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Abstract

Community detection is an important technique to un-
derstand structures and patterns in complex networks.
Recently, overlapping community detection becomes a
trend due to the ubiquity of overlapping and nested
communities in real world. However, existing ap-
proaches have ignored the use of implicit link prefer-
ence information, i.e., links can reflect a node’s pref-
erence on the targets of connections it wants to build.
This information has strong impact on community de-
tection since a node prefers to build links with nodes in-
side its community than those outside its community. In
this paper, we propose a preference-based nonnegative
matrix factorization (PNMF) model to incorporate im-
plicit link preference information. Unlike conventional
matrix factorization approaches, which simply approxi-
mate the original adjacency matrix in value, our model
maximizes the likelihood of the preference order for
each node by following the intuition that a node prefers
its neighbors than other nodes. Our model overcomes
the indiscriminate penalty problem in which non-linked
pairs inside one community are equally penalized in
objective functions as those across two communities.
We propose a learning algorithm which can learn a
node-community membership matrix via stochastic gra-
dient descent with bootstrap sampling. We evaluate
our PNMF model on several real-world networks. Ex-
perimental results show that our model outperforms
state-of-the-art approaches and can be applied to large
datasets.

1 Introduction
Discovering the community structure in complex networks
has been extensively investigated in the past decade (Fortu-
nato 2010). A community is intuitively regarded as a group
of nodes with more links inside the group than between
its member and outside the group (Girvan and Newman
2002). In real world, communities can be social circles man-
ually categorized by users in ego networks (McAuley and
Leskovec 2012), authors from the same institution in collab-
oration networks (Newman 2001), proteins with the same
functionality in biochemical networks (Gavin et al. 2002),
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etc. The research issue of finding such groups is known as
the community detection problem.

Classic methods in community detection assume that one
node belongs to exactly one community. However, many
complex networks we encounter in daily life allow multi-
ple memberships. For example, two colleagues in the same
department are also in the same company (nested), one can
join in several discussion groups in an online forum (over-
lapping), etc. Thus, the topic of overlapping community de-
tection has attracted major attention recently (Xie, Kelley,
and Szymanski 2013).

Existing overlapping community detection approaches
can be categorized into two classes: one is based on dense
subgraph extraction (Ahn, Bagrow, and Lehmann 2010;
Palla et al. 2005; Kumpula et al. 2008), which uses certain
criteria to find overlapping dense subgraphs or clusters in the
network to be communities; the other is based on community
affiliation model (Psorakis et al. 2011; Wang et al. 2011;
Yang and Leskovec 2013; Zhang and Yeung 2012), which
determines the number of communities in advance and as-
signs each node to multiple communities according to some
optimization function. However, both classes of approaches
only focus on links themselves but ignore the implicit pref-
erence information in links. In fact, a link can reflect the
preferences of both sides to some extent. For example, in a
social network, if userAwants to make friend with userB, a
typical way for A is to send a friend invitation to B and wait
for him to accept it. They cannot be friends if either step
goes wrong. Thus, when we see the fact that A and B are
friends, it is reasonable to argue that A prefers B than other
strangers to be his friend. Assuming B also receives other
people’s invitations and only accepts a few of them (this is
very likely to happen in real world), we can also argue that
B prefers A than others who are still strangers to him. Fol-
lowing the intuition that a node are more likely to build links
with other nodes in the same community than those outside
its community, the implicit preference information can be
helpful for community detection.

For the second class of approaches, i.e., community af-
filiation based approaches, nonnegative matrix factorization
(NMF) has been applied as a standard technique. The basic
idea of NMF technique is to find a node-community mem-
bership matrix F (Fu,c represents the weight of node u in
community c) and approximate the adjacency matrix G via
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FFT . Existing approaches use either the conventional least
squares error or the generalized KL divergence as objec-
tive function (Lee and Seung 2001). However, both objec-
tive functions try to approximate the adjacency matrix G
in value, which are inevitable to cause the indiscriminate
penalty problem. Let us assume that there are two non-linked
pairs (i, j) and (i, k), where i, j belong to the same commu-
nity while i, k do not. Since i, j both have positive weights
in some community c, FiFTj is positive. However, existing
NMF based approaches will penalize FiFTj for being pos-
itive since Gi,j = 0. Thus, there is no difference between
j and k with respect to i, which is against the intuition that
for node i, node j in the same community is more preferable
than node k outside i’s community. In fact, it is reasonable
that FiFTj is higher than FiFTk , and indiscriminately penal-
izing the two pairs are problematic.

In this paper, we present a preference-based nonnega-
tive matrix factorization (PNMF) model that not only fixes
the indiscriminate penalty problem of previous NMF based
models, but also incorporates the implicit link preference in-
formation into model formulation. Our model uses a new
objective function, which maximizes the likelihood of a pair-
wise preference order for each node. In other words, from a
node’s perspective, we manage to ensure that the preference
of any of its friends is higher than any of other nodes. When
factorizing the adjacency matrix with node-community re-
lationship matrix, our model gives no penalty to a non-zero
value appearing in the position of a non-linked pair, as long
as all the pair-wise preferences are preserved. Thus, this ob-
jective function can be regarded as a relaxation of previ-
ous approaches. We exploit stochastic gradient descent with
bootstrap sampling to solve the optimization problem. We
conduct experiments in several real world datasets includ-
ing some with ground-truth communities. By comparing our
model with several state-of-art approaches, we show that our
model can detect overlapping communities with higher qual-
ity on widely-used metrics in community detection. It can
also be applied to large datasets.

The remainder of this paper is organized as follows. Sec-
tion 2 provides an overview of overlapping community de-
tection and other works related to our model. Section 3
presents our PNMF model in mathematical form and pro-
pose a stochastic gradient descent method to learn model
parameters, i.e., community weights for each node. Experi-
mental results are shown in Section 4, followed by conclu-
sions in Section 5.

2 Related Work
Traditional community detection methods are based on
graph clustering/partitioning (Fortunato 2010; Newman
2004). To measure the quality of a particular partition,
different functions are created. Among them, modularity is
the most popular one (Newman 2006). However, the most
severe drawback of these methods is that each node can only
be assigned to a single community, which is against the na-
ture of the real world. Thus, overlapping community detec-
tion has attracted lots of attention recently due to its practical
assumption (Xie, Kelley, and Szymanski 2013).

Almost all the early work in overlapping community de-
tection are based on dense subgraph extraction. Clique Per-
colation method (CPM) (Palla et al. 2005), which is still one
of the most popular methods now, finds all the k-cliques at
first and then combines cliques with k − 1 common nodes
to be a community. Kumpula et al. propose a sequential al-
ternative of CPM, which significantly reduces the time of
finding cliques (Kumpula et al. 2008). Link clustering (Ahn,
Bagrow, and Lehmann 2010) uses links instead of nodes for
clustering and consequently generates overlapping commu-
nities.

Community affiliation based approaches solve overlap-
ping community detection from the perspective of commu-
nities. They determine the number of communities in ad-
vance, then assign nodes to each community based on some
criterion. Some approaches apply Markov Chain Monte
Carlo (MCMC) to iteratively change node membership un-
til a local optimal is reached (Karrer and Newman 2011;
Yang and Leskovec 2012). However, the performance is not
good enough and they suffer from convergence problems.
Recently, nonnegative matrix factorization (NMF) has be-
come a standard technique since the latent factor can be nat-
urally regarded as communities and it automatically gen-
erates overlapping communities. Psorakis et al. employ a
Baysian generative model, which puts a half-normal prior βi
over each community and then maximizes the log-likelihood
of generating original graph (Psorakis et al. 2011). Want et
al. apply a multiplicative update rule to minimize ||G −
FFT ||2F , where G is the adjacency matrix and F is the
targeted node-community membership matrix (Wang et al.
2011). Zhang and Yeung incorporate a community interac-
tion matrix B, which represents the relations between com-
munities and approximate G by a nonnegative matrix tri-
factorization FBFT with bounds in F (Zhang and Yeung
2012). Yang and Leskovec develop a scalable model, which
relaxes the graph fitting problem into a continuous optimiza-
tion problem (Yang and Leskovec 2013). Though different
objective functions have been engaged, the idea of these
NMF-based methods is always to approximate the original
adjacency matrix in value.

Baysian Personalized Ranking (BPR) (Rendle et al.
2009b) is proposed to rank items for a specific user in rec-
ommender systems while only implicit feedback (e.g. clicks)
is available. The basic assumption is that a user prefers la-
beled items than unlabeled ones. While traditional methods
replace missing values with zeros or negative ones, BPR
uses pairwise preference as training data to learn the model
parameters. Technically, it maximizes a posterior probability
p(Θ| >u) where Θ is the parameter and>u is the latent pref-
erence structure for user u. We adopt this idea into our over-
lapping community detection task for a different learning
goal of maximizing the probability p(>u |F ), where F is a
nonnegative matrix representing the latent node-community
membership. BPR has become a classical model in one-class
collaborative filtering and there are many further work on
top of it. For example, Rendle et al. extend the original ma-
trix factorization to a tensor factorization to recommend per-
sonalized tags for a user given an item (Rendle et al. 2009a).
Zhao et al. leverage social connections to improve item rec-
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ommendations by building a new preference system (Zhao,
McAuley, and King 2014).

3 Community Detection via PNMF
In this section, we present our PNMF model in the context of
overlapping community detection and propose a stochastic
gradient descent method with bootstrap sampling to learn
model parameters.

Preliminaries
Given an unweighted and undirected network N(V,E),
where V is the set of n nodes and E is the set of m edges,
we can obtain its adjacency matrix G ∈ {0, 1}n×n whose
(i, j) entry gi,j is an indicator of whether node i and node j
are connected. Since the network is undirected, G is a sym-
metric matrix.

We denote the set of communities byC and the number of
communities by p. We use a nonnegative matrix F ∈ Rn×p+
to denote the node-community membership for all the nodes.
Each entry Fu,c represents the weight between node u ∈ V
and community c ∈ C. The larger Fu,c is, the more possible
that u belongs to c. On the other hand, if Fu,c is 0, u does
not belong to c.

Given the information above, the objective is to recover
G with some properties preserved by a nonnegative matrix
factorization FFT , i.e.,

G ≈ FFT . (1)

Previous approaches simply approximate G in value. They
expect FuF tv to be close to 1 if u, v are linked and to be 0
otherwise. In our model, we preserve the preference orders
observed in G for all the nodes. We will discuss the details
later.

The set of i’s neighbors is denoted by N+(i). In addition,
we define N−(i) := N+(i)c\{i} to be “non-neighbors” of
i, where N+(i)c denotes the complement set of N+(i). By
definition, V = N+(i)∪N−(i)∪{i} for every i. Moreover,
we define a learning set S : V × V × V by

S = {(i, j, k)|i ∈ V, j ∈ N+(i), k ∈ N−(i)},

which consists of all the triples (i, j, k), where j is a neigh-
bor of i while k is not.

In the end, we list three basic assumptions on implicit link
preference in order to make model formulation clearer.

1. Node independence. Each node determines its prefer-
ences independently. The network can be regarded as a re-
sult after all the nodes make their decisions. Specifically,
a link will be built between u and v if and only if u has
a high preference on v and symmetrically v has a high
preference on u.

2. Higher preference on neighbors. Let u >i v denote that
node i prefers node u than node v. For a fixed node i,
we have j >i k if j ∈ N+(i) and k ∈ N−(i), but
no preference information between j and k is indicated
if j, k ∈ N+(i) or j, k ∈ N−(i). Thus, the use of the
learning set S is to record all the single triples (i, j, k)
satisfying that i prefers to build a link with j than k.

3. Pair independence. For a fixed node i, its preference on j
and k is independent with its preference on u and v when
j, u ∈ N+(i) and k, v ∈ N−(i).

Model Formulation
Based on our motivation, we aim to find the node-
community membership matrix, which maximizes the like-
lihood of observed preference order for all the nodes. Ac-
cording to the “node independence” assumption, the overall
likelihood can be denoted as a product of likelihood of each
node. Thus, our objective function can be written as

max
F∈Rn×p

+

∏
i∈V

p(>i |F ), (2)

where>i denotes the observed preferences for node i and F
is the node-community membership matrix.

According to the “high preference on neighbors” assump-
tion and the “pair independence” assumption, the probability
of preference order for a single node i can be written as

p(>i |F ) =
∏

(j,k)∈V×V

p(j >i k|F )δ(j∈N
+(i))δ(k∈N−(i))

· (1− p(j >i k|F ))1−δ(j∈N
+(i))δ(k∈N−(i))

=
∏

(j,k)∈V×V

p(j >i k|F )δ((i,j,k)∈S)

· (1− p(j >i k|F ))δ((i,j,k)/∈S),
(3)

where S is the learning set mentioned in preliminaries and δ
is the indicator function

δ(a) =

{
1 if a is true,
0 else .

For a triple (i, j, k), if (i, j, k) ∈ S, then (i, k, j) /∈ S.
Given p(j >i k|F ) + p(k >i j|F ) = 1, it is easy to see that
p(j >i k|F )δ((i,j,k)∈S) = (1 − p(k >i j|F )δ((i,k,j)/∈S).
Applying this to Equation (3), maximizing p(>i |F ) is
equivalent to

max
F∈Rn×p

+

∏
(j,k)∈V×V

p(j >i k|F )δ((i,j,k)∈S). (4)

Combining Equation (2) and (4), our objective function
can be rewritten as

max
F∈Rn×p

+

∏
(i,j,k)∈S

p(j >i k|F ). (5)

Based on the intuition that two nodes have a higher prob-
ability to be linked if they share more communities, we de-
fine the probability that i prefers j than k given the node-
community membership matrix as

p(j >i k|F ) = σ(Fi · FTj − Fi · FTk ), (6)

where σ is the sigmoid function σ(x) := 1
1+e−x .

The sigmoid function can map any real number into
(0, 1). We can see that the probability i prefers j than k is
0.5 when FiFTj = FiF

T
k . Also, this probability is close to
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0 when FiFTj � FiF
T
k and is close to 1 when FiFTj �

FiF
T
k . These properties precisely characterize the require-

ments of our model.
For simplicity, we define x̂(i, j) := Fi · FTj . Equation (6)

can be rewritten as

p(j >i k|F ) = σ(x̂(i, j)− x̂(i, k)). (7)

Now combining Equation (5), (6), and (7), the final objec-
tive function of our PNMF model is

l(F ) := max
F∈Rn×p

+

ln
∏

(i,j,k)∈S

p(j >i k|F )− λ · reg(F )

= max
F∈Rn×p

+

∑
(i,j,k)∈S

ln p(j >i k|F )− λ · reg(F )

= max
F∈Rn×p

+

∑
(i,j,k)∈S

lnσ(x̂(i, j)− x̂(i, k))− λ · reg(F ),

(8)
where reg(F ) is the regularization term we add to avoid
overfitting and λ is the regularization parameter. We choose
Frobenius norm as the regularization term, i.e., we set
reg(F ) = ||F ||2F , since it is differentiable and fits our pa-
rameter learning process.

Parameter Learning
To make our model applicable to large datasets, we employ
the widely used stochastic gradient descent (SGD) as our
learning approach. In each update step, SGD randomly se-
lects a triple in learning set S and updates the corresponding
model parameters Θ by walking along the gradient direction,

Θt+1 = Θt + α
∂l

∂Θ
, (9)

where α is the learning rate. Specifically, the derivative of
Equation (9) is calculated by

∂l

∂Θ
=

∂

∂Θ
lnσ(x̂(i, j)− x̂(i, k))− λ ∂

∂Θ
reg(F )

=
−ex̂(i,k)−x̂(i,j)

1 + ex̂(i,k)−x̂(i,j)
· ∂
∂Θ

(x̂(i, j)− x̂(i, k))− λΘ

(10)
and

∂

∂Θ
(x̂(i, j)− x̂(i, k)) =


Fj,t − Fk,t if Θ = Fi,t
Fi,t if Θ = Fj,t
−Fi,t if Θ = Fk,t
0 else

,

(11)
where λ is the regularization parameter. Regarding the non-
negative constraints, we exploit the idea of projected gradi-
ent methods for NMF (Lin 2007), which maps the value of
a parameter back to nonnegativity.

The whole process of parameter learning is described in
Algorithm 1. As we can see, the time complexity of each
iteration is O(mp), where m is the number of links, and p is
the number of community. The space complexity is O(np),
where n is the number of node, since we need to save the
node-community membership matrix into memory.

Algorithm 1 Community detection using PNMF
Input: G, the adjacency matrix of original graph
Output: F , the node-community membership matrix
1: initialize F
2: compute initial loss
3: repeat
4: for num samples = 1 to |E| do
5: sample node i from V uniformly at random
6: sample node j from N+(i) uniformly at random
7: sample node k from N−(i) uniformly at random
8: for each entry Θ in Fi, Fj and Fk do
9: update Θ according to Equation (9), (10), (11)

10: Θ← max(Θ, 0)
11: end for
12: end for
13: compute loss
14: until convergence or max iter is reached

Other Issues
Choosing the number of communities. Before learning the
parameters, we need to set the number of communities p
in advance. However, we have no prior knowledge about it.
Here we adopt the approach in (Airoldi et al. 2008). We first
reserve 10% of links as validation set. Then we vary p and
learn model parameters with the remaining 90% of links for
each p. After that, we use the node-community membership
matrix F to generate the adjacency matrix G and use G to
predict the links in validation set according to our motivation
that linked pairs have higher value than non-linked pairs in
G. Finally, we pick the p with the best prediction score as
our pre-assigned number of communities.

Setting membership threshold. After we learn F , we
need to set a threshold δ in order to determine whether a
node belongs to a community or not. If Fu,c ≥ δ, we say that
node u belongs to community c. According to Equation (6),
we need p(j >i k|F ) to be closer to 1 than 0 if i prefer j
than k. We assume that i, j share exactly one community and
i, k do not share any communities. Thus FiFTk = 0. Due to
the symmetry of i and j, we have

σ(FiF
T
j − FiFTk ) = σ(δ2 − 0) =

1

1 + e−δ2
= β,

where β is in the range of (0.5, 1). When β is given, we can
compute δ by

δ =

√
− ln(

1

β
− 1). (12)

4 Experiments
In this section, we conduct several experiments to com-
pare our PNMF model with other state-of-the-art overlap-
ping community detection approaches in terms of commu-
nity quality and scalability.

Datasets
We examine our model with several benchmark datasets
available on the Internet. We separate them into two cat-
egories, one without ground-truth communities and the
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Dataset GT V E

Dolphins N 62 159
Les Misérables N 77 254
Books about US politics N 105 441
Word adjacencies N 112 425
American college football N 115 613
Jazz musicians N 198 2,742
Network science N 1,589 2,742
Power grid N 4,941 6,594
High-energy theory N 8,361 15,751
DBLP Y 317,080 1,049,866
Amazon Y 334,863 925,872
YouTube Y 1,134,890 2,987,624

Table 1: Statistics of twelve datasets (nine without
ground-truth and three with ground-truth). GT: whether
has ground-truth communities or not, V: number of
nodes, E: number of links.

other with ground-truth communities. For the first cate-
gory, we choose nine undirected networks collected by New-
man1 as our datasets. For the second category, three large
datasets from SNAP2 are used. Among them, DBLP is a co-
authorship network in computer science, Amazon is a prod-
uct co-purchase network, YouTube is an online social net-
work with communities of various video interests. Simple
statistics for all the datasets can be found in Table 1.

Baseline methods
We select five state-of-the-art algorithms to be our base-
line methods. The latter three are nonnegative matrix factor-
ization based models, thus are highly comparable with our
PNMF model.

SCP (Sequential Clique Percolation) (Kumpula et al.
2008). Since the original Clique Percolation method (Palla
et al. 2005) is slow when dealing with large datasets, we
choose a sequential alternative, which obtains the same per-
formance but is much faster. For the choice of k-clique, we
set k to be 4 or 5.

LC (Link Clustering) (Ahn, Bagrow, and Lehmann
2010). We do not manually set the threshold at which the
dendrogram is cut. The algorithm automatically chooses the
threshold where the maximum partition density is found.
Among the detected communities, we get rid of all the com-
munities whose size is smaller than 3 since these communi-
ties make no sense.

BNMF (Baysian NMF) (Psorakis et al. 2011). We use
the classic squared loss ||G−WHT ||2F as the loss function,
where G is the adjacency matrix, W and H are the results
of nonnegative matrix factorization.

BNMTF (Bounded NM Tri-Factorization) (Zhang and
Yeung 2012). To be consistent with BNMF, we also use
squared loss ||G− FBFT ||2F as our loss function, where F
and B are the results of nonnegative matrix tri-factorization.

BigCLAM (Yang and Leskovec 2013). For the number
of communities, we set a minimum value and a maximum

1http://www-personal.umich.edu/mejn/netdata
2http://http://snap.stanford.edu/data/

value and let the algorithm find the best choice between
these two numbers based on cross-validation.

Metrics
We choose two well-known metrics to measure the per-
formance of our model. The choice of metric depends on
whether the specific dataset has ground-truth communities.

Modularity. We employ the most widely used modularity
(Newman 2006) as our measure for datasets without ground-
truth communities. Since communities are overlapping in
our case, we need to modify the original definition of mod-
ularity a bit. The new modularity Q is defined as

Q =
1

2m

∑
u,v∈V

(gu,v −
d(u)d(v)

2m
)|Cu ∪ Cv|,

where m denotes the number of links, V denotes the set of
nodes, gi,j denotes the (i, j) entry of adjacency matrix G,
d(i) denotes the degree of node i, and Cu denotes the set of
communities including u.

As we mentioned, two nodes are more possible to link
each other if they have more common communities. Modu-
larity matches our intuition very well in the way that more
common communities two nodes have, more penalty they
will receive if they do not build a link between them. d(u)d(v)2m
can be regarded as the link probability between u and v.
F1 score. For datasets with ground-truth communities,

we employ another criterion F1 score to measure the quality
of detected communities. We denote the set of ground-truth
communities as C and the set of detected communities as Ĉ.
Ci represents the i-th community in C and Ĉi represents the
i-th community in Ĉ. We define F1 score to be the average
of the F1 score of the best-matching ground-truth commu-
nity to each detected community, i.e,

F1 =
1

|Ĉ|

∑
Ĉi∈Ĉ

F1(Cb(i), Ĉi),

where the best matching function b(i) is defined as

b(i) = arg max
j
F1(Cj , Ĉi),

and F1(·, ·) is the harmonic mean of precision and recall.

Results
We compare our PNMF model with all the baseline meth-
ods listed above and show the results in Table 2. For the
first nine datasets without ground-truth communities, we use
modularity as our measurement. The results show that our
model performs best on seven out of nine datasets. Espe-
cially, our model dominates other nonnegative matrix fac-
torization based models (BNMF, BNMTF, BigCLAM) on
all the datasets except “Jazz musicians”.

For the last three datasets with ground-truth communities,
we use F1 score as our measurement. We can see that our
model significantly outperforms LC and is comparable with
the other two methods with a fair overall advantage. An-
other advantage of our model is scalability. Some results are

400



Dataset Metric SCP LC BNMF BNMTF BigCLAM PNMF
Dolphins M 0.3049 0.6538 0.5067 0.5067 0.4226 0.9787
Les Misérables M 0.3066 0.7730 0.1247 0.1031 0.5395 1.1028
Books about US politics M 0.4955 0.8507 0.4613 0.4924 0.5290 0.8640
Word adjacencies M 0.0707 0.2705 0.2539 0.2677 0.2312 0.6680
American college football M 0.6050 0.8907 0.5584 0.5733 0.5175 1.0492
Jazz musicians M 0.0114 1.1424 0.1133 0.1118 1.1438 0.9357
Network science M 0.7286 0.9558 0.6607 0.7413 0.5026 1.6570
Power grid M 0.0439 0.3713 0.3417 0.3682 1.0097 1.1051
High-energy theory M 0.5427 0.9965 0.5648 0.6004 0.9636 0.9725
DBLP F1 0.0967 0.0402 - - 0.0390 0.0985
Amazon F1 0.0315 0.0070 - - 0.0441 0.0419
YouTube F1 0.0445 - - - 0.0194 0.0605

Table 2: Experimental results in terms of modularity (M ) and F1 score (F1).

not shown because the corresponding baseline methods can-
not scale to networks with such size. Only SCP, BigCLAM
and our PNMF model can deal with the largest dataset, i.e.
“YouTube”, which consists of more than one million nodes.

For the choice of membership threshold β, we examine
different values from 0.5 to 1 to find a reasonable range. It
is clear that a community will contain less nodes if we set a
higher value to β. According to our experiments, [0.7, 0.8]
appears to be a suitable range for candidates since a com-
munity may contain nearly half of the nodes when β is less
than 0.7, while many nodes may not belong to any commu-
nities when β is larger than 0.8. To determine the final value
of β, we again use the cross-validation paradigm with sev-
eral candidates in this range and pick the one with the best
performance on validation data.

Convergence Issues
Since our PNMF model applies stochastic gradient descent
as learning technique, we also observe convergence rate and
convergence speed while conducting experiments. For con-
vergence rate, as long as the learning rate and the regulariza-
tion parameter are appropriate, all the datasets can converge
before reaching maximum number of iteration. For conver-
gence speed, Figure 1(a) show the results on five UMich
datasets and Figure 1(b) show the results of three SNAP
datasets. Here the y-axis represents the ratio of current loss
to initial loss. From both figures we can see that loss drops
quickly in the beginning and starts to slow down signifi-
cantly after it reaches 20% of initial loss. Comparing these
two figures, we can also find that, although SNAP datasets
need more time for one iteration than UMich datasets, the
total number of iteration is smaller, which proves the scala-
bility of our model from another perspective.

5 Conclusion and Future Work
In this paper, we have presented a preference-based non-
negative matrix factorization (PNMF) model for overlap-
ping community detection. The most important contribution
of our model is to incorporate implicit link preference in-
formation into model formulation. By following the intu-
ition that a node prefers any of its neighbors than any of

(a) UMich datasets

(b) SNAP datasets

Figure 1: Convergence speed of learning algorithm

its “non-neighbors”, we maximize the likelihood of a pref-
erence order for each node instead of simply approximat-
ing the original adjacency matrix in value. Our model can
eliminate the unreasonable indiscriminate penalty on pairs
inside and between communities. In the learning process,
we choose stochastic gradient descent with bootstrap sam-
pling to learn the parameters of node-community member-
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ship matrix. We apply our PNMF model on several real-
world datasets both with and without ground-truth commu-
nities. Our results show that our PNMF model outperforms
state-of-art approaches in two metrics, namely modularity
and F1 score, and is scalable for large datasets.

Our current work only focuses on the difference between
neighbors and “non-neighbors”. We assume that all the
“non-neighbors” have the same preference. However, this
assumption may not hold in real-world networks. Consider-
ing two nodes A and B with no link between them, if there
are other nodes which are neighbors of both A and B, from
the perspective of A it is reasonable to assign higher pref-
erence on B than nodes which have no common neighbors
with A. We plan to employ the concept of common neigh-
bors to enhance our preference system in our future work.
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