based on
Customers Who Bought This Item Also Bought feature
of the Amazon website.

• DBLP: a collaboration network of research paper au-
thors in computer science;

A simple statistics can be found in Table 1.
We exploit average number of shared communities (SC)

and average Jaccard similarity of community memberships
(JS) for all linked node pairs as our measurements. They are
calculated by

SC =

1

2|E|
X

i2V

X

j2N+(i)

|Ci \ Cj |, (3)

and
JS =

1

2|E|
X

i2V

X

j2N+(i)

|Ci \ Cj |
|Ci [ Cj |

, (4)

respectively, where N

+
(i) is the set of i’ neighbors and Ci

represents the set of communities containing i. We also draw
1http://snap.stanford.edu/data/
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Dataset SC SCr JS JSr

Amazon 6.767 0.178 0.490 0.010
DBLP 2.078 0.009 0.347 0.002

Table 2: Data observations. SC: average number of shared
communities per linked node pair, SCr: average number of
shared communities per random node pair, average Jaccard
similarity of community memberships per linked node pair,
JS: average Jaccard similarity of community memberships
per linked node pair, JSr: average Jaccard similarity of com-
munity memberships per random node pair.
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Figure 1: The number of linked node pairs sharing a particu-
lar number of communities.

ten thousand random node pairs that do not need to be linked
and compute the same measurements for these pairs. The
comparison results are shown in Table 2. The huge gap be-
tween linked ones (bold) and random ones (normal) reveals
that two linked nodes share much more communities than two
random nodes in average and thus strongly supports the ne-
cessity of link-to-community perspective.

Moreover, we count the number of linked node pairs that
share a particular number of communities in Figure 1. In both
networks, the number of linked node pairs reaches the peak
near their average number of shared communities for linked
node pairs and starts to decrease when this number continues
to increase. This observation shows that average number of
shared communities can be used to measure how strong the
link-to-community side of homophily effect is. For example,
we can claim that the link-to-community side of homophily
effect in Amazon is much stronger than that in DBLP.

3 Related Work
A lot of efforts have been conducted on the research of com-
munity detection. An extensive survey can be found in [For-
tunato, 2010]. As we have mentioned, overlapping commu-
nity detection draws the attention because classic community
detection declines multiple memberships. A recent survey
of overlapping community detection algorithms can be found
in [Xie et al., 2013]. According to the key idea, we clas-
sify those algorithms into local approaches and global ap-
proaches. Local approaches explore a network from small
components to the whole. For example, [Palla et al., 2005]
and [Kumpula et al., 2008] search for all the k-cliques and
combines those sharing k � 1 nodes until no combinations
can be made. [Coscia et al., 2012] applies label propaga-
tion algorithm to detect small communities on ego network

Notation Meaning
G(V,E) graph G (node set V , edge set E)
A 2 {0, 1}|V |⇥|V | adjacency matrix of G
S the set of detected communities
Cu the set of communities containing u

F 2 R|V |⇥|S| node-community weight matrix
Fu u’s community representation
N

+
(u) node set of u’s neighbors

N

�
(u) node set of u’s non-neighbors

Table 3: A summary of notations.

of each node, i.e., a node with its neighbors, and lastly merge
communities with large overlap. [Whang et al., 2013] picks
several seed nodes and conducts PageRank on each node to
find communities.

Global approaches, on the other side, assume that commu-
nities exist in the first place and aim to find the most suitable
membership for each node. Some major models include game
theory models [Chen et al., 2010], stochastic block mod-
els [Airoldi et al., 2009; Jin et al., 2015], and matrix factor-
ization (MF) models. Since our model is a MF-based model,
we will introduce it in more details. [Psorakis et al., 2011]
and [Wang et al., 2011] are the earliest ones applying MF
into overlapping community detection. While the previous
factorizes the adjacency matrix into two different matrices,
the latter forces them to be the same and thus gives physi-
cal meaning to the factorized matrix. However, they both use
the simplest squared loss as their learning objective. [Zhang
and Yeung, 2012] adds a community interaction matrix to be-
come a non-negative matrix tri-factorization model. [Yang
and Leskovec, 2013] is among the first to exploit generative
learning objective, which maximizes the likelihood of gener-
ating all the links in the original graph.

Our community-to-link perspective applies a pairwise
learning objective proposed in the Preference-based Non-
negative Matrix Factorization model [Zhang et al., 2015].
The intuition is that two nodes are more likely to become
friends if they share more common communities. Our link-to-
community perspective borrows the idea from the Skip-Gram
model [Mikolov et al., 2013], which is originally designed for
natural language processing tasks. The training objective of
this model is to find word representations that can predict the
surrounding words in a sentence or a document. Perozzi at
el. [Perozzi et al., 2014] are the first to extend Skip-Gram to
represent nodes in a social network. Random walks passing a
node is regarded as the context of this node.

4 A Homophily-based Non-negative Matrix
Factorization (HNMF) Model

In this section, we first introduce our model assumptions.
Then we formalize our HNMF model from both perspectives
and combine them into a unified model. In the end, we ex-
hibit our parameter learning algorithm and discuss some more
detailed issues. All the notations are listed in Table 3.
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4.1 Model Assumption
Since we model homophily from both community-to-link and
link-to-community perspectives, our model assumption will
be introduced in two separate parts as well.

For the community-to-link perspective, the basic assump-
tion is that two nodes should have higher probability to build
links with each other if they share more communities, i.e.,

P(Au,i = 1) > P(Au,j = 1), if |Cu\Ci| > |Cu\Cj |. (5)

Since we apply the PNMF model [Zhang et al., 2015] in this
part, we also need to adopt the preference assumption, i.e.,

ru,i > ru,j , if i 2 N

+
(u) and j 2 N

�
u , (6)

where ru,i is the preference of node u on node i. It indicates
that a node prefers to build links with neighbors over non-
neighbors.

For the link-to-community perspective, we assume that two
linked nodes are more similar than two non-linked nodes. It
is formally denoted as:

simu,i > simu,j , if i 2 N

+
(u) and j 2 N

�
u , (7)

where simu,i is the similarity between node u and node i.

4.2 Modeling Community-to-link Perspective
We demonstrate our learning objective of community-to-
link perspective by following the formulation of the PNMF
model [Zhang et al., 2015]. For each node u, the objective
of PNMF is to maximize the likelihood of a pairwise prefer-
ence order, which can be denoted as P(>u). According to
the preference assumption, logP(>u) can be represented as:

X

i2N+(u)

X

j2N�(u)

logP(i >u j). (8)

Following the core idea of the community-to-link assump-
tion, we use the community representations of node i, j, and
k to model P(i >u j). It can be written as

P(i >u j) = �(F

T
u (Fi � Fj)), (9)

where �(·) is the sigmoid function �(x) :=

1
1+e�x

. We
choose sigmoid function because it is a differentiable func-
tion which can map any real number into the range between
0 and 1.

Based on Eq. (8) and Eq. (9), the learning objective of the
community-to-link perspective can be derived by summing
up log-likelihoods of all the nodes, i.e.,

C(F ) :=

X

u

X

i2N+(u)

X

j2N�(u)

logP(i >u j)

=

X

u

X

i2N+(u)

X

j2N�(u)

log �(F

T
u (Fi � Fj)).

(10)

4.3 Modeling Link-to-community Perspective
Motivated by the success of Skip-Gram model [Mikolov et
al., 2013] where word representations are learned in terms of
representations of surrounding words in the same context, we
here adopt a similar idea to learn a node’s community repre-
sentation from other nodes in its local scope. In our case, for

a node u, its local scope is constrained within u’s’ neighbors.
According to our link-to-community assumption, u’s neigh-
bors should have similar community representations with u.
Formally, given a node u and its neighbors, our learning ob-
jective for the link-to-community perspective is to maximize
the sum of log-likelihoods for a node to represent its neigh-
bors as follows,

X

i2N+(u)

logP(i|u). (11)

Following the formulation in Skip-Gram, we apply a softmax
function to define P(i|u) as

P(i|u) = exp(F

0T
i Fu)

P|V |
i0=1 exp(F

0T
i0Fu)

. (12)

Note that F 0 needs to be introduced into our model and should
be regarded as the latent community representation matrix
which is corresponding to the ‘output’ vector representations.
Likewise, our learning target F is corresponding to the ‘in-
put’ vector representations.

A computationally efficient approximation of the full soft-
max function is Negative Sampling (NEG), which is simpli-
fied version of Noise Contrastive Estimation (NCE) [Gut-
mann and Hyvärinen, 2010]. It substitutes Eq. (12) with

P(i|u) = �(F

0T
i Fu) + hEi0⇠P

N

�(u)

⇥
�(�F

0T
i0Fu)

⇤
, (13)

where �(·) is also the sigmoid function, h is the number
of negative samples, and PN�(u) is the unigram distribution
raised to the power 3

4 .
Thus, we can obtain the learning objective of the link-to-

community perspective as follows,

L(F, F 0
) :=

X

u

X

i2N+(u)

�
log �(F

0T
i Fu)

+ hEi0⇠P
N

�(u)

⇥
log �(�F

0T
i0Fu)

⇤�
.

(14)

4.4 The Unified Model
Now we can combine the two perspectives, i.e., Eq. (10) and
Eq. (14), into one unified model. The final learning objective
of our HNMF model is to maximize
U(F, F 0

) := C(F ) + �L(F, F 0
)� �R(F )

=

X

u

X

i2N+(u)

� X

j2N�(u)

log �(F

T
u (Fi � Fj))

+ � log �(F

0T
i Fu) + �hEi0⇠P

N

�(u)

⇥
log �(�F

0T
i0Fu)

⇤�

� �||F ||F ,
(15)

where R(F ) is a regularization term, where we employ the
Frobenius norm of F , � is the homophily coefficient used to
adjust the importance of one perspective compared with the
other, and � is the regularization coefficient.

4.5 Parameter Learning
Considering time efficiency and the non-negativity constraint,
we use projected stochastic gradient descent [Lee and Seung,
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Input: A, the adjacency matrix of original graph.
Output: F , the node-community weight matrix.
Initialization:
Initialize F (uniformly at random);
for each node u do

Construct N+
(u);

end
Training:
Compute initial loss;
repeat

for each node u do
Uniformly sample node i from N

+
(u);

Community-to-link:
Uniformly sample node j from N

�
(u)

Fu = Fu + ↵

@C
@F

u

;
Fi = Fi + ↵

@C
@F

i

;
Fj = Fj + ↵

@C
@F

j

;
Link-to-community:
Sample h negative nodes i0 ⇠ PN�(u);
Fu = Fu + ↵�

@L
@F

u

; F 0
i = F

0
i + ↵�

@L
@F 0

i

;
for each node i

0 do
F

0
i0 = F

0
i0 + ↵�

@L
@F 0

i

0
;

end
Regularization and Projection:
Fu = max{Fu � ↵�

@R
@F

u

, 0};
Fi = max{Fi � ↵�

@R
@F

i

, 0};
Fj = max{Fj � ↵�

@R
@F

j

, 0};
end
Compute loss;

until Convergence or max iter is reached;
Algorithm 1: Overlapping community detection using
HNMF

2001; Lin, 2007] as our parameter learning method. It up-
dates the corresponding parameters whenever a single sample
or a small batch of samples arrive and maps the parameters
back to the nearest point in the projected space, in our case,
the non-negative space. The update rule for a parameter ⇥ is

⇥

t+1
= max{⇥t

+ ↵

@U
@⇥

, 0}, (16)

where ↵ is the learning rate.
The whole process of our learning method is shown in Al-

gorithm 1. Here we discuss some of the steps in more detail.
• Initialization. We initialize each entry of F to be a ran-

dom real value between 0 and 1 divided by the number
of communities, i.e., the number of columns in F .

• Negative sampling. For the negative sample j from
N

�
(u), we keep sampling j from V until j /2 N

+
(u).

• Convergence criterion. We randomly sample a number
of triples (u, i, j) and use them to compute the initial
loss on according to Eq. (15) without considering the
regularization term. After each iteration, we repeat the
same process with a different set of samples and stop

Dataset |V| |E|
Dolphins 62 159
Les Misérables 77 254
Books about US politics 105 441
Word adjacencies 112 425
American college football 115 613
High-energy theory 8,361 15,751

Table 4: Statistics of six Newman’s datasets. |V|: number of
nodes, |E|: number of links.

when the difference between current loss and previous
loss is less than a very small value, say ✏, of the initial
loss.

• Setting the number of communities. We adopt a cross-
validation paradigm by reserving 10% of nodes as a val-
idation set. Since the computational cost on the valida-
tion set is still huge, sampling will be used as well.

4.6 Other Issues
Scalability. To scale up our HNMF model on large networks,
we employ an asynchronous version of stochastic gradient
descent to update the parameters. Since most updates only
modify a small part of all the parameters, the chance that a
parameter is simultaneously being updated by more than one
worker is very small. Thus, a lock-free approach [Recht et
al., 2011] can be adopted to parallelize our parameter learn-
ing process. We will show in the experiments that the conver-
gence speed is satisfactory.
Community membership threshold. After we obtain the
node-community weight matrix F , we still need to figure out
community memberships for each node. A standard solution
is to set a threshold and discard all the nodes whose weights
are below the threshold. We employ the approach in [Zhang
et al., 2015] and omit the details here due to space limit.

5 Experiments
In this section, we compare our HNMF model with six base-
lines on various real-world datasets, including large networks
with ground-truth communities. We measure the quality of
communities with two metrics, modularity and F1 score. Our
experimental procedures and results are described as follows.

5.1 Data Description
Apart from the two large networks with ground-truth commu-
nities introduced in Section 2, we also use six benchmark net-
works collected by Newman2 as our datasets. These networks
are relatively small and have no ground-truth communities.
We list the basic information of these datasets in Table 4.

5.2 Experimental Setup
Comparison methods. We select two local approaches,
namely Sequential Clique Percolation (SCP) [Kumpula et
al., 2008] and Demon [Coscia et al., 2012], and four state-
of-the-art global approaches, namely BNMF [Psorakis et al.,

2http://www-personal.umich.edu/ mejn/netdata/
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Dataset SCP Demon BNMF BNMTF BigCLAM PNMF HNMF
Dolphins 0.305 0.680 0.507 0.507 0.423 0.979 1.021
Books about US politics 0.496 0.432 0.461 0.492 0.529 0.864 0.988
Word adjacencies 0.071 0.032 0.254 0.268 0.231 0.668 0.699
American college football 0.605 0.540 0.558 0.573 0.518 1.049 1.113
Power grid 0.044 0.195 0.342 0.368 1.010 1.105 1.135
High-energy theory 0.543 0.962 0.565 0.600 0.964 0.973 1.060

Table 5: Experimental results on Newman’s networks in terms of modularity.

Dataset Demon BigCLAM PNMF HNMF
Amazon 0.082 0.044 0.042 0.122
DBLP 0.102 0.039 0.098 0.104

Table 6: Experimental results on two large networks in terms
of F1 score.

2011], BNMTF [Zhang and Yeung, 2012], BigCLAM [Yang
and Leskovec, 2013], and PNMF [Zhang et al., 2015], to
compare with our HNMF model.
Evaluation metrics. We use modularity for datasets with-
out ground-truth communities and F1 score for datasets with
ground-truth communities.

• Modularity. The well-known modularity [Newman,
2006]

Q is defined as

Q =

1

2|E|
X

u,v2V

(Au,v �
d(u)d(v)

2|E| )|Cu [ Cv|,

where d(u) is u’s degree. We can see that a node pair
(u, v) positively contributes to modularity if they are
linked and negatively contributes otherwise.

• F1 score. F1 score of a detected community Si is de-
fined as the harmonic mean of

precision(Si) = max

j

ˆ

Sj
T
Si

| ˆSj |
and

recall(Si) = max

j

ˆ

Sj
T
Si

|Si|
,

where ˆ

Sj is one of ground-truth communities. The over-
all F1 score of the set of detected communities S is the
average F1 score of all communities in S.

5.3 Results
Results on Newman’s networks in terms of modularity are
shown in Table 5. Despite that PNMF already has large im-
provement over other baselines, our HNMF model further
outperforms PNMF on all datasets, which reflects the signif-
icance of the link-to-community perspective in overlapping
community detection.

Results on two large networks in terms of F1 score are
shown in Table 6. We notice that the improvement on Ama-
zon is much larger than that of DBLP. Recall our claim in data
observation that the link-to-community side of homophily ef-
fect in Amazon is much stronger than that in DBLP. This
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Figure 2: Convergence speed of our learning algorithm.

explains such difference of improvement between these two
datasets. With asynchronous stochastic gradient descent, the
running time of our learning algorithm is about 4 hours for
Amazon and about 6 hours for DBLP on a computer with a
Xeon 24-core 2.60GHz CPU and 128GB memory.

Figure 2 illustrates the convergence speed of our learning
algorithm on Amazon and DBLP. Since our computation of
loss employs a global sampling strategy, we can directly sort
the losses from all workers according to time sequence. We
set the ✏ in Section 4.5 to be 0.001. We can see that our learn-
ing algorithm is able to converge within a small number of
iterations.

6 Conclusion
In this paper, we propose a Homophily-based Non-negative
Matrix Factorization model to capture both sides of ho-
mophily effect for overlapping community detection. Our
unified learning objective is a combination of a preference-
based pair-wise learning objective for the community-to-link
perspective and a generative community representation learn-
ing with network embedding for the link-to-community per-
spective. We adopt an asynchronous stochastic gradient de-
scent to learn model parameters efficiently. Experiments on
real-world networks show that this model can indeed improve
the quality of detected overlapping communities.
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