
SpyAware: Investigating the Privacy Leakage

Signatures in App Execution Traces

Hui Xu∗†, Yangfan Zhou†‡, Cuiyun Gao∗, Yu Kang∗†, Michael R. Lyu∗

∗ Dept. of Computer Science, The Chinese University of Hong Kong
† MoE Key Laboratory of High Confidence Software Technologies (CUHK Sub-Lab)

‡ Dept. of Computer Science, Fudan University

Abstract—A new security problem on smartphones is the
wide spread of spyware nested in apps, which occasionally and
silently collects user’s private data in the background. The
state-of-the-art work for privacy leakage detection is dynamic
taint analysis, which, however, suffers usability issues because it
requires flashing a customized system image to track the taint
propagation and consequently incurs great overhead. Through
a real-world privacy leakage case study, we observe that the
spyware behaviors share some common features during execution,
which may further indicate a correlation between the data
flow of privacy leakage and some specific features of program
execution traces. In this work, we examine such a hypothesis
using the newly proposed SpyAware framework, together with a
customized TaintDroid as the ground truth. SpyAware includes a
profiler to automatically profile app executions in binder calls and
system calls, a feature extractor to extract feature vectors from
execution traces, and a classifier to train and predict spyware
executions based on the feature vectors. We conduct an evaluation
experiment with 100 popular apps downloaded from Google
Play. Experimental results show that our approach can achieve

promising performance with 67.4% accuracy in detecting device
id spyware executions and 78.4% in recognizing location spyware
executions.

I. INTRODUCTION

Smartphone systems are generally designed to embrace
third-party applications. While such applications enrich the
features of smartphones, they also bring some security and
privacy issues [34]. An emerging challenge is the wide spread
of spyware nested in apps, which occasionally collects data
(e.g., contact list, and location), and transmits them to remote
servers without user’s awareness [28]. These behaviors usually
have a strong economic drive [16]. For example, a shopping
application, or an advertiser could infer a user’s interests from
her browser history. The coming big data era even stimulates
more needs to hunt data. Such a security issue caused by
spyware on smartphone is also known as privacy leakage. It
is very difficult for experts to judge whether an app leaking
user’s data should be deemed malicious. It depends on the
features of the app, and more importantly, the user’s personal
preference or acceptance. Hence, traditional malware disposing
approaches are not applicable for this issue, because they may
either introduce many false positives or many false negatives.
An intuitive idea for combating such privacy leakage issues is
to reach out to user’s awareness, leaving her to decide whether
the leakage is acceptable.

Currently, the state-of-the-art approach for detecting pri-
vacy leakage is dynamic taint analysis, which tracks the data
flow during app execution [10]. It first labels privacy-sensitive

data as taint sources. Any program value whose computation
depends on a taint source is also considered as tainted. In
this way, the privacy leakage can be detected via monitoring
whether the data being transmitted is tainted. However, such
an approach generally incurs great overhead when tracking
the taint propagation process. Moreover, it requires the user
to flash a customized system image to replace the original
operating system (e.g., Android), which is risky and not
practical for ordinary users.

Through a case study of privacy leakage issues with
several apps, we observe that the occurrences of spyware
behaviors share some common features, for example, leakages
usually happen during app launch time, or when starting a
new activity, and a leakage usually involves several network
operations. We further infer that the data flow of leakages
may have a correlation with some specific features of the
program execution traces. If such a correlation can be verified,
the execution trace may serve as a viable means for privacy
leakage detection, which is much easier to be obtained than
the taint propagation information.

To this end, we design the SpyAware framework, and
adopt TaintDroid [10] as the leakage ground truth. SpyAware
is mainly composed of a profiler, a feature extractor and
a classifier. The profiler can instrument apps during their
launch time, and capture their runtime program execution
traces, including the binder calls and system calls. The traces
are then separated into segments according to each user
interface (UI) event. Each trace segment is defined as a
profile of the program execution with respect to the UI
event. From binder calls, the private data access behaviors
can be easily identified by matching certain special calls
(e.g., reading the short messages usually involves calling
com.android.IContentProvider with the parameter
content://sms). If a profile involves a read behavior to
some private data, the profile can be deemed as suspicious.
For further evaluating, we first extract the feature vector of
the suspicious profile, i.e., the signature, and then let the
classifier discriminate whether it indicates a spyware behavior.
The features in our approach retain no app speciality, and thus
the signatures from other apps are also helpful in detecting the
leakage behaviors of an unstudied app. With such a cross-app
detection ability, our approach does not require learning the
signatures of all apps available on Google Play before hand,
and thus would not suffer scalability issues.

We have conducted an experiment to evaluate the ef-
fectiveness of our approach based on 100 popular apps
downloaded from Google Play. The experimental results show

1

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 12:46:58 UTC from IEEE Xplore. Restrictions apply.

that our approach can achieve promising performance with
67.4% accuracy in detecting device id spyware behaviors and
78.4% in detecting location spyware behaviors. To our best
knowledge, this paper serves as the first attempt to investigate
the correlation between the data flow of privacy leakage issues
with execution traces. Our tools, together with the experimental
data, are publicly available to facilitate follow-up research1.

The rest of this paper is organized as follows: Section II
overviews the technical background. Section III introduces our
motivation with a privacy leakage case study and the problem
definition. Section IV illustrates our methodology with detailed
instrumentation, feature extraction and classification methods.
In Section V, we evaluate the performance of our approach.
Related work is discussed in Section VI. Finally, Section VII
concludes this paper.

II. BACKGROUND OF THE RESEARCH

A. Threat Model

In this paper, we assume the following adversary model:
Android apps, downloaded from Google Market and installed
on smartphones, may read private data stored on the phone,
and transmit such data via network. The private data can be
classified into four categories listed bellow:

a) Basic Phone Data: The data such as call history,
contact list, and SMS are related to the basic features of a
classic feature phone. Android defines standard URIs (Uniform
Resource Identifiers) for such data, which can be employed by
applications to retrieve them (e.g., com.android.phone).

b) Application Data: Android allows the installations of
third-party apps to enrich their features. Such applications
usually have their own data stored in the phone (e.g.,
bookmarks), which may be privacy-sensitive as well. Android
also provides URI-based approach to retrieve such data. For
example, a URI like ‘content://browser/bookmarks’ is for
bookmarks.

c) Sensory Data: A key innovative feature of smart-
phones is employing various kinds of sensors to enrich the
functionality of applications. General sensors include GPS,
accelerometer, proximity sensor, microphone and camera.
Android provides standard APIs to acquire data from them.

d) Hardware Info: This category includes information
regarding the identity of the smartphone, such as IMEI
(International Mobile Equipment Identity), ICCID (Integrate
Circuit Card Identity) and SN (serial number). Android also
provides standard APIs to retrieve them.

The leakage of the aforementioned private data would be
harmful if the data are misused. For example, the SMS or
some private photos can be misused by attackers to commit
frauds. Note that some data we listed above seem irrelevant to
a user’s privacy, like IMEI; but they are. For example, IMEI
can be used by service providers to uniquely track a device. To
some users who are less concerned with privacy, the tracking
may be acceptable. However, it may not be so to other users
whose privacy is sensitive. A service provider may infer that
two users have close relationship if they use the same device

1Project URL: http://xuhui.me/spyaware.

���� ����

��	
����
����
�
��
����

����	���
���

��	
�����

������� ���

����

� � �

(a) Anti-virus software cannot detect privacy leakage issues if the data have
been transformed (e.g., encrypted)

���� ����

��	
����
����
�
��
����

����	���
���

��	
�����

������� �������

����

��
�� �	������
��

(b) Dynamic taint analysis is able to track the sensitive data even if they
have been transformed, and is hence effective for the privacy leak detection

Fig. 1: The limitation of anti-virus software in detecting
privacy leakage

to login their accounts. Therefore, user’s awareness about such
adversaries is very important for combating privacy leakage.

B. Limitations of Current Solutions

1) Anti-virus Software: Android adopts an installation-
time permission granting mechanism, i.e., users are required
to accept a permission granting list declared by an app
so as to install it [31]. A recent study shows only 17%
Android users pay attention to the permission declaration
during installation [12]. As a result, many apps declare and
use permissions that are not consistent. Targeting on this
security issue, some widely adopted Android security packages
(e.g., LBE [1] and Qihoo360 [2]) provide features to enhance
the permission mechanism. They can promote users’ control
over the permission usage after installation by hooking into
Android permission-check methods. Once a permission check
is invoked, they can display a dialogue requiring user’s
granting or simply send a notification. Such mechanisms
alleviate the permission over-privilege problem. However, they
cannot know whether a permission usage will eventually cause
a leakage, because they do not track the data flow of the private
data. Fig. 1 illustrates such a limitation in comparison to the
dynamic taint analysis approach.

2) Dynamic Taint Analysis: To analyze software behaviors,
dynamic taint analysis is one of the most commonly adopted
approaches. It can detect privacy leakage by tracking the
information flow between sources and sinks during software
runtime. Such an approach can be implemented at the instruc-
tion level, which incurs great overhead, or at higher levels
which introduces some degree of capability sacrifice [10].

To our best knowledge, neither official, nor third party
Android smartphone manufacturers enable the dynamic anal-
ysis feature within the source code. In order to use such a

2

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 12:46:58 UTC from IEEE Xplore. Restrictions apply.

feature, users have to download Android source code first,
and then get some extra patches (e.g., TaintDroid) provided
by the developers. They should compile the OS source code
together with the patches to build a new Android OS image
with taint features enabled, and then flash the new image into
their smartphones. The process is very complex, and is usually
impractical for ordinary users. Moreover, it involves great risks
that the smartphones would not function after flashing a new
image, thus discouraging a wide adoption.

C. Android-specific Characteristics

Android is by nature a framework built on top of Linux.
Apps are installed and managed through the framework.
In order to simplify app development, Android provides
standard system services (e.g., com.android.phone) for par-
ticular features, which run as background processes. To
facilitate inter-process communications (IPCs) and provide
centralized security controls, Android adopts a binder-based
IPC mechanism. Binder-based IPC is extensively used during
application lifecycle, for example, when refreshing screen
display, or when acquiring network status. Fig. 2 overviews
the architecture of such a mechanism.

Fig. 2: Architecture of binder-based IPC

In Android, a binder is a virtual device specially tailored for
IPC. Processes communicate with each other through binder
calls via such a device. To connect with the binder, a process
is usually required to be registered in the service manager
with a unique name identifier (i.e., usually a domain name)
and a handler. When a process wishes to communicate with
another process, it has to wrap the handler together with binder
calls into a BpBinder object. Usually before that, the process
has to look up the handler of the target process by inquiring
the service manager. Hence, if we can capture such binder
calls, we would be able to interpret them and get some useful
information, e.g., which service an app is communicating with.

III. MOTIVATION OF THE PROBLEM

A. A Privacy Leakage Case Study

To study the behavior characteristics of privacy leakage, we
manually run 100 popular apps on Galaxy Nexus installed with
TaintDroid. Those apps are downloaded from Google Play,
and belong to several categories, including social, housing,
shopping, game, etc. Our findings are summarized as follows:

Leakage is very common among apps: Among all those
apps, 69 apps leak data. Device id (e.g., ICCID, IMEI) and
location are the most popular data types of leakages. Besides,
we also find ten apps leaking the contact list, three leaking
SMS, and one leaking bookmarks.

Reading sensitive data does not imply a leakage: In
general, a leakage usually starts with a read behavior on
private data. However, as we have discussed, it is also possible
that the data would be used locally, thus not committing
a leakage. During our case study, besides taint leakage
notifications, we also monitor the binder calls to find such
read behaviors. As a result, we find that such leakage-free
read behaviors are very common in real world apps.

Some leakages are not intended by users: For several
leakage cases, when the leakage notifications are reported by
TaintDroid, we do not expect our operation would trigger these
leakages, which means these leakages are not intended by
users. For example, com.chinamobile.contacts.im
provides features for users to backup their contacts to the
server side. Users can press the backup button or activate the
auto synchronization function to use this feature. However,
during the experimental process, we notice that there are
leakages detected by TaintDroid even when users do not press
the button or activate the auto synchronization function. As a
result, users cannot realize that their private data have been
leaked.

A portion of the leakages happen during app launch time:
Over 35 apps leak data when we launch them, which also
implies that those leakages are not intended by users.

Privacy leakage usually happens when starting a new
activity: We observe some leakages happen when starting a
new activity. This is reasonable as a new activity usually
involves some new features, which may require private data.
For example, when clicking search friends button on a social
app, a new activity is created, which requires the location data
to recommend friends nearby.

Several leakages follow one read behavior: During our
experimental process, we observe that several leakage noti-
fications may be triggered after one single read behavior.
Logically, it is not reasonable for an app developer to retrieve
the same data (e.g., IMEI) twice. We think some of these
leakage notifications may be false positives because taint
analysis tends to incur such problems during taint propagation
process. The variables and memory spaces are likely to be
contaminated. To avoid being interfered by them, in our later
methodology and evaluation process, we only focus on the UI
events that contain read behaviors.

B. Problem Definition

According to the observations in the previous case study,
we find that there might be a correlation between the data
flow of privacy leakage issues with some features of program
executions. In other words, if certain features of the program
execution are detected, it might imply a leakage has happened.
Fig. 3 visualizes such a problem with four sample traces. Each
of the traces contains a read behavior, and is thus deemed
suspicious. The problem can be defined as whether there
are statistical differences between certain features of spyware
execution traces and benign traces. For example, the gray spots
(i.e., some specific instructions either previous to or posterior
to the Read) in Fig. 3 may serve as such features. It is worth
noting that the send behaviors in Fig. 3 cannot be directly
tracked through execution traces without taint propagation.

3

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 12:46:58 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Four exemplary execution sequences related to different
privileged data reading behaviors

Fig. 4: Overall framework of SpyAware

Finally, if the hypothesis is true, we can solve the data
flow analysis problem through a heuristic approach that only
requires analysing the program execution trace, whose data are
much easier obtainable in real-world scenarios.

IV. OUR APPROACH

SpyAware employs binder calls and system calls to profile
app dynamic executions, and discriminates privacy leakage
behaviors accordingly. As we have discussed in Section II,
a privacy leakage behavior usually starts with a read, which
can be detected through binder calls. The challenging part is to
determine whether the read behavior will eventually cause a
leakage. Therefore, we first detect suspicious execution profiles
which contain the read behaviors, and then evaluate whether
each suspicious profile should be classified as a spyware
execution.

The evaluation process involves two phases: a training
phase and a detection phase. In the training phase, a number
of labelled profiles (i.e., the execution trace segment together
with whether it indicates a leakage) are processed so as
to learn the leakage signatures. In the detection phase, the
runtime suspicious profiles captured during execution, which
may or may not involve leakages, are labelled according
to the signatures trained in the training phase. In this way,
our approach can detect runtime leakage behaviors. Fig. 4
illustrates the overall framework.

Our approach is composed of two major components: 1) a
portable profiler to instrument app dynamic executions, and
to obtain the corresponding profiles of each UI event. 2)
a pattern recognition algorithm to extract features from the

profile samples, and to classify them. We discuss the details
of each part in what follows.

A. App Instrumentation

Currently, the most widely adopted instrumentation ap-
proach on Android or other linux kernel-based OS is to trace
system calls [7], which has been proved very effective in
detecting some malware families. However, system calls are
too low-level, and contain little Android-specific semantic
information. We can even hardly know whether the privileged
data have been accessed by using system calls only. Therefore,
system calls are not enough for detecting spyware behaviors.
Besides system call, a new light-weight approach specially
tailored for Android OS is needed. Our approach is to
leverage the characteristics of Android binder-based IPC and
trace binder calls accordingly, which contain rich semantic
information. Also, the profiler should be pluggable, and easy
to use in the wild. We discuss the detailed design as follows.

1) Profile Binder Transactions: Binder-based IPC is a
unique feature on Android, and is extensively used during an
app lifecycle. Binder is a virtual device that allows processes
to register with unique name identifiers (mapping to handlers)
for calling each other. Each process communicates with the
binder through a native library, i.e., libbinder.so. With
the methods provided by libbinder.so, a binder call is
wrapped into parcel first, and is eventually sent via ioctl
(i.e., a function of libc.so) in binder_write_read
structure. Fig. 5 illustrates the details of such a data structure.
The content of binder calls can be interpreted by properly
decoding the data. Fig. 6 is an example of the data after
decoding.

�	
�� �
!�
�	
�� �����"��
�	
�� ��##�	
	��� �
!�

	��� �����"��
	��� ��##�	

�������	
����	���� �������	����������	����

$%&&'(�
�'�'

$%&&'(�
�'�'

$%&&'(�
�'�'
)

�����

��	���
����
�
����
#����

�����	 �
�
�����	 ��
�
���� �
!�
�##���� �
!�

����

$%&&'(� * �
+$ �	������
��
+$ ����,
+� �	������
��
+� 	���,

�������	�

Fig. 5: The data structure of a binder call

To instrument the binder call of a target process, we can
hook the ioctl of libbinder.so. We inject a dynamic
library into the maps file of the target application process. The
library contains a customized ioctl function. We modify the
address of ioctl within the GOT (Global Offset Table) of
libbinder.so, so that all the related ioctl function calls
can be redirected to our customized ioctl. An interpreting
process is performed by decoding the parameters of ioctl
according to the data structure shown in Fig. 5. The calls are
redirected to the real ioctl afterwards. Note that, in this
way, we may also intercept ioctl calls for other I/O devices,
which can be filtered out easily by interpreting their parameter
values (i.e., the value of the request parameter should be
BINDER_WRITE_READ). Using the such an instrumentation
method, we can trace all the binder calls.

4

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 12:46:58 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: An example of decoded data when accessing contact
list. We use “*” to represent data which are binary codes (i.e.,
not human-readable texts)

To obtain useful information from BINDER_WRITE_READ
structured data as shown in Fig. 5, we decode the data
field within binder_transaction_data. Fig. 6
shows an example of such data. We observe that the
data along with BC_TRANSACTION (i.e., a binder
command type) usually start with a name identifier (e.g.,
‘android.app.IActivityManager’ of the first sequence), and
are followed by the corresponding parameters. In general,
binder transaction data are very complex. For example,
some data in Fig. 6 have ‘*’ (i.e., binary code) and very
specific details which may not be repeatable. A profile would
not be helpful for spyware behavior detection if it is not
repeatable. Therefore, we only reserve the name identifiers
of BC_TRANSACTION data to represent a binder call, which
should follow the Android framework standard. Note that
there are four binder command types defined by Android,
but during our experiment, we find only two of them are
used, i.e., BC_TRANSACTION and BR_REPLY. For the data
following BC_REPLY, we discard them directly since most
of them are very specific and data dependent. Fig. 7 shows
an example of traces after stemming.

Fig. 7: Example of stemmed binder calls for Fig. 6

By analyzing the original BC_TRANSACTION data, we
can identify private data access behaviors. For example, a
URI ‘content://sms’ indicates that the app is reading SMS
via content provider. We observe that most of the binder-

based private data readings can be captured similarly. Fig. 8
defines several signatures which indicate possible private data
readings.

Fig. 8: Example signatures in binder calls which indicate
possible private data readings

2) Profile System Calls: Strace is a standard system call
tracing tool on Android platform, which we employ directly
to instrument system calls. Since system calls contain little
Android semantic information, and their parameters are usually
very specific and data-dependent, we stem the parameters and
reserve only their function names in the profile.

3) Separation of Traces: During the program executions,
the profiles of successive operations are concatenated with
each other. Since the objective of our work is to find
the relationships between UI operations and data leakage
behaviors, the profiles should be separated according to UI
events. On Android platforms, UI events can be captured
directly via reading the input data to the devices under /dev.
Android also provides a standard tool, i.e., getevent, to
retrieve these UI events in a simple manner. In our work, we
manually write such a tool based on getevent.

B. Feature Extraction

In this section, we define several features that can be
applied to discriminate leakage profiles from other suspicious
ones. Since our work aims at detecting privacy leakage during
runtime, the feature extraction and classification methods
should be performed online eventually, which implies that the
features should be easily extracted and compared. Hence, we
define all the features as binaries, i.e., the values should be 0
or 1.

1) Read on Launch: According to the previous case study,
many privacy leakage behaviors happen during app launch
time, which implies if an app reads private data during launch
time, it is very likely that the data would be leaked.

2) Features of Binder Calls: We observe that some
method invocations are related to the spyware behaviors,
e.g., a spyware usually calls the network related classes
and methods. These invocations usually involve inter-process
communications and can be captured in binder calls. Based

5

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 12:46:58 UTC from IEEE Xplore. Restrictions apply.

-
-.
-.�
-./
-.0
-.1
-.2
-.3
-.4
-.5

��
��
��

#�
	�
��
��
�2

0
�
�

��
��
��
��

��
��
�

�/

�
��
��
�

�/

�
��
��
��
��
�"

�
�

��

��
��

��
�

��
��

�
/�

#�	
��

��
��

��
��
��

��
6�

�
��
�
�	

�
	
�
,
"
�7

��
6�

�
��
��
�6
��

��
�	

��
6�

�
��
��
�6
��

��
�	

��
6�

�
��
��
�	
�"

��
6�

�
��
�
�	

�
	
�
,
"

�

��
��
��
��
��

�

��

��
��
��
��

	
�
�

��
�
�

�
��
��
�
��

��
���

��
	"

�

	

�
�

�0

#�
6"

�� #�
	�

#��
��

��
��
	
�

	
�
,

��
��
#�
20

 �
���

��
��
��
��

��
20

	�
��

�
�
�

#�
��
7�
��
	

��
��

���
��

��
��
��
��
��

��
6�

�
,

��
�

#�
��
��
,�
�

��
	
�
�

"
��

	

���
��

"
��

�

��

	�
��

"
�

��
��
	
�

	
�
,

��
�
�
�

#�
��
7�
��
	

#�
,�
�

���
��
20

#�
6�

�
�/

�
�"

��
�

�6
"
��

��
��
��

��
��
�
��
�

#�
��
�2
0

��
��
20

��
��

�
�
�

�	
��
"
��
�

#�
��
�2
0

�	
��
�

��
�

��
��

��
��

��
��
��
�

�
	
�
��

��
��

"

��
#�
�,

"
��

"
��

"
"
��

�
��
��

�

��
�6
�#
��
�6

"
�	
��
��
�

	�
��
#	
�"
�
��
�

	�
��

�
	
�
�

#�
��
7

��
��

�
/�

��
��

�

��
��
�
�
�

�

��
��
�
��
��

"

�

Fig. 9: The distribution of system call document frequencies

on the occurrence and position of the invocation within a
profile, we define happen before and happen after
features for each invocation of interest. If the invocation occurs
before the read, the happen before feature is assigned
1, otherwise it is 0. Similarly, if the invocation occurs after the
read, the happen after feature is assigned 1, otherwise
it is 0. We discuss the invocations of our interest as follows:

IActivityManager: We have observed that some leakages
are not intended by users, but happen automatically when users
start a new activity. android.app.IActivityManager
responses for the activity start and lifecycle management, and
hence is of our interest.

IApplicationThread: The thread lifecycle management of
Android activity and service is generally implemented with
an android.app.IApplicationThread class, which
would be invoked when operating (e.g., creating or destroying)
on the thread of the activity.

IConnectivityManager: Before accessing the Internet, apps
usually check the current network connection status of the
smartphone, e.g., Is the mobile phone connected to the Internet
or offline? Is it a 3G or WiFi connection? Such checking re-
quires calling android.net.IConnectivityManager.

IWifiManager: android.net.wifi.IWifiManager
is another call that may reflect some Internet behaviors,
especially detailed WiFi connection information.

IMessenger: Network and some read behaviours usu-
ally work in a blocking mode. For safety reasons, An-
droid developers usually assign such kind of tasks in an-
other thread. Messenger is a common method to pass
event or values between threads. Such communications call
android.os.IMessenger.

IInputMethodManager: Some leakages happen when an
app is querying the server, which carries data from the client
side. To improve the response time and user experience, the
query may perform periodically in the background when a user
inputs the query data. The input usually involves the interaction
with com.android...view.IInputMethodManager.

3) Features of System Calls: A system call usually starts
with a function name, followed by its parameters and the return

value. System calls are very low-level, whereas even a simple
operation may trigger hundreds of system calls. Processing the
system calls would be quite time-consuming and not applicable
for online usage. For simplicity, we only keep the function
name and remove the other parts. In this way, the profile can
be represented with standard system call function names from a
vocabulary. We observe that several system calls (e.g., ioctl
and epoll_wait) have very high occurrence frequencies. It
is likely that these system calls contribute little information to
distinguish the spyware behaviors.

We therefore adopt the idea of document frequency (i.e.,
how many documents contain a term) to select system calls that
are more informative. Taking system calls for each UI event as
a document, we calculate the ratio of documents which contain
a specified system call. The resulting document frequencies are
shown in Fig. 9.

From the figure, we observe that some system calls have
very small document frequencies. If we choose them as
features, the feature vector matrix related to these features
would be very sparse, i.e., most of them are 0. They will help
little for the classification purpose. Therefore, besides being
informative, we require the system call to have adequate
document frequency. Empirically, we choose the system calls
with document frequency between 0.06 and 0.22. There are 13
system calls located in this range: _llseek, getdents64,
readlink, fsetattr, nanosleep, setsockopt,
sched_yield, fdatasync, pwrite, mkdir, lseek,
madvise, rename.

Note that we may also employ term frequency/inverse
document frequency (tf-idf) [20], or choose system calls within
other document frequency regions, which might be more
discriminative. But the idea is similar. A comparison study
is performed in Section V.

C. Classifier

Our framework can seamlessly incorporate most of the
popular classifiers for supervised learning. In this work,
we investigate on applying two classifiers: Support Vector
Machine (SVM) with Radial Basis Function (RBF) kernel and
Naive Bayes Classifier (NBC) [5].

6

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 12:46:58 UTC from IEEE Xplore. Restrictions apply.

We adopt SVM with RBF kernel as our classifier, since
it has long been proven successful in many classification
applications. SVM can find a margin that best separates the
classes of vectors. With such a margin, the classifier can
classify an unlabelled sample of the feature vector according
to which side of the margin it is located.

Naive Bayes Classifier, on the other hand, is a probability-
based classier. It runs fast, and is thus more suitable for our
scenario, which requires making classification decisions within
a short time. In order to classify a new unlabelled sample
of the feature vector, NBC calculates the probability of each
class to generate the feature vector, and multiply it with the
prior probability of each class. The label of the class with the
greatest probability is assigned to the sample. Details can be
found in [5].

D. Detection Algorithm

Now we introduce how our framework can be employed for
online spyware behavior detection. An online detection system
differs from offline analysis in that it requires timely response
yet suffers the limitation of computational resources. We have
already taken such requirements into consideration in our fea-
ture design step. Besides, we also consider how to extract these
features efficiently. Our detection algorithm applied for online
spyware detection is shown in Algorithm 1. Specially, the
whole profile processing step, including identifying suspicious
event and feature extraction, requires parsing the raw profile
stream (i.e., a execution trace segment) only once, i.e., in a
linear complexity.

In Algorithm 1, we assume that the model of spyware
behavior (spySig), the signature array which indicates par-
ticular private data reading behaviors (readSig), the array
indicating specific binder call features (binderFeatureSig),
and the array indicating system call features (sysFeatureSig)
are given as input. Our algorithm processes the runtime profile
stream (profileStream) line by line. If a temporal line
starts with a BINDER tag, which means it is a binder call,
the algorithm extracts the binder feature by comparing the
line with the predefined binderFeatureSig, or discriminates
whether it contains a read signature by comparing with the
predefined readSig. If it starts with a SYSCALL tag, the
algorithm extracts system call features accordingly. We use
a bit sequence to represent the feature vector, and each bit
responses for one feature. If a feature can be extracted, the
corresponding bit is set to one, otherwise zero. Finally, if the
line starts with a UI_EVENT tag, which indicates the end of
a profile, the algorithm justifies whether the previous profile
should be classified as a spyware execution or not.

V. PERFORMANCE STUDY

A. Experimental Setup

In this section, we examine whether the proposed
SpyAware framework is effective in finding the correlation
between the spyware behaviors and execution traces.
Specifically, we focus on two questions: 1) Are our features
effective? 2) What accuracy can our approach achieve?
To this end, we conduct an experiment with 100 popular
apps downloaded from Google Play. We manually run each
application as a normal user on TaintDroid for Android

Data: profileStream, spySig
Data: readSig, sysFeatureSig, binderFeatureSig
readType← −1;
while TREU do

tmpStr ← Read(profileStream);
if tmpStr.startwith(BINDER) then

f ← ExtractBinderFeature(tmpStr);
// Extract features by comparing
with the readSig and binderFeatureSig
if f > 0 then

// A feature is extracted
insFeature.setbit(f);
// set to one

end
if f < 0 then

// A read behavior is detected
readType← −f ;

end
end
if tmpStr.startwith(SYSCALL) then

f ← ExtractSyscallFeature(tmpStr);
// Extract features by comparing
with the sysFeatureSig
if f > 0 then

insFeature.setbit(f);
// set to one

end
end
if tmpStr.startwith(UI EVENT) then

// The end of a profile
if readType > 0 then

isSpy ← Classify(insFeature, readType);
// Classify based on the spySig
if isSpy then

SendNotification();
end

end
insFeature.clear();
// Set all bits to zero
readType← −1 ;

end
end

Algorithm 1: Detection Algorithm

version 4.3 installed on Galaxy Nexus2. Meanwhile, our
profiler runs in the background. In this way, we collect our
raw data, i.e., a large set of binder calls, system calls, UI
events, together with the leakage indications for each UI
event. We do not adopt automated testing (e.g., using Monkey)
because such tools cannot handle user registration and login
issues, and hence cannot trigger some spyware behaviors
effectively. Among these apps, five have compatibility issues
with our tool: two of them do not support ptrace, and
the others will automatically crash when being injected with
our payload. The 3 crashing apps are com.tao.taobao
and com.alibaba.aliexpresshd from Alibaba, and
com.snapchat.android from Snapchat. We think they
use some program integrity protection mechanisms. However,
our tool works well with all the other apps.

Since the detection of suspicious profiles with read is
rule-based, it is considered accurate. Our major challenge
then is to examine the effectiveness of recognizing spyware

2TaintDroid does not support Android version 4.4 and later so far.

7

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 12:46:58 UTC from IEEE Xplore. Restrictions apply.

behaviors from suspicious ones. To this end, we filter out all
the non-suspicious profiles (textiti.e., without a read detected
in binder calls) and keep the suspicious ones. In this way, we
find 56 apps generate 347 suspicious profiles for device id
leakage, 139 of which are spyware behaviors and the others are
benign. We also find 51 apps generate 171 suspicious profiles
for location leakage, 51 of which are spyware behaviors
and the others are benign. In what follows, we evaluate the
capability of our approach in detecting these two kinds of
data leaking. It is worth noting that the profiles reading device
id and location are very common, while reading other data
types are relatively less. Conducting experiments on other data
types requires more experimental apps. However, we think the
evaluation results on these two data types are also meaningful
representatives for others.

B. Feature Evaluation

In Section IV-B, we have proposed binder call based
and system call based features. However, are both of them
effective? Which one works better? To answer these questions,
we extract the binder call based features and system call based
features separately for all the suspicious profiles.

We evaluate the feature effectiveness using Naive Bayes
Classifier with 10-fold cross-validation. In Naive Bayes Classi-
fier, the classifier is firstly trained with a set of samples. Then,
given a new unlabelled sample, the probability to be either
a spyware behavior (Probspy) or not (Probnonspy) can be
calculated respectively. If Probspy > Probnonspy , the sample
can be classified as spyware, and vice versa. Our feature
evaluation result is shown in Table I.

TABLE I: An effectiveness comparison study of system call
based features (document frequency between 0.06 and 0.22)
with binder call based features

Positive Negative Total Accuracy

Device ID

Binder call
True 74 145 219

63.1%
False 63 65 128

System call
True 68 145 213

61.4%
False 63 71 134

Location

Binder call
True 25 94 119

69.6%
False 26 26 52

System call
True 35 76 111

64.9%
False 44 16 60

From Table I, we observe that binder call based features
perform better than system call based features. However, this
may not hold for other possible regions of system calls. In the
previous feature extraction step, we have empirically chosen 13
system calls with document frequency between 0.06 and 0.22
as features. There are also other possible choices. We then
evaluate the features of other possible choices. We conduct
three more comparison experiments with different regions of
system calls: the first one is to choose the system calls with
document frequency between 0.01 and 0.13, the second one
between 0.22 and 0.55, and the third one between 0.40 and
0.68. To be comparable, all three regions have 13 system calls.

To better visualize the performance variance of different
system call regions, besides accuracy, we adopt 3 other

����������� ����	���

� ���

������ ��������	�

��

�

��

��

��

	�

��

�

��

���

���������������������

�!
"�
��
��
��
�#
�

$""%!�"�
 !�"�����
��"���
&��'���%!�

(a) Performance on device id leakage detection

����������� ����	���

� ���

������ ��������	�

��

�

��

��

��

	�

��

�

��

���

���������������������

�!
"�
��
��
��
�#
�

$""%!�"�
 !�"�����
��"���
&��'���%!�

(b) Performance on location leakage detection

Fig. 10: A performance comparison of different system call
based features from 4 regions

metrics: precision (true positives over all positives), recall
(true positives over true positives and false negatives) and
F1-measure (the harmonic mean of precision and recall). Our
results in Fig. 10 show that features of system calls with low
document frequency perform better in achieving high accuracy.
However, their recall is relatively low, thus affecting its overall
performance in F1-measure.

C. Overall Performance

We now evaluate how effective our approach can achieve
with both binder call based features and system call based
features. Although the previous evaluation result shows that
the system call based features within region 0.01-0.13 perform
best in accuracy, it is not good in F1-measure. To avoid bias,
we adopt the features of system calls within the region of
0.06-0.22.

We first use Naive Bayes classifier to evaluate the
performance. The result is shown in Table II. To demonstrate
that our approach is effective, we should compare the results
with what naive guesses can achieve. Suppose a guesser has
pre-knowledge that 139 out of 347 suspicious samples for
device id leakage are spyware, he can simply guess all the
unlabelled instances as benign to get the best performance
in accuracy, which is 59.6% (1-139/347). Similar, the best
accuracy that a naive guesser can achieve for location leakage

8

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 12:46:58 UTC from IEEE Xplore. Restrictions apply.

is 70.2% (1-51/171). We observe that the accuracies in our
result are better than the naive guesses. Moreover, in order to
achieve the best performance in accuracy, the naive guesses
have sacrificed the recalls, which are 0% for both device id
and location. Comparatively, our recalls are 43.9% (61/139)
and 49% (25/51). Therefore, the correlation between the data
flow of privacy leakage behaviors and the specific features of
execution traces can be justified.

TABLE II: Detection capability with Naive Bayes Classifier

Positive Negative Total Accuracy

Device
ID

True 61 162 223
64.2%

False 46 78 124

Location
True 25 103 128

74.9%
False 17 26 43

Naive Bayes Classifier is relatively weak in achieving good
performance, because it does not consider the relationship
among features. Next, we try a more sophisticated classier,
i.e., SVM with RBF kernel. Since the performance of such a
classifier heavily relies on the parameter settings, we manually
tune the SVM parameters to get an optimal solution, i.e., we
use -c 3 -g 0.2 -t 1 -d 10 in the experiment. Our experimental
result is shown in Table III.

TABLE III: Detection capability with SVM

Positive Negative Total Accuracy

Device
ID

True 59 175 234
67.4%

False 33 80 113

Location
True 21 113 134

78.4%
False 7 30 37

From Table III, the performance gets slightly improved.
The detection accuracy for location leakage even raises up to
78.4%, which is far better than the accuracy of the naive guess.
However, it still cannot approach 100%. Besides, the false
negative number in the result is relatively high, which implies
a low recall. We may investigate more effective features to
improve the performance in the future.

In the previous evaluations, we randomly separate all the
suspicious profiles into 10 folds. We may take advantage of
using the profiles of a special app to classify other profiles from
the app itself. Now we evaluate how effective our approach
can achieve when detecting spyware behaviors without the
previous knowledge of the particular app, i.e., the cross-app
detection capability. We also adopt 10-fold cross-validation
and the same SVM parameter setting. Our experimental result
is shown Table IV. The performance is slightly worse than
Table II and Table III, but still much better than the naive
guesses.

As a short conclusion, the experimental results have ini-
tially verified the effectiveness of our approach. Nevertheless,
future research on more effective approaches is still needed to
make the approach more practical.

D. Discussion

Our approach targets on examining the correlation between
the data flow of privacy leakage and some features of

TABLE IV: Cross-app detection capability with Naive Bayes
Classifier and SVM

Positive Negative Total Accuracy

Device
ID (NBC)

True 49 168 217
62.5%

False 40 90 130

Location
(NBC)

True 25 103 128
74.9%

False 17 26 43

Device
ID (SVM)

True 53 175 228
65.7%

False 33 86 119

Location
(SVM)

True 18 113 131
76.6%

False 7 33 40

program executions. Even though the accuracies achieved in
the benchmark are not yet ready for real world deployment,
they have significant statistical differences in comparison with
naive guesses, and the correlation has been demonstrated.
In the evaluation experiment, we have shown that with
only hundreds of spy samples from tens of apps, we can
predict the spyware behaviors in promising improvements on
accuracy. Note that with millions of installation in mobile
apps, even 1% of accuracy improvement in privacy protection
represents significant reputational and commercial benefits.
Besides, our approach is also effective for detection with cross-
app signatures and thus would not suffer the scalability issue.
However, there is still room to improve the performance, which
indicates a need for further research. One major direction lies
in our feature extraction approach which only includes binary
features, and consequently may sacrifice the effectiveness as
a trade-off for the efficiency. If employing some complex
features, the model performance can be further improved.

VI. RELATED WORK

The privacy and security issues of smartphones incurred by
third-party apps have received extensive attention. A number of
approaches and tools have been proposed to combat malicious
code. Existing work in this area mainly focuses on the
weakness of permission-based security mechanism (e.g., [11,
13, 29]) and malware issues (e.g., [7, 8, 15, 26, 27, 33, 34]).
In contrast, the privacy issue, which we focus in this work,
is an area that attracts less effort. The work on Android
privacy involves two major areas: 1) tackling the privacy
issues through improving the Android security mechanism. 2)
analyzing app spy behaviors with static analysis or dynamic
analysis approach. We discuss each of them as follows.

Several investigations that propose to improve Android
privacy protection mechanism can be found in [4, 6, 21].
They argue that Android’s permission system is one of the
root causes for privacy problems. Felt et al. first notice
that Android permission mechanism may cause some security
issues [11, 13]. Kelley et al. [17] has done another interesting
work on investigating how permission and privacy declaration
affect user application selection decisions. They find that users
tend to choose applications with less permissions. Nauman
et al. [21] notice Android adopts a pre-installation permission
grant mechanism and users have no fine-grained permission
choices (either accept all or exit installation process) during
installation. They present Apex, which is a policy enforcement
framework for Android that allows a user to selectively grant
permissions to applications. Benats et al. [4] consider Android

9

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 12:46:58 UTC from IEEE Xplore. Restrictions apply.

has permission redelegation or escalation problems and has no
support for checking permission conflicts about privacy. They
propose an extension to the traditional P-RBAC model that
can mitigate such weaknesses. To provide Android OS with
enhanced security features of instantiating different security
solutions, Bugiel et al propose FlaskDroid [6]. FlaskDroid
provides mandatory access control simultaneously on both the
Android middleware and kernel layer.

Static analysis approach is an effective approach in
analyzing privacy issues of applications adopted by several
work (e.g., [14, 18, 19, 25]). The advantage of a static analysis
approach is that it can analyze a large number of applications
in a short period of time, which is very efficient. However,
since popular commercial applications usually have code
protection mechanism and use native code, such mechanism
is usually not applicable for these apps. Moreover, a pure
static analysis result is more useful for application markets,
instead of smartphone users. FlowDroid [3] is such a work
that use static analysis approach to detect privacy leakage, it
is very effective in tracking some Android-specific data flow
and detecting leakages. However, it still suffers the problem
of inaccuracies because its code analysis is based on the
reverse engineering techniques instead of the source code
directly. Moreover, FlowDroid can only be used on PC, and
not applicable on smartphones. PiOS [9] is another work
similar to FlowDroid but for iOS applications. Several other
investigations (e.g., [25, 32]) adopt a hybrid approach that
use the static analysis results to assist a dynamic analysis
process. Noticing Android permission mechanism does not
convey meaningful information on how a user’s privacy might
be impacted by using an application, Rosen et al. [25] propose
to generate high-level privacy-related profiles based on a
static analysis approach, such profiles can also be used on
smartphones for runtime leakage detection. But they haven’t
considered whether the data would be leaked after being read.
Yang et al. [32] argue that the transmission of sensitive data in
itself does not necessarily indicate privacy leakage. However,
if the transmission occurs without user’s attention, it is more
likely to be a leakage. They propose AppIntent, which applies
a guided symbolic execution approach to detect the leakage.
However, AppIntent requires the source code of application,
which is impractical for the end users.

To provide users with adequate visibility into how third-
party applications use their private data, Enck et al. propose
TaintDroid [10]. TaintDroid implements a novel dynamic taint
analysis approach on Android, which includes four levels
of taint tracking: message-level, variable-level, method level
and file-level. Such a multiple granularity approach has been
proved effective and very efficient in achieving only 14%
CPU overhead. However, TaintDroid requires user to recompile
and flash the operation system, which is impractical for
ordinary users. Qian et al. [22] also propose using dynamic
taint analysis approach to detect privacy leakage, and their
work extends the detection capability to support native library
comparing with TaintDroid, but it incurs more overhead. To
use the dynamic taint analysis feature to automatically analyse
apps, Rastogi developed AppsPlayground that automates the
analysis of smartphone applications [23]. Xu et al. [30]
find out that most research on enhancing the platform’s
security and privacy controls requires extensive modification
to the operating system, which has significant usability

challenges. They propose Aurasium, an automated repacking
tool that attach user-level sandboxing code to arbitrary original
applications. Such an approach can eliminate the needs to
modify Android OS. However, since Aurasium does not trace
the operations on sensitive data and transmission behaviors, its
privacy leakage detection capability is very limited. Note that
there are also other investigations that use dynamic analysis
approach to detect malware, e.g., [7, 24]. Because their focus
is not privacy leakage, we do not discuss them in detail. Our
work is different from the afore mentioned work in that we
focus on combating privacy leakage issues, and it is the first
attempt to solve this problem with dynamic signature-based
detection approach.

VII. CONCLUSION

This paper serves as the first attempt to investigate the
correlation between the data flow of privacy leakage and
app execution traces, which may be as a viable means
for smartphone privacy leakage detection. To this end, we
have proposed our SpyAware framework, incorporating a set
of methods targeting on obtaining the execution traces and
extracting effective features so as to discriminate the spyware
execution during app runtime. Our approach relies on no app-
specific information and the features are hence applicable for
cross-app detection. Specially, our design takes the online
usage into consideration, which requires timely response with
limited computational resource: 1) our profiler is portable and
efficient, as it leverages the characteristics of Android Binder-
based IPC which contains rich semantic information, and we
only need to inspect one method (i.e., ioctl) to get the
information. 2) we only employ binary features and the feature
extraction algorithm is efficient in linear complexity.

We have further presented our experiences on applying
SpyAware over 100 popular Android apps. Experimental
results have shown that our approach can achieve promising
results, but there is still room for improvement towards its
practical application. To conclude, we believe this initial work
sheds light on future research towards combating smartphone
privacy leakage issues.

A number of tasks have been identified as follow-
up research. First, we can investigate on how to improve
the accuracy by trying different features and algorithms.
Secondly, in real world, there are various types of Android
smartphones with customized OS; therefore, the effectiveness
of signatures across different versions of Android OS and
platforms should also be evaluated. Finally, since the leakage
can happen frequently during user’s ordinary usage, a user-
friendly notification mechanism should be designed.

ACKNOWLEDGEMENTS

This work was supported by the National Basic Research
Program of China (973 Project No. 2014CB347701), the Key
Project of National Natural Science Foundation of China
(Project No. 61332010), the Research Grants Council of Hong
Kong (Project No. CUHK 14205214), and Microsoft Research
Asia Grant in Big Data Research (Project No. FY13-RES-
SPONSOR-036).

10

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 12:46:58 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] LBE. http://www.lbesec.com.

[2] Qihoo360. http://shouji.360.cn/index.html.

[3] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. L.
Traon, D. Octeau, and P. McDaniel. Flowdroid: Precise context, flow,
field, object-sensitive and lifecycle-aware taint analysis for android
apps. In Proceedings of the 35th ACM SIGPLAN Conference on

Programming Language Design and Implementation, page 29. ACM,
2014.

[4] G. Benats, A. Bandara, Y. Yu, J. Colin, and B. Nuseibeh. Primandroid:
privacy policy modelling and analysis for android applications. In
Policies for Distributed Systems and Networks, 2011 IEEE International

Symposium on, pages 129–132. IEEE, 2011.

[5] C. Bishop. Pattern recognition and machine learning. Springer, 2006.

[6] S. Bugiel, S. Heuser, and A.-R. Sadeghi. Flexible and fine-grained
mandatory access control on android for diverse security and privacy
policies. In 22nd USENIX Security Symposium, 2013.

[7] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani. Crowdroid: behavior-
based malware detection system for android. In Proceedings of the 1st

ACM workshop on Security and Privacy in Smartphones and Mobile

Devices, pages 15–26. ACM, 2011.

[8] S. Chakradeo, B. Reaves, P. Traynor, and W. Enck. Mast: triage for
market-scale mobile malware analysis. In Proceedings of the sixth ACM

conference on Security and privacy in wireless and mobile networks,
pages 13–24. ACM, 2013.

[9] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. Pios: Detecting privacy
leaks in ios applications. In NDSS, 2011.

[10] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. Sheth. Taintdroid: An information-flow tracking system for
realtime privacy monitoring on smartphones. In USENIX Symposium

on Operating Systems Design and Implementation, volume 10, pages
1–6, 2010.

[11] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android
permissions demystified. In Proceedings of the 18th ACM Conference

on Computer and Communications Security, pages 627–638. ACM,
2011.

[12] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner.
Android permissions: User attention, comprehension. Technical report,
and behavior. Tech. Rep. UCB/EECS-2012-26, UC Berkeley, 2012.

[13] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin. Permission
re-delegation: Attacks and defenses. In USENIX Security Symposium,
2011.

[14] C. Gibler, J. Crussell, J. Erickson, and H. Chen. Androidleaks:
Automatically detecting potential privacy leaks in android applications
on a large scale. In Trust and Trustworthy Computing, pages 291–307.
Springer, 2012.

[15] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang. Riskranker: scalable
and accurate zero-day android malware detection. In Proceedings of the

10th International Conference on Mobile systems, Applications, and

Services, pages 281–294. ACM, 2012.

[16] L. Hutton, T. Henderson, and A. Kapadia. Short paper:“here i am, now
pay me!”: Privacy concerns in incentivised location-sharing systems. In
Proceedings of the 2014 ACM Conference on Security and Privacy in

Wireless & Mobile Networks, pages 81–86. ACM, 2014.

[17] P. G. Kelley, L. F. Cranor, and N. Sadeh. Privacy as part of the app
decision-making process. In Proceedings of the 2013 ACM Annual

Conference on Human Factors in Computing Systems, pages 3393–
3402. ACM, 2013.

[18] J. Kim, Y. Yoon, K. Yi, J. Shin, and S. Center. Scandal: Static analyzer
for detecting privacy leaks in android applications. 2012.

[19] C. Mann and A. Starostin. A framework for static detection of privacy
leaks in android applications. In Proceedings of the 27th Annual ACM

Symposium on Applied Computing, pages 1457–1462. ACM, 2012.

[20] C. D. Manning, P. Raghavan, H. Schütze, et al. Introduction to

information retrieval. Cambridge university press Cambridge, 2008.

[21] M. Nauman, S. Khan, and X. Zhang. Apex: extending android permis-
sion model and enforcement with user-defined runtime constraints. In
Proceedings of the 5th ACM Symposium on Information, Computer and

Communications Security, pages 328–332. ACM, 2010.

[22] C. Qian, X. Luo, Y. Shao, and A. T. Chan. On tracking information
flows through jni in android applications. In Dependable Systems and

Networks, 2014 44th Annual IEEE/IFIP International Conference on,
pages 180–191. IEEE, 2014.

[23] V. Rastogi, Y. Chen, and W. Enck. Appsplayground: automatic security
analysis of smartphone applications. In Proceedings of the third ACM

conference on Data and application security and privacy, pages 209–
220. ACM, 2013.

[24] A. Reina, A. Fattori, and L. Cavallaro. A system call-centric analysis
and stimulation technique to automatically reconstruct android malware
behaviors. EuroSec, April, 2013.

[25] S. Rosen, Z. Qian, and Z. M. Mao. Appprofiler: a flexible method of
exposing privacy-related behavior in android applications to end users.
In Proceedings of the third ACM conference on Data and Application

Security and Privacy, pages 221–232. ACM, 2013.

[26] J. Sahs and L. Khan. A machine learning approach to android malware
detection. In Intelligence and Security Informatics Conference, 2012

European, pages 141–147. IEEE, 2012.

[27] A. Schmidt, R. Bye, H. Schmidt, J. Clausen, O. Kiraz, K. A. Yuksel,
S. A. Camtepe, and S. Albayrak. Static analysis of executables for
collaborative malware detection on android. In Communications, 2009.

ICC’09. IEEE International Conference on, pages 1–5. IEEE, 2009.

[28] J. Tan, U. Drolia, R. Martins, R. Gandhi, and P. Narasimhan. Short
paper: Chips: content-based heuristics for improving photo privacy for
smartphones. In Proceedings of the 2014 ACM Conference on Security

and Privacy in Wireless & Mobile Networks, pages 213–218. ACM,
2014.

[29] C. Thompson, M. Johnson, S. Egelman, D. Wagner, and J. King. When
it’s better to ask forgiveness than get permission: attribution mechanisms
for smartphone resources. In Proceedings of the Ninth Symposium on

Usable Privacy and Security, page 1. ACM, 2013.

[30] R. Xu, H. Saı̈di, and R. Anderson. Aurasium: Practical policy
enforcement for android applications. In Proceedings of the 21st

USENIX conference on Security Symposium, pages 27–27. USENIX
Association, 2012.

[31] W. Xu, F. Zhang, and S. Zhu. Permlyzer: Analyzing permission usage
in android applications. In Software Reliability Engineering (ISSRE),

2013 IEEE 24th International Symposium on, pages 400–410. IEEE,
2013.

[32] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang.
Appintent: Analyzing sensitive data transmission in android for privacy
leakage detection. In Proceedings of the 2013 ACM SIGSAC conference

on Computer & communications security, pages 1043–1054. ACM,
2013.

[33] Y. Zhang, M. Yang, B. Xu, Z. Yang, G. Gu, P. Ning, X. S. Wang, and
B. Zang. Vetting undesirable behaviors in android apps with permission
use analysis. In Proceedings of the 2013 ACM SIGSAC Conference on

Computer & Communications Security, pages 611–622. ACM, 2013.

[34] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, you, get off of my
market: Detecting malicious apps in official and alternative android
markets. In Proceedings of the 19th Annual Network and Distributed

System Security Symposium, pages 5–8, 2012.

11

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 12:46:58 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

