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Abstract. Feature selection is an important research problem in machine learn-
ing and data mining. It is usually constrained by the budget of the feature subset
size in practical applications. When the budget changes, the ranks of features in
the selected feature subsets may also change due to nonlinear cost functions for
acquisition of features. This property is called non-monotonic feature selection.
In this paper, we focus on non-monotonic selection of features for regression tasks
and approximate the original combinatorial optimization problem by a Multiple
Kernel Learning (MKL) problem and show the performance guarantee for the de-
rived solution when compared to the global optimal solution for the combinatorial
optimization problem. We conduct detailed experiments to demonstrate the ef-
fectiveness of the proposed method. The empirical results indicate the promising
performance of the proposed framework compared with several state-of-the-art
approaches for feature selection.

1 Introduction

Feature selection is an important task in machine learning and data mining. The goal of
feature selection is to choose a subset of informative features from the input data so as to
reduce the computational cost or save storage space for problems with high dimensional
data. Feature selection has found applications in a number of real-world problems, such
as data visualization, natural language processing, computer vision, speech processing,
bioinformatics, sensor networks and so on [10]. More information can be found from
the comprehensive survey paper [4] and references therein.

A general definition of selecting features from a learning task is to choose a subset
of m features, denoted by S, that maximizes a generalized performance criterion Q. It
is cast into the following combinatorial optimization problem:

S∗ = argmaxQ(S) s. t. |S| = m. (1)

Here m is also called the budget of selected features. Q(S) is restricted to a perfor-
mance measure for regression problems. More specifically, we adopt the dual objective
function of Support Vector Regression (SVR), a popular regression model [7] in the
literature, as is defined later in Eq. (3).
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When the budget changes, the new feature subset may not be a subset or superset of
the previous feature subset due to nonlinear cost functions for acquisition of features.
This property is called non-monotonic feature selection [12]:

Definition 1 (Non-monotonic Feature Selection). A feature selection algorithm A is
monotonic if and only if it satisfies the following property: for any two different numbers
of selected features, i.e., k and m, we always have Sk ⊆ Sm if k ≤ m, where Sm stands
for the subset of m features selected by A. Otherwise, it is called non-monotonic feature
selection.

Due to the dependance of feature selection on the budget of feature subsets, tradi-
tional feature selection methods may yield sub-optimal solutions. In order to tackle this
problem, in this paper, we propose a non-monotonic feature selection for regression.
Following the framework for classification derived in [8,12], we approximate the orig-
inal combinatorial optimization problem of feature selection and formulate it closely
related to multiple kernel learning (MKL) [1,6,11,13,14,17] framework, which yields
the final optimization problem to be solved efficiently by a Quadratically Constrained
Quadratic Programming (QCQP) problem. Differently, support vector regression [7] is
selected as the regression model due to its power in solving real-world applications.
We then present a strategy that selects a subset of features based on the solution of the
relaxed problem and show the performance guarantee, which bounds the difference
in the value of objective function between using the features selected by the proposed
strategy and using the global optimal subset of features found by exhaustive search. Our
empirical study shows that the proposed approach performs better than the state-of-the-
arts for feature selection in tackling the regression task.

2 Model and Analysis

Suppose the training set includes N samples: S = {(xi, yi)}Ni=1, where xi ∈ R
d rep-

resents the features of the i-th sample, and yi ∈ R corresponds to the response. Let
ed ∈ Rd be a d-dimensional vector with all elements being one and Id be the d × d
identity matrix. For a linear kernel, the kernel matrix K is written as: K = X�X =
∑d

i=1 xix
�
i =

∑d
i=1 Ki, where a kernel Ki = xix

�
i is defined for each feature. The

goal of feature selection is to select a subset of m < d features, i.e., to determine the
value of p in the following form:

K(p) =

d∑

i=1

pixix
�
i =

d∑

i=1

piKi, (2)

where pi ∈ {0, 1} is a binary variable that indicates if the ith feature is selected, and
p = (p1, . . . , pd). As revealed in (2), to select m features, we need to find optimal
binary weights pi to combine the kernels derived from individual features. This obser-
vation motivates us to cast the feature selection problem into a multiple kernel learning
problem.

Following the maximum margin framework with ε-insensitive loss function for
support vector regression [7,15,16] and the derivation in [12], given a kernel
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matrix K(p) =
∑d

i=1 piKi, the regression model, f(x) =
∑d

i=1 wixi + b =
∑N

j=1(αj − α∗
j )K(p), is found by solving the following optimization problem:

ω̃(p) :=

{
max
β

2v�β − β�Q(p)β

s.t. 0 ≤ β ≤ C, u�β = 0
(3)

where the variable β = [α;α∗] ∈ R
2N , and α, α∗ ∈ R

N are corresponding Lagrange
multipliers used to push and pull f(x) towards the outcome of y, respectively. b corre-
sponds to the dual variable of u�β = 0. The linear coefficient v is defined as [v1;v2],
where v1 = [−εeN + y] and v2 = [−εeN − y]. u in the equality constraint is defined
as [e�N ,−e�N ]. The matrix Q(p) = [K(p),−K(p);−K(p),K(p)] ∈ R

2N×2N .
By approximating the indicator vector p to a continuous indicator, we have to solve

the following optimization problem:

min
0≤p≤1

ω̃(p) s.t. p�ed = m. (4)

Following the derivation in [6,12], we can transform (3) to the following optimization
problem:

min
p,t,ν,δ,θ

t+ 2Cδ�e2N (5)

s.t.

(
Q(p) v + ν − δ + θu

(v + ν − δ + θu)� t

)

� 0,

ν ≥ 0, δ ≥ 0, p�ed = m, 0 ≤ p ≤ 1.

To further speedup the semi-definite programming (SDP) problem in (5), we show
in the following theorem that (5) can be reformulated into a Quadratically Constrained
Quadratic Programming (QCQP) problem similar to [12]:

Theorem 1. The optimization problem in (4) can be reduced to the following optimiza-
tion problem:

max
α,α∗,λ,γ

2(v�
1 α+ v�

2 α
∗)−mλ− γ�eN (6)

s.t. e�N (α− α∗) = 0, 0 ≤ α, α∗ ≤ C,

(α− α∗)�Ki(α − α∗) ≤ λ+ γi, γi ≥ 0.

The KKT conditions are

K(p)(α− α∗) = v + ν − δ + θu,

t = [α;α∗]�(v + ν − δ + θu),

[α;α∗] ◦ ν = 0, [α;α∗] ◦ δ = Cδ, γ ◦ (ed − p) = 0,

pi(λ+ γi − (α− α∗)�Ki(α− α∗) = 0, i = 1, . . . , d. (7)

Now, by observing (7), we rank the features in the descending order of τi = (α −
α∗)�Ki(α − α∗) = (

∑N
j=1 Xi,j(αj − α∗

j ))
2 = w2

i , where wi is the weight computed
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for the i-th feature. We denote by i1, . . . , id the ranked features, and by kmin and kmax

the smallest and the largest indices such that τik = τim for 1 ≤ k ≤ d. We divide
features into three sets and derive the properties of λ and p as follows:

A = {ik|1 ≤ k < kmin}, B = {ik|kmin ≤ k ≤ kmax}, C = {ik|kmax < k ≤ d}. (8)

Corollary 1. We have the following properties for λ and p:

λ ∈ [τ1+kmax , τm], pi =

{
1, i ∈ A,
0, i ∈ C. (9)

Remark. The above corollary can be derived by analyzing the KKT conditions in
(7). We then can conduct our non-monotonic feature selection for regression, namely
NMMKLR, by the following three steps: 1) Solve α, α∗ in (6) by a linear objective
function with quadratic constraints, a special case of the QCQP; 2) Compute τi =
(
∑N

j=1 Xi,j(αj − α∗
j ))

2; 3) Select the first m features with the largest τi.
Moreover, we provide the following theorem to show that the performance guarantee

of the discrete solution constructed by our proposed algorithm and the combinatorial
optimization problem in the form of (4).

Theorem 2. The discrete solution constructed by our NMMKLR, denoted by p, has the
following performance guarantee for the combinatorial optimization problem defined
in (1): ω(p)

ω(p̃∗) ≤ 1
1−σmax(R−1/2BR−1/2)

, where R = Q(p∗), B =
∑

j∈B p∗jKj .

The operator σmax(·) calculates the largest eigenvalue. p∗ and p̃∗ denote the optimal
solution of the relaxed optimization problem in (4) and the global optimal solution of
the original combinatorial optimization problem defined in (1), respectively.

The proof can be found in the long version of this paper. Theorem 2 indicates that by in-
corporating the required number of selected features, the resulting approximate solution
could be more accurate than without it, which implies that the proposed NMMKLR al-
gorithm produces a better approximation to the underlying combinatorial optimization
problem (1).

3 Experiments

We conduct detailed experiments on both synthetic and real-world datasets and compare
our proposed NMMKLR with the following state-of-the-art methods: 1) Stepwise: the
forward stepwise feature selection method [2,3,4] 1; 2) SVR-LW: features are selected
with the largest absolute weights |wi| computed by SVR [7]; 3) LASSO-LW: features
are selected with the largest absolute weights |wi| computed by LASSO [9].

We adopt the following two metrics to measure the model performance: 1) Mean
Square Error (MSE): MSE =

∑N
i=1(yi − ŷi)

2/N , which measures the discrepancy

of the predictive response and real response; 2) Q2 statistics: Q2 =
∑N

i=1(yi−ŷi)
2

(yi−ȳi)2
,

which is scaled by the variance of the response. where ŷi is the prediction of yi for the
i-th test sample, and ȳ is the mean of the actual response. Obviously, in both metrics,
the smaller the corresponding value is, the better the performance is.

1 http://www.robots.ox.ac.uk/˜parg/software/fsbox_1_0.tar

http://www.robots.ox.ac.uk/~parg/software/fsbox_1_0.tar


48 H. Yang et al.

Experiments on synthetic dataset. We first generate a toy dataset consisting of d(=12)
dimensions by an additive model similar to that in [2]: yi =

∑4
j=1 jxji + ex5i , where

yi denotes the response for the i-th sample and xj denotes the j-th feature, for j =
1, . . . , 12. xji denotes the element of the j-th feature on the i-th sample. Here, only
the first five features contribute to the response and each of them is generated from an
independently and identically distributed normal distribution. The rest 7 features are
generated as follows: the 6-th feature is x6 = x1 + 1, which is correlated to x1; the
7-th feature is x7 = x2 ◦ x3, which is the element-wise product of x2 and x3; the rest
five features, i.e., x8, . . . ,x12, generated by standard normal distribution, are totally
irrelevant to the response yi. For convenience, we also denote the irrelevant features by
NV1, . . . , NV5, respectively.

Table 1. Top 5 and 6 selected features (ordered) from four compared algorithms within 20 tri-
als on the synthetic dataset. The stepwise and the LASSO-LW method include some irrelevant
features when the number of selected features is greater than six.

Method Times Top 5 selected features Times Top 6 selected features

NMMKLR
19 4, 3, 2, 5, 1

20 4, 3, 2, 5, 1, 6
1 4, 3, 2, 5, 6

Stepwise

8 4, 3, 2, 5, 1
10 4, 3, 2, 5, 1 3 4, 3, 5, 2, 6

2 4, 3, 2, 5, 6, 8 (NV1)
6 4, 3, 2, 5, 6 1 3, 4, 2, 5, 6

1 4, 3, 2, 5, 6
2 4, 3, 5, 2, 6 1 4, 3, 2, 5, 1, 9 (NV2)

1 4, 3, 2, 5, 1, 11 (NV4)
2 3, 4, 2, 6, 5 1 4, 3, 2, 5, 6, 9 (NV2)

1 4, 3, 2, 5, 6, 10 (NV3)
1 4, 3, 2, 5, 6, 12 (NV5)

SVR-LW
10 4, 3, 2, 5, 1 10 4, 3, 2, 5, 1, 6
10 4, 3, 2, 5, 6 10 4, 3, 2, 5, 6, 1

LASSO-LW

4 4, 3, 2, 5, 1, 8 (NV1)
3 4, 3, 2, 5, 1, 10 (NV3)

15 4, 3, 2, 5, 1 3 4, 3, 2, 5, 1, 12 (NV5)
2 4, 3, 2, 5, 1, 9 (NV2)
2 4, 3, 2, 5, 1, 11 (NV4)

4 4, 3, 2, 5, 6 1 4, 3, 2, 5, 1, 7
1 4, 3, 2, 5, 6, 8 (NV1)
1 4, 3, 2, 5, 6, 9 (NV2)
1 4, 3, 2, 5, 6, 10 (NV3)

1 4, 3, 2, 6, 5 1 4, 3, 2, 5, 6, 11 (NV4)
1 4, 3, 2, 6, 5, 12 (NV5)

We conduct two batches of experiments, where the budget is set to 5 and 6, respec-
tively. Then in each batch of experiments, we randomly generate 200 samples and hold
out 50% of the samples for training while keeping the rest for test. Each exepriment is
then repeated 20 times.
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In order to examine the property of the selected features, we list the top 5 and 6
selected features returned for all algorithms in Table 1. Obviously, our method can
stably select those important features while SVR-LW also selects features relatively
stable. However, the selected features by the forward stepwise feature selection method
and the LASSO-LW method are unstable, and some irrelevant features are included
when the number of selected features is greater than 5.

To further evaluate the regression performance on the selected features, we employ
Support Vector Regression (SVR) as the regression model. We tune the hyperparam-
eters C and ε, of SVR through five-fold cross validation on the training data with
the top 5, the top 6, and all the features. The hyperparameter of SVR, C, is cho-
sen uniformly from the interval [100, 103] on a logarithmic scale and ε is chosen in
[0.01, 0.1, 0.25, 0.5, 0.75, 1, 1.5, 2].

−20 −10 0 10 20 30
−20

−15

−10

−5

0

5

10

15

20

25

30

Observed Response

P
re

di
ct

ed
 R

es
po

ns
e

Scatterplot Data (MKLFS with 5 important features on Synthetic)

−20 −10 0 10 20 30
−20

−15

−10

−5

0

5

10

15

20

25

30

Observed Response

P
re

di
ct

ed
 R

es
po

ns
e

Scatterplot Data (FFS with 5 important features on Synthetic)

−20 −10 0 10 20 30
−20

−15

−10

−5

0

5

10

15

20

25

30

Observed Response

P
re

di
ct

ed
 R

es
po

ns
e

Scatterplot Data (MKLFS with 6 important features on Synthetic)

−20 −10 0 10 20 30
−20

−15

−10

−5

0

5

10

15

20

25

30

Observed Response

P
re

di
ct

ed
 R

es
po

ns
e

Scatterplot Data (FFS with 6 important features on Synthetic)

(a) NMMKLR, #SF = 5 (b) Stepwise, #SF = 5 (c) NMMKLR, #SF = 6 (d) Stepwise, #SF = 6

Fig. 1. Scatter plots of the pairs (y, ŷ). (a) and (c) show the plot of NMMKLR when the number of
selected features equal to 5 and 6, respectively. (b) and (d) shows the plot of Stepwise regression
when the number of selected features equal to 5 and 6, respectively. It can be observed that (a) is
thinner than (b) and (c) is thinner than (d).

Finally, we show the evaluation results on four compared algorithms in Table 2.
It can be observed that the proposed NMMKLR outperforms other three methods in
both of the MSE and Q2 measures in all cases. Moreover, the paired t-test with the
confidence level of 95% indicates that the advantage of NMMKLR is significant. To
better visualize the difference between the response values predicted by the feature
selection algorithms, we plot the pairs of observed response and predicted response, i.e.,
(y, ŷ), for the NMMKLR and the Stepwise selection method. The results are shown in
Figure 1. Ideally, if the MSE is zero, all the points should drop on the line y = ŷ.
Thus a scatter plot with smaller areas will be better. We observe from Figure 1 that the
proposed NMMKLR has a better performance in both cases.

Experiments on a real-world benchmark dataset. We employ a real-world benchmark
dataset, the Boston Housing problem [5] to evaluate the above four feature selection
algorithms. The Boston Housing problem [5] is a popular benchmark dataset for evau-
lating regression models. It consists of 506 instances with 13 continuous features, such
as crime rate, lower status of the population, etc. The response variable is the median
value of owner-occupied homes in $1000’s,

In the experiment, we normalize the continuous features in the range of [−1, 1] and
hold out half of samples for training while keeping the rest for test. The parameters of
SVRs are tuned on the training data with the top 5, the top 6, and all features, where C
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Table 2. The test accuracy for the synthetic dataset evaluated by the performance measures
(MSE and Q2) on four algorithms. The best results are highlighted (achieved by the paired
t-test with 95% confidence level).

#SF
NMMKLR Stepwise

MSE Q2 MSE Q2

5 1.1599± 0.6977 0.0339± 0.0186 1.2156 ± 0.6893 0.0356 ± 0.0183
6 1.1600± 0.6977 0.0339± 0.0186 1.2352 ± 0.6787 0.0362 ± 0.0180

#SF
SVR-LW LASSO-LW

MSE Q2 MSE Q2

5 1.2128 ± 0.7421 0.0353 ± 0.0198 1.2156 ± 0.6893 0.0356 ± 0.0183
6 1.2127 ± 0.7422 0.0353 ± 0.0198 1.2553 ± 0.6716 0.0368 ± 0.0178

is chosen uniformly from the interval [100, 103] on a logarithmic scale and ε is chosen
from [0.01, 0.1, 0.5, 1:0.5:10], a Matlab notation.

Since the forward stepwise feature selection method can only select 5 features some-
times when the significance level is set to 0.05, for a fair comparison, we set the num-
bers of selected features to be 5 and 6 for two batch of experiments. We then calculate
the MSE and Q2 values of the SVRs trained in these selected features and report the
results in Table 3. It can be observed that the regression results by NMMKLR are sig-
nificantly better than those selected by SVR-LW, LASSO-LW, and the forward stepwise
feature selection method in both cases.

Table 3. The results of two performance measures (MSE and Q2) on the house dataset when
varying the number of selected features by NMMKLR and stepwise feature selection, SVR-LW,
and LASSO-LW method. The best results on feature selection are highlighted (achieved by the
paired t-test with 95% confidence level).

#SF
NMMKLR Stepwise

MSE Q2 MSE Q2

5 25.65± 2.36 0.3208± 0.0329 26.24 ± 2.41 0.3281 ± 0.0326
6 25.07± 2.50 0.3131± 0.0290 25.39 ± 2.69 0.3174 ± 0.0344

#SF
SVR-LW LASSO-LW

MSE Q2 MSE Q2

5 26.95± 3.12 0.3365 ± 0.0368 26.25 ± 2.57 0.3283 ± 0.0345
6 26.75± 2.94 0.3342 ± 0.0360 25.83 ± 2.41 0.3232 ± 0.0344

4 Conclusion

This paper presents a new framework of non-monotonic feature selection for regression
models. By fixing the number of selected features and adopting the SVR, we develop
an efficient non-monotonic feature selection algorithm for SVR via the multiple ker-
nel learning framework to approximately solve the original combinatorial optimization
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problem. We further propose a strategy to derive a discrete solution for the relaxed prob-
lem with performance guarantee. The empirical study on both synthetic and real-world
datasets shows the effectiveness of the proposed algorithm.
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