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ABSTRACT
Multi-task feature selection (MTFS) is an important tool
to learn the explanatory features across multiple related
tasks. Previous MTFS methods fulfill this task in batch-
mode training. This makes them inefficient when data come
in sequence or when the number of training data is so large
that they cannot be loaded into the memory simultaneously.
To tackle these problems, we propose the first online learning
framework for MTFS. A main advantage of the online algo-
rithms is the efficiency in both time complexity and mem-
ory cost due to the closed-form solutions in updating the
model weights at each iteration. Experimental results on a
real-world dataset attest to the merits of the proposed algo-
rithms.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; H.2.8 [Database
Management]: Database Applications – Data Mining

General Terms
Algorithms

Keywords
Supervised learning, Online learning, Multi-task learning,
Feature selection, Dual averaging method

1. INTRODUCTION
Learning multiple related tasks simultaneously by exploit-

ing shared information across tasks has demonstrated advan-
tages over those models learned within individual tasks [2, 4,
7, 14]. A key problem of multi-task learning is to find the ex-
planatory features from these multiple related tasks. Some
existing methods impose the shared features by a general-
ized L1-norm regularization [1], or more specifically, a joint
regularization on the Lp,1-norm of the learning weights [11],
where p can be set to 1, 2, or ∞. These methods then se-
lect the subspace while seeking the weights of the decision
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functions by minimizing a convex optimization problem on
the sum of the joint regularization and the loss [11].

Although previous multi-task feature selection (MTFS)
methods succeed in several aspects, they still have some
drawbacks. First, these methods are conducted in batch-
mode training. The training procedure cannot be started
until the data are prepared. A fatal drawback is that these
methods cannot effectively solve the applications when the
training data appear in sequence. The second drawback is
that these algorithms suffer from inefficiency when the size
of training dataset is huge, especially when the data cannot
be loaded into memory simultaneously. In this case, one may
have to conduct additional procedure, e.g., subsampling, to
choose the data for training. This may degrade the model
performance since the given data are not sufficiently utilized.
The third drawback is that most previous MTFS methods
can only select features in individual tasks or across all tasks,
but cannot find the important tasks further from the impor-
tant features. This reduces the ability of the MTFS methods
in further mining more important information.

To tackle the above problems, we first develop a novel
MTFS model, named multi-task feature and task selection
(MTFTS), which selects important features across all tasks
and important tasks that dominate the selected features.
More importantly, we further propose the first online learn-
ing framework to transform the batch-mode MTFS models
into their online ones. We derive closed-form solutions for
the MTFS models to update their weights at each itera-
tion. This guarantees the efficiency of the algorithms in
both time complexity and memory cost, whose worst cases
are O(d×Q), where d is the number of features and Q is the
number of tasks. Finally, we conduct detailed experiments
on a real-world dataset to demonstrate the characteristics
and merits of the proposed online learning algorithms.

2. MULTI-TASK FEATURE SELECTION
Suppose there are Q tasks and all data of the tasks come

from the same space X ×Y. For simplicity, we assume that
X ⊂ ℝd and Y ⊂ ℝ. For each task, we have Nq data points.

This constitutes a dataset of D =
∪Q
q=1Dq, where Dq =

{zqi = (xqi , y
q
i )}Nq

i=1 are sampled from a distribution Pq on
X × Y. Here, Pq is usually assumed different for each task
but all Pq’s are related, e.g., as discussed in [4]. The goal of
multi-task learning (MTL) is to learn Q functions fq : ℝd →
ℝ, q = 1, . . . , Q such that fq(x

q
i ) approximates yqi . When

T = 1, it is the standard (single task) learning problem.
Typically, in multi-task learning models, the decision func-

tion fq for the q-th task is assumed as a hyperplane param-
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eterized by the model weight vector wq [1, 11], i.e.,

fq(x) = wq⊤x, q = 1, . . . , Q. (1)

To make the notation consistent, we express the weight ma-
trix in rows and columns as

W=
(
w1, . . . ,wQ

)
=(W∙1, . . . ,W∙Q)=

(
W⊤

1∙, . . . ,W
⊤
d∙

)⊤
(2)

The objective of multi-task feature selection models is to
seek the weight matrix W by minimizing an empirical risk
with a regularization on the weights:

min
W

Q∑
q=1

1

Nq

Nq∑
i=1

lq(W∙q, z
q
i ) + Ω�(W), (3)

where � ≥ 0 is a constant to balance the loss and the regu-
larization term. lq(W∙q, z

q
i ) defines the loss on the sample

zqi for the q-th task. Various loss functions, e.g., squared
loss, logit loss, hinge loss, etc., can be adopted and they are
usually assumed convex.

In (3), Ω�(W) defines the regularization on the weights
of tasks. Various mixed norms on the weight vectors have
been proposed in the literature to impose sparse solutions
so as to select the important features [1, 11]. They include

L1,1-norm Regularization: An individual multi-task fea-
ture selection (iMTFS) model simply penalizes a sum
of the L1 regularizations on the weights of all tasks
together to yield sparse solutions,

Ω�(W) = �

Q∑
q=1

∥W∙q∥1 = �

d∑
j=1

∥∥∥W⊤
j∙

∥∥∥
1
. (4)

The above formulation is equivalent to solving a lasso
problem for each task independently when the squared
loss is used [11]. The reason that L1-regularization
can yield sparse solutions is that it usually attains the
solutions at the corner [12].

L2,1-norm Regularization: This model penalizes the L1-
norm of the vector of the weight of L2-norms of the
weight vectors across tasks, namely aMTFS [9, 11],

Ω�(W) = �

d∑
j=1

∥∥∥W⊤
j∙

∥∥∥
2
. (5)

This regularization tends to select features based on
the strength of the variables of the Q tasks jointly,
rather than on the strength of individual input vari-
ables [1, 11].

Remarks: Although the above introduced MTFS models
find the decision functions in linear form, it is noted that
by projecting the data points on a random direction in the
Reproducing Kernel Hilbert Space (RKHS), one can attain
non-linear solutions on the original space [11].

3. MULTI-TASK ON BOTH FEATURE AND
TASK SELECTION

The aMTFS model usually selects important features across
all tasks; however, it yields non-sparse solutions for the se-
lected features [11]. Hence, in order to find out important
explanatory features across all tasks and to find out the im-
portant tasks dominating the selected features simultane-
ously, we propose the multi-task feature selection method

on both feature and task selection (MTFTS) by introducing
a new L1/2,1-norm regularization as follows:

Ω�,r = �

d∑
j=1

(
rj

∥∥∥W⊤
j∙

∥∥∥
1

+
∥∥∥W⊤

j∙

∥∥∥
2

)
, (6)

where rj ≥ 0, for j = 1, . . . , d, is a constant balancing the
L1-norm and the L2-norm of the weights on the j-th feature
across all tasks. By imposing L1-norm on the weight of each
feature, we can further find out the important tasks from the
selected features.

4. ONLINE LEARNING FOR MULTI-TASK
FEATURE SELECTION

To tackle the insufficiency of batch-mode training algo-
rithms and motivated by the recent success of online learn-
ing algorithms for solving the L1-regularization problem [3,
6, 8, 13], we propose an online learning framework as follows:

Algorithm 1 Online learning framework for multi-task fea-
ture selection

Input:
∙ W0 ∈ ℝd×T , and a strongly convex function ℎ(W)

with modulus 1 such that

W0 = arg min
W

ℎ(W) ∈ arg min
W

Ω(W) . (7)

∙ Given a const � > 0 for the regularizer.
∙ Given a const  > 0 for the function ℎ(W).

Initialization: W1 = W0, Ḡ0 = 0.
for t = 1, 2, 3, . . . do

1. Given the function lt, compute the subgradient
on Wt, Gt ∈ ∂ lt for the coming instances,
(z1
t , . . . , z

Q
t ).

2. Update the average subgradient Ḡt:

Ḡt =
t− 1

t
Ḡt−1 +

1

t
Gt

3. Calculate the next iteration Wt+1:

Wt+1 = arg min
W

{
Ḡ⊤t W+Ω�(W)+

√
t
ℎ(W)

}
(8)

end for

Remarks: Algorithm 1 is inspired by the recently de-
veloped first-order methods for optimizing convex compos-
ite functions in [10] and the efficiency of the dual averaging
method for minimizing the L1-regularization in [13, 15]. It is
noted that in the above framework, we assume at each iter-
ation, Q instances, (x1

t , . . . ,x
Q
t ), one instance for a task, are

observed as that in [5]. In addition, the regret, the difference
of the objective value up to the T -th step and the smallest
objective value from hindsight, is guaranteed in O(

√
T ).

The following theorem indicates the weights of the online
MTFS algorithms can be efficiently updated in closed-form
solutions:

Theorem 1. Given the average subgradient Ḡt, and ℎ(W) =
1
2
∥W∥2F , at each iteration, the optimal solution of the cor-

responding MTFS models can be updated by
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∙ iMTFS: For i = 1, . . . , d and q = 1, . . . , Q,

(Wi,q)t+1 = −
√
t



[
∣(Ḡi,q)t∣ − �

]
+
⋅ sign((Ḡi,q)t). (9)

∙ aMTFS: For j = 1, . . . , d,

(Wj∙)t+1 = −
√
t



[
1− �

∥(Ḡj∙)t∥2

]
+

⋅ (Ḡj∙)t. (10)

∙ MTFTS: For j = 1, . . . , d,

(Wj∙)t+1 = −
√
t



[
1− �

∥(Ūj∙)t∥2

]
+

⋅ (Ūj∙)t, (11)

where the q-th element of (Ūj∙)t is calculated by

(Ūj,q)t =
[
∣(Ḡj,q)t∣ − �rj

]
+
⋅sign((Ḡj,q)t), q = 1, . . . , Q.

(12)

Remarks: The proof of Theorem 1 is lengthy and omit-
ted here. Equation (9) implies that the online learning al-
gorithm for the iMTFS can yield sparse solutions in the ele-
ment level, but it does not utilize any information across all
tasks. Equation (10) indicates that the online learning al-
gorithm for the aMTFS can select those important features
in a grouped manner and it will discard irrelevant features
for all tasks. Equation (11) implies that the online learn-
ing algorithm for the MTFTS can select important features
and important tasks dominating the selected features. Since
∥(Ūj∙)t∥2 ≤ ∥(Ḡj∙)t∥2, the MTFTS tends to select fewer
features than the aMTFS under the same regularization pa-
rameter.

5. EMPIRICAL ANALYSIS
In the following, we conduct detailed experiments to demon-

strate the characteristics and merits of the online learning
algorithms on the MTFS problem. Five algorithms are com-
pared: the batch-mode learning algorithms for the iMTFS
and the aMTFS; the online learning algorithms by the dual
averaging method for the iMTFS (DA-iMTFS) updated by
Eq. (9), for the aMTFS (DA-aMTFS) updated by Eq. (10),
and for the MTFTS (DA-MTFTS) updated by Eq. (11), re-
spectively. All algorithms are run in Matlab on a PC with
2.13 GHz dual-core CPU.

5.1 Dataset and Experimental Setup
We choose the school dataset 1, which has been previously

tested on the batch-mode trained multi-task learning [2, 7]
and multi-task feature learning [1, 9], in the evaluation.
This dataset consists of the exam scores of 15,362 students
from 139 secondary schools in London during the years 1985,
1986, and 1987. The goal is to predict the exam scores of
the students based on 27 features. More details about the
features and data can be referred to [1, 7]. Hence, we obtain
139 tasks (Q = 139) and d = 27.

Following the same evaluation criterion in [1, 2, 7], we
employ the explained variance, one minus the mean squared
test error over the total variance of the data (computed
within each task), and the percentage of variance explained
by the prediction model. It corresponds to a percentage ver-
sion of the standard R2 error measure for regression on the
test data [2].

1http://ttic.uchicago.edu/˜argyriou/code/mtl_feat/
school_splits.tar

Table 1: Best explained variance and the corre-
sponding NNZs for different methods.

Method
Explained

NNZs Parameters
variance (%)

aMTFS 21.0±1.7 815.5±100.6 � = 300
iMTFS 13.5±1.8 583.0±16.6 � = 40

DA-aMTFS 20.8±1.8 605.8±180.3
� = 20,  = 1
epoch=120

DA-MTFTS 20.8±1.9 483.7±130.7
� = 20,  = 1
epoch=120

DA-iMTFS 13.5±1.8 1037.1±21.4
� = 1,  = 50
epoch=120

Since the task is a regression problem to predict the exam
scores of the students, we use the squared loss in the algo-
rithms. In the training, we randomly generate 20 sets of
training data and apply the rest data as the test data. The
number of training data is set to be the same, i.e., half of
the minimum number of data among all individual tasks,
which meets the requirement of Algorithm 1 that there is
an instance in a task at each iteration.

5.2 Performance Comparison
Table 1 reports the best performance and the correspond-

ing parameters obtained by the five algorithms. For the
batch-mode algorithms, the best results are obtained by
tuning the parameters � in a hierarchical scheme, from a
large searching step in the whole parameter space to a small
searching step in a small region. As a reference, the largest
� making all the weights of the aMTFS vanish is about 1,000
and is about 100 for the iMTFS, respectively. For the on-
line algorithms, the parameters are tuned by the grid search
scheme in a hierarchical way. The number of epoches is
varied to attain better performance. Here, multiple epoches
mean that cycling through all the training examples multiple
times with a different random permutation for each epoch.
The sparse parameter in the DA-MTFTS is set to 0.01 at
each task for simplicity in all the experiments.

There are several observations from Table 1. First, the re-
sults of the aMTFS vs. the iMTFS and the DA-aMTFS/DA-
MTFTS vs. the DA-iMTFS clearly show that learning mul-
tiple tasks simultaneously can gain over 50% improvement
than learning the task individually. Second, the DA-aMTFS
and the DA-MTFTS attain the same explained variance,
which is nearly the same as that obtained by the aMTFS.
Both the number of non-zeros (NNZs) in weights obtained
by the DA-aMTFS and the DA-MTFTS is less than that
obtained by the aMTFS. More specially, the NNZs of the
DA-aMTFS is about 25% less than that of the aMTFS.
The DA-MTFTS gets fewer NNZs than the DA-aMTFS,
about 20% decrease in the number. This indicates that the
learned DA-aMTFS and the DA-MTFTS are easier to be
interpreted. Third, the DA-iMTFS obtains the same per-
formance as that of the iMTFS and selects more NNZs than
the iMTFS.

Figure 1 further shows the trade-off between the regular-
izer parameter � and the algorithm parameter . The test
first fixes one parameter to their best ones and varies the
other. The best results of the batch-mode trained models
are also shown for reference. From the results, we know that
the number of non-zero elements (NNZs) decreases as � in-
creases for all three online algorithms. The best results are
obtained when � = 1 for the DA-iMTFS and when � = 20
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Figure 1: Trade-off results on the regularizer parameter � and the online algorithm parameter .

for both the DA-aMTFS and the DA-MTFTS. By varying
, it is shown that NNZs increases as  increases. The best
ones are obtained when  = 50 for the DA-iMTFS and when
 = 1 for the DA-aMTFS and the DA-MTFTS. The results
indicate that usually for a given dataset, the best � and 
have to be tuned based on the given data.

For the running time of the algorithms, it is usually very
difficult to carry out a fair comparison among different al-
gorithms, due to the implementation issue, the choice of al-
gorithm parameters, and different stopping criteria. A the-
oretical analysis of the convergence rate of the algorithms
has been conducted in our research and can be referred to
the corresponding papers in [1, 9, 11]. As a reference, the
running time of the DA-MTFTS, the slowest MTFS on-
line algorithms in this paper, costs 1.15 second when the
number of epoches is 120. The running time of the batch-
mode aMTFS [1] with the setting of “epsilon init=0”, “it-
erations=50”, and “method=3” is 1.30 second. The online
algorithms reduce about 15% running time compared to the
batch-mode aMTFS algorithm.

6. CONCLUSIONS
In this paper, we propose the first online learning frame-

work to solve the multi-task feature selection models, which
also includes our developed novel MTFTS model to seek
both important features and important tasks dominating
the selected features. We derive closed-form solutions to
update the weights of the MTFS models, which guarantees
the online learning algorithms work very efficiently in both
time and memory cost. Our detailed empirical study on a
real-world dataset demonstrates the merits of the proposed
online MTFS algorithms in various aspects.

Some future work are worth considering. First, it is in-
teresting to extend the current linear MTFS methods to
non-linear forms by the projection method to improve the
model performance. Second, our proposed online algorithms
require that at each iteration, one and only one instance is
from each task. It is interesting to know how to balance the
weight update when the instances of some tasks are miss-
ing. Third, the proposed online algorithm framework as-
sumes the training samples are independent and identically-
distributed. It is attractive to consider the case where the
i.i.d. assumption does not hold in practice.
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