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Abstract—By imitating the way that heat flows in a medium
with a geometric structure, we propose two novel classification
algorithms, Non-propagating Heat Diffusion Classifier (NHDC)
and Propagating Heat Diffusion Classifier (PHDC). In NHDC,
an unlabelled data is classified into the class that diffuses the
most heat to the unlabelled data after one local diffusion from
time 0 to a small time period, while in PHDC, an unlabelled
data is classified into the class that diffuses the most heat to
the unlabelled data in the propagating effect of the heat flow
from time 0 to time t, which means that in PHDC, the heat
diffuses infinitely many times from time 0 and each time period
is infinitely small. In other words, we measure the similarity
between an unlabelled data and a class by the heat amount that
the unlabelled data receives from the set of labelled data in the
class, and then classify the unlabelled data into the class with
the most similarity. Unlike the traditional method, in which the
heat kernel is applied to a kernel-based classifier we employ
the heat kernel to construct the classifier directly; moreover,
instead of imitating the way that the heat flows along a linear or
nonlinear manifold, we let the heat flow along a graph formed
by the k-nearest neighbors. An important and special feature in
both NHDC and PHDC is that the kernel is not symmetric. We
show theoretically that PWA (Parzen Window Approach when
the window function is a multivariate normal kernel) and KNN
are actually special cases of NHDC model, and that PHDC has
the ability to approximate NHDC. Experiments show that NHDC
performs better than PWA and KNN in prediction accuracy, and
that PHDC performs better than NHDC.

I. INTRODUCTION

The heat flow throughout a geometric manifold with initial
conditions can be described by the following second order
differential equation :

Ω
@f

@t
°∆f = 0,

f(x, 0) = f0(x),

where f(x, t) is the heat at location x at time t, beginning
with an initial distribution of heat given by f0(x) at time
zero. The heat or diffusion kernel Kt(x, y) [1] is a special
solution to the heat equation with a special initial condition
called the delta function ±(x ° y), which has the following
properties: ±(x°y) = 0 for x 6= y;

R +1
°1 ±(x°y)dx = 1. The

delta function ±(x ° y) in the heat diffusion setting has the
physical meaning – it describes a unit heat source at position
y when there is no heat in other positions. Based on this, the
heat kernel Kt(x, y) describes the heat distribution at time t

diffusing from the initial unit heat source at position y. Since
arbitrary initial conditions can be considered as a combination
of heat sources with different intensities at different positions,
as a consequence of the linearity of the heat equation, the heat
kernel can be used to generate the solution to the heat equation
according to the following equation

f(x, t) =
Z

M

Kt(x, y)f0(y)dy.

The heat kernel Kt(x, y) can be considered as a general-
ization of Gaussian density. This is because that when the
underlying manifold is a flat n-dimensional Euclidean space,
the heat kernel Kt(x, y) has an explicit form

(4ºt)°
m
2 exp(° ||x° y||2

4t
), (1)

which is the same as the Gaussian density. When the geometric
manifold varies, the corresponding heat kernel varies and can
be considered as the generalization of Gaussian density from
flat Euclidean space to general manifold.
Some recent successful applications of heat kernel includes

[1], [2] and [3]. In [1], the authors approximate the heat
kernel for multinomial family in a closed form, from which
great improvements are obtained over the use of Gaussian or
linear kernels. In [2], the authors propose the use of discrete
diffusion kernel to discrete or categorical data, and show that
the simple diffusion kernel on the hypercube can result in
good performance for such data. In [3], the authors employ
heat kernel to construct weight of a neighborhood graph, and
apply it to a non-linear dimensionality reduction algorithm.
Based on the successful applications of the heat kernel on

the classification problem, it is natural to explore the use of
heat kernel in a wider area where the underlying geometry
is unknown or its heat kernel cannot be approximated in the
same way as in [1]. To achieve our goal, we represent the
underlying geometry by a finite neighborhood graph, instead
of approximating the heat kernel in a given geometry. Then we
establish a heat diffusion model based on this graph, instead
of on the manifold.
The remaining of the paper is organized as follows. In

Section II, we establish a heat diffusion model on the graph.
In Section III, we present Non-propagating Heat Diffusion



Classifier (NHDC) and in Secion IV, we establish Propagating
Heat Diffusion Classifier (PHDC). In Section V, we interpret
the model in more details. Then in Section VI, we describe
the connection between NHDC and other models, and the
connection between NHDC and PHDC. Moreover, we analyze
the difference between the heat kernel proposed in [2] and
our heat kernel. In Section VII, we show and discuss our
experimental results and conclusions. Section VIII provides
the conclusion.

II. HEAT DIFFUSION MODEL ON GRAPH
First we give our notation for the heat diffusion model on

graph. Consider a directed weighted graph G = (V, E, W ),
where V = {v1, v2, . . . , vn}, E = {(vi, vj) | there is an edge
from vi to vj} is the set of all edges, and W = (wij) is the
weight matrix. Different from the normal undirected weighed
graph, the edge (vi, vj) is considered as a pipe that connects to
nodes i and j, and the weight wij is considered as the length
of the pipe (vi, vj). The value fi(t) describes the heat at node
i at time t, beginning from an initial distribution of heat given
by f0(i) at time zero.
We establish our model as follows. Suppose, at time t, each

node i receivesM(i, j, t, ∆t) amount of heat from its neighbor
j during a period of ∆t. The heat M(i, j, t, ∆t) should be
proportional to the time period ∆t and the heat difference
fj(t) ° fi(t). Moreover, the heat flows from node j to node
i through the pipe that connects nodes i and j, and therefore
the heat diffuses in the pipe in the same way as it does in
the m-dimensional Euclidean space as described in Eq. (1).
Based on this consideration, we assume that M(i, j, t, ∆t) =
Æ·exp(°w

2
ij

Ø
)(fj(t)°fi(t))∆t. As a result, the heat difference

at node i between time t + ∆t and time t will be equal to the
sum of the heat that it receives from all its neighbors. This is
formulated as

fi(t + ∆t)° fi(t) =
X

j:(j,i)2E

Æ · exp(°
w2

ij

Ø
)(fj(t)° fi(t))∆t

(2)
Note that when fi(t) > fj(t), node i receives a negative
amount of heat, i.e., it sends out a positive amount of heat.
To find a closed form solution to Eq. (2), we express it as

a matrix form:

f(t + ∆t)° f(t)
∆t

= ÆHf(t), (3)

where H = (Hij), and

Hij =

8
><

>:

°
P

k:(k,i)2E
exp(°w

2
ik
Ø

), j = i;

exp(°w
2
ij

Ø
), (j, i) 2 E;

0, otherwise.

(4)

The matrix H is called as non-propagating diffusion kernel in
the sense that the heat diffusion process stops after the nodes
diffuse their heat to their neighbors. Let t = 0, Eq. (3) can be
rewritten as

f(∆t) = (I + Æ∆tH)f(0). (5)

Eq. (5) is one closed form solution to Eq. (2) in the setting
of non-propagating heat diffusion, where it describes the heat
distribution after a time period of ∆t from time 0.
Next, we try to find another closed form solution to Eq.

(2) in the setting of propagating heat diffusion. In the limit
∆t! 0, Eq. (3) becomes

d

dt
f(t) = ÆHf(t), (6)

Solving Eq. (6), we get

f(t) = eÆtHf(0) = e∞Hf(0), (7)

where ∞ = Æt, and e∞H is defined as

e∞H = I + ∞H +
∞2

2!
H2 +

∞3

3!
H3 + · · · . (8)

The matrix e∞H is called as propagating diffusion kernel in the
sense that the heat diffusion process continues infinitely many
times after the nodes diffuse their heat to their neighbors for
the first time.
Eq. (7) is the solution to Eq. (2) when we consider prop-

agating heat diffusion. It has a natural property as shown in
the following theorem.
Theorem 1: The solution in Eq. (7) has the property of heat

preserving.
Based on the two closed form solutions Eq. (5) and Eq. (7),

we establish two different classifiers in the next two sections.

III. NON-PROPAGATING HEAT DIFFUSION CLASSIFIER
Assume that there are c classes, namely, C1, C2, . . . , Cc.

Let the labelled data set contains M samples, represented by
(xi, ki) (i = 1, 2, . . . , M ), which means that the data point xi

belongs to class Cki . Suppose the labelled data set contains
Mk points in class Ck so that

P
k
Mk = M . Let an unlabelled

data set contains N unlabelled samples, represented by xi (i =
M + 1,M + 2, . . . ,M + N ).
We first employ the neighborhood construction algorithm

commonly used in the literature, for example in [3], [4], [5]
and [6], to form a graph for all the data. Then we apply the
non-propagating heat diffusion kernel to the graphs. For the
purpose of classification, for each class Ck in turn, we set the
initial heat at the labelled data in class Ck to be one and all
other data to be zero, then calculate the amount of heat that
each unlabelled data receives from the labelled data in class
Ck. Finally, we assign the unlabelled data to the class from
which it receives most heat. More specifically, we describe the
resulting non-propagating Heat Diffusion-Based Classifier as
follows.
[Step 1: Construct neighborhood graph] Define graph G

over all data points both in the training data set and in the
unlabelled data set by connecting points xj and xi from xj to
xi if xj is one of the K nearest neighbors of xi measured by
the Euclidean distance. Let d(i, j) be the Euclidean distance



between point xi and point xj . Set edge weight wij equal to
d(i, j) if xi is one of the K nearest neighbors of xj , and set
n = M + N .
[Step 2: Compute the Non-propagating Heat Kernel]

Using Eq. (4), get the Non-propagating Heat Kernel H .
[Step 3: Compute the Heat Distribution] Let

fk(0) = (xk

1 , xk

2 , . . . , xk

M
, 0, 0, . . . , 0| {z }

N

)T ,

k = 1, 2, . . . , c, where xk

i
= 1 if Cki = Ck, xk

i
= 0 otherwise.

Then we obtain c results for f(∆t), namely, fk(∆t) =
Hfk(0), k = 1, 2, . . . , c.
By Eq. (5), fk(∆t) should be equal to (I + Æ∆tH)fk(0),

but the identity matrix I and the constant Æ∆t have no
effect on the classifier introduced in Step 4, so we simply
let fk(∆t) = Hfk(0). fk(0) means that all the data points
in class Ck have a unit heat at the initial time while other
data points have no heat, and the corresponding result fk(∆t)
means that the heat distribution at time ∆t is caused by the
initial heat distribution fk(0).
[Step 4: Classify the data] For l = 1, 2, . . . , N ,

compare the p-th (p = M + l) components of
f1(∆t), f2(∆t), . . . , fc(∆t), and choose class Ck such that
fk

p
(∆t) = maxc

q=1 fq

p
(∆t), i.e., choose the class that dis-

tributes the most heat to the unlabelled data xp, then classify
the unlabelled data xp to class Ck.
In Figure 1, we illustrate a neighborhood graph, in which

three cases are represented by circle and labelled as class 1,
two cases are represented by square and labelled as class 2,
and one case is represented by a triangle and is unlabelled.
According to Step 1, there is an edge from xj to xi if xj is
one of the K nearest neighbors of xi, and hence the in-degree
of each node is K. In the graph in Figure 1, K is set to be 2.

Fig. 1. Neighborhood Graph

Figure 2 shows how heat flows from one node to another
node when the initial heat is 1 at nodes in class 1 and 0 at other
nodes. A node diffuses heat only to its successors through
the directed edge. As a result of the non-propagating heat
diffusion, one square receives heat, represented by two small
circles, from its two circle predecessors; one square receives
heat, represented by one small circle, from its one circle prede-
cessor; the unlabelled data (triangle) receives heat, represented
by one small circle, from its one circle predecessor.

Fig. 2. Non-propagating Heat Diffusion Result on the Neighborhood Graph

Similarly Figure 3 shows the result of non-propagating heat
flow when the initial heat is 1 at nodes in class 2 and 0 at
other nodes.

Fig. 3. Non-propagating Heat Diffusion Result on the Neighborhood Graph

The unlabelled data (triangle) receives heat both from nodes
in class 1 and nodes in class 2. According to Step 4, we
classify the unlabelled data as the class from which it receives
the most heat. Through comparison the amount of heat in the
triangle in Figure 2 and Figure 3, we classify the unlabelled
data to class 2.
In this non-propagating heat diffusion classifier (NHDC),

we only consider the heat flow in a small time period, and
heat diffuses only once during such a period. We have two
free parameters in NHDC: K and Ø. In the next section, we
consider the propagating effect of infinitely many times of
heat flow: The heat diffuses to its neighbors first, then these
neighbors diffuse the heat further to their own neighbors. This
process continues until an appropriate time t is reached.

IV. PROPAGATING HEAT DIFFUSION CLASSIFIER

In this classifier, we replace the non-propagating heat dif-
fusion kernel H with the propagating heat diffusion kernel
e∞H . Consequently, the algorithm in Section III changes to
the following.
[Step 1: Construct neighborhood graph] The same as

Step 1 in Section III.
[Step 2: Compute the Propagating Heat Kernel] Using

Eq. (4) and Eq. (8), get the Heat Kernel e∞H .
[Step 3: Compute the Heat Distribution] fk(0) is the

same as Step 3 in Section III. Using Eq. (7), we obtain c
results for f(t), namely, fk(t) = e∞Hfk(0), k = 1, 2, . . . , c.



[Step 4: Classify the data] For l = 1, 2, . . . , N , compare
the p-th (p = M + l) components of f1(t), f2(t), . . . , f c(t),
and choose class Ck such that fk

p
(t) = maxc

q=1 fq

p
(t), i.e.,

choose the class that distributes the most heat to the unlabelled
data xp from time 0 to time t, then classify the unlabelled data
xp to class Ck.
Since we consider the propagating effect of heat diffusion,

this classifier is called Propagating Heat Diffusion Classifier
(PHDC). We have three free parameters in AHDBC: K, Ø and
∞.
Different from NHDC, after the first heat diffusion, the heat

will continue to diffuse in PHDC. The second heat diffusion
is based on the result of the first diffusion, which is roughly
illustrated by Figure 4 and Figure 5. The tiny circles mean less
amount of heat transmitted in the second diffusion, which may
directly come from data (circle) in class 1 or indirectly from
data (square) in class 2. The tiny squares have similar meaning.
For example, there are two tiny circles in the left-lowest large
square. They are the results of the second diffusion: One tiny
circle is transmitted indirectly from the small circle in the
right large triangle, and the other tiny circle is directly from
the large circle in the middle. When the time period ∆t tends
to zero and in fact our model acts this way, there is infinitely
many times t/∆t of heat diffusion from time 0 to time t.

Fig. 4. Second Heat Diffusion Result on the Neighborhood Graph

Fig. 5. Second Heat Diffusion Result on the Neighborhood Graph

Remark In Step 1, we construct only one graph over both
labelled data and unlabelled data by the method of K nearest
neighbors. There are many variants in this step:
1) We can construct the graph by other methods such as

≤-neighborhood.
2) We can construct c graphs: For each class Ck in turn,
construct graph by connecting all the unlabelled data

points and data points with label k. In such case, Step
3 and Step 4 need to be changed correspondingly.

V. INTERPRETATION

In Section II, we assume that the heat diffuses in the pipe
in the same way as it does in the m-dimensional Euclidean
space. Next we will justify this assumption.
It turns out [3] that in an appropriate coordinate system

Kt(x, y) on a manifold is approximately the Gaussian:

Kt(x, y) = (4ºt)°
m
2 exp(° ||x° y||2

4t
)(¡(x, y) + O(t)),

where ¡(x, y) is a smooth function with ¡(x, x) = 1 and O(t)
represents an ignorable term when t is small. Therefore when
x and y are close and t is small, we have

Kt(x, y) º (4ºt)°
m
2 exp(° ||x° y||2

4t
).

For more details, see [3] and [7].
In our graph heat diffusion model in Section II, we first

consider the heat flow in a small time period ∆t, and the pipe
length between node i and node j is small (recall that only
when j is one of the K nearest neighbors, we create an edge
from j to i). So the above approximation can be used in our
model, and we rewrite it as follows:

K∆t(i, j) º (4º∆t)°
m
2 exp(°

w2
ij

4∆t
). (9)

According to the Mean-Value Theorem and the fact that
K0(i, j) = 0, we have

K∆t(i, j) = K∆t(i, j)°K0(i, j)

= dK¢t(i,j)
d∆t

ØØØ
∆t=Ø

∆t

º Æ · exp(°w
2
ij

4Ø
)∆t,

where the last approximation is based on Eq. (9), Ø is a
parameter that depends on ∆t, and Æ = 1

4w2
ij

Ø°m/2°2 °
1
2mØ°m/2°1. To make our model concise, Æ and Ø simply
serve as free parameters that unrelated to ∆t and wij . This
explains why we assume that the at time t, each node i receives
M(i, j, t, ∆t) = Æ · exp(°w

2
ij

Ø
)(fj(t) ° fi(t))∆t amount of

heat from its neighbor j.

VI. CONNECTIONS WITH OTHER MODELS AND RELATED
WORK

In this section, we establish connections between NHDC
and other models, and connection between NHDC and PHDC.
We show that PWA (Parzen Window Approach [8] when the
window function is a multivariate normal kernel) and KNN
(K-Nearest-Neighbors) are actually special cases of NHDC,
and that PHDC can approximate NHDC. Finally, we compare
our heat kernel with those in the related work.



A. NHDC and Parzen Window Approach
First we review the Parzen Windows non-parametric method

for density estimation, using Gaussian kernels. When the ker-
nel function H(u) is a multivariate normal kernel, a common
choice for the window function, the estimate of the density at
the point x is

ep(x) =
1
M

MX

i=1

1
(2ºh2)d/2

exp(° ||x° xi||2

2h2
). (10)

When applying it for classification, we need to construct the
classifier through the use of Bayes’s theorem. This involves
modelling the class-conditional densities for each class sepa-
rately, and then combining them with priors to give models for
the posterior probabilities which can then be engaged to make
classification decisions [8]. The class-conditional densities for
class Ck can be obtained by extending Eq. (10):

ep(x|Ck) =
1

Mk

X

i:Cki
=Ck

1
(2ºh2)d/2

exp(° ||x° xi||2

2h2
), (11)

while the priors can be estimated using ep(Ck) = Mk
M

. Using
Bayes’ theorem, we get

ep(Ck|x) = 1
Mp(x)(2ºh2)d/2

P
i:Cki

=Ck

exp(° ||x°xi||2
2h2 ). (12)

If K = n° 1, then the graph constructed in Step 1 will be
a complete graph, and the matrix H in Eq. (4) becomes

Hij =

8
<

:
°

P
k 6=i

exp(°w
2
ik
Ø

), j = i;

exp(°w
2
ij

Ø
), j 6= i.

(13)

Then, in NHDC, the heat fk

p
(∆t) that unlabelled data xp

receives from the data points in class Ck will be equal toP
i:Cki

=Ck
exp(°||xp ° xi||2/Ø), which is the Eq. (12) if we

let ∞ = 1/Mp(x)(2ºh2)d/2, and Ø = 2h2. This means that
Parzen Window Approach when the window function is a
multivariate normal kernel can be considered as a special case
of NHDC (when we let K = n° 1 in NHDC).

B. NHDC and KNN
If Ø tends to infinity, then exp(°w

2
ij

Ø
) will tend to one, and

the matrix H in Eq. (4) becomes

Hij =

8
<

:

°Ki, j = i;
1, xj is one of the K nearest neighbors of xi;
0, otherwise.

(14)
Here Ki is the outdegree of the point xi (note that the indegree
of the point xi is K). Then, in NHDC, the heat fq

p
(∆t) that

unlabelled data xp receives from the data points in class Cq

will be equal to

fq

p
(∆t) =

X

i:li=Cq

1 = Kq,

where Kq is the number of the labelled data points from class
Cq , which are the K nearest neighbors of the unlabelled data

point xp. Note that when N = 1, i.e., when the number of
unlabelled data is equal to one,

P
c

q=1 Kq = K. According to
Step 4, we will classify the unlabelled data xp to the class Ck

such that fk

p
(∆t) = Kk is the maximal among all fq

p
(∆t) =

Kq. This is exactly what KNN does, and so KNN can be
considered as a special case of NHDC (when Ø tends to infinity
and N = 1).

C. NHDC and PHDC

When the parameter ∞ is small, we can approximate e∞H

in Eq. (8) by its first two items, i.e.,

e∞H º I + ∞H, (15)

then in PHDC, fk(t) = e∞Hfk(0) º fk(0) + ∞Hfk(0). As
the constant ∞ and the first item fk(0) impose no effect on
the classifier, PHDC possesses a similar classification ability
in this case as NHDC, in which fk(∆t) = Hfk(0). This
denotes the relation between NHDC and PHDC.

D. Related Work

The success in [1] is achieved partly because of the spe-
ciality of the geometry in the problem. For most geometries,
however, there is no closed form solution for the heat kernel.
Even worse, in most cases, the underlying geometry structure
is unknown. In such cases, it is impossible to construct the heat
kernel for the geometry in a closed form. In contrast, there is
always a closed form solution – a heat kernel for the graph
that approximates the geometry in our model. In [1] and [2],
heat kernel is applied to a large margin classifier; in contrast,
our kernel is employed directly to construct a classifier.
It is worthy to make a theoretical comparison between the

heat kernel in our model and that in [2] because it is impossible
to make an empirical comparison between them (as shown
below in the second item, their applications are different), and
because our heat kernel shows the same appearance e∞H as
that in [2]. We list below the major differences between them:
1) When the graph is symmetric and Ø tends to infinity,
the matrix H and the heat kernel e∞H in our model take
the same form as that in [2].

2) Our classifier is mainly concerned with the real-valued
data, while the proposed classifier in [2] aims at cate-
gorical data in their experiments.

3) Our graph is constructed by the K nearest neighbors
in order to approximate the discrete structure of the
unknown manifold, while in [2], for each attribute,
a graph is constructed by a hypercube, and then the
final diffusion kernel is the product of each individual
diffusion kernel.

4) Our model is created by the imitation of the non-
propagating heat diffusion and the propagating effect of
the local heat diffusion. The heat flow in the pipe be-
haves in the way of locality, and thus it can approximate
the heat kernel in the Euclidean space because the time
period and the pipe length are small. However, in [2],
there is no such consideration.



5) Limited to narrow applications, the kernel in [2] must
satisfy two mathematical requirements to be able to
serve as a kernel: It must be symmetric and positive
semi-definite. In contrast, without the limitation of being
applied to a kernel-based classifier, our heat kernel is not
necessarily symmetric and positive semi-definite.

Nevertheless, it is interesting to combine these two models
by considering the cases when there are both continuous
attributes and categorical attributes in the data set. Besides,
it is a challenge to apply our heat kernel to a kernel-based
classifier when the kernel is not symmetric. These deserve
further investigations, but are outside the scope of this paper.

VII. EXPERIMENTS
The Parzen Window Approach (PWA), KNN, NHDC and

PHDC are applied to six datasets from the UCI Repository.
Table I describes the datasets we use. The first column refers
to the names of the datasets, the second column refers to the
number of cases in each dataset, the third column refers to
the number of attributes. In the dataset Credit-g, we only
consider the seven continuous attributes while the thirteen
discrete attributes are ignored.

TABLE I
DESCRIPTION OF THE DATASETS

dataset Cases Classes Attributes
Credit-g 1000 2 7
Diabetes 768 2 8
Glass 214 6 9
Iris 150 3 4
Sonar 208 2 60
Vehicle 846 4 18

In order to make each attribute in the same scale, we prepro-
cess the datasets by transforming the domain of each attribute
to the interval [0,1]. Specifically, for each attribute i, we
transform the value x for attribute i by (x°min(i))/(max(i)°
min(i)), where min(i) and max(i) are the minimum and
maximum value of attribute i, respectively.
All four algorithms apply ten-fold cross-validations to tune

the free parameters in each task. The parameter setting is
shown in Table II. The figures shown in Table III are the
mean error rates of ten-fold cross-validations, and the last row
in Table III shows the average results.
The experimental results show that NHDC uniformly out-

performs PWA and KNN in accuracy, indicating the supe-
riority of our approach. Furthermore, PHDC improves over
NHDC.

VIII. CONCLUSION
We have presented two classifiers NHDC and PHDC by

imitating the way that heat flows in a medium with a geometric
structure. By approximating the manifold by the K nearest
neighbors graph, we can avoid the difficulty of finding the
explicit expression for the unknown geometry in most cases.
By establishing the heat diffusion equation on the graph, we

TABLE II
PARAMETERS SETTING OF PWA KNN NHDC AND PHDC

dataset PWA KNN NHDC PHDC
1/Ø K K 1/Ø K 1/Ø ∞

Credit-g 50 31 13 0 11 0 0.02
Diabetes 300 34 33 50 34 150 0.05
Glass 7500 3 40 1750 38 1500 0.27
Iris 350 7 15 0 13 50 0.47
Sonar 1150 3 24 1650 24 1200 0.41
Vehicle 650 10 8 350 10 600 0.11

TABLE III
MEAN ERROR RATES OF PWA KNN NHDC AND PHDC

dataset PWA(%) KNN(%) NHDC(%) PHDC (%)
Credit-g 27.65 24.41 23.90 23.94
Diabetes 25.04 24.22 23.70 23.78
Glass 28.44 29.36 27.01 26.88
Iris 2.93 2.64 2.64 2.21
Sonar 11.72 17.14 11.25 10.93
Vehicle 27.55 28.59 27.10 27.07
Average 20.56 21.06 19.26 19.14

avoid the difficulty of finding a closed form heat kernel for
some complicated geometries. Moreover, our solution to heat
equation has the property of heat preserving, but our heat
kernel is not symmetric and positive definite.
While NHDC is a generalization of both Parzen Window

Approach (when the window function is a multivariate normal
kernel) and KNN, PHDC can approximate NHDC if parameter
∞ is small. Both NHDC and PHDC are proven to be efficient
in our experiments.
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