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Abstract—Concolic execution has achieved great success in
many binary analysis tasks. However, it is still not a primary
option for industrial usage. A well-known reason is that concolic
execution cannot scale up to large-size programs. Many research
efforts have focused on improving its scalability. Nonetheless, we
find that, even when processing small-size programs, concolic
execution suffers a great deal from the accuracy and scalability
issues.

This paper systematically investigates the challenges that can
be introduced even by small-size programs, such as symbolic
array and symbolic jump. We further verify that the proposed
challenges are non-trivial via real-world experiments with three
most popular concolic execution tools: BAP, Triton, and Angr.
Among a set of 22 logic bombs we designed, Angr can solve
only four cases correctly, while BAP and Triton perform much
worse. The results imply that current tools are still primitive for
practical industrial usage. We summarize the reasons and release
the bombs as open source to facilitate further study.

I. INTRODUCTION

Recently, concolic (concrete and symbolic) execution has

become an upsurge of interest for code analysis. As an

advanced software testing approach with formal methods, it

shows high impact in the research areas of bug detection [1, 2],

deobfuscation [3, 4], etc, and outperforms other traditional

testing approaches (e.g., random testing) when handling small-

size programs. There are several popular concolic execution

tools available for public usages, such as Angr [5] and

Triton [6]. Along with these tools, many showcases have

been demonstrated. The famous cases are crackme puzzles

in Capture the Flag (CTF) contests [7], and Cyber Grand

Challenge by Defense Advanced Research Projects Agency

(DARPA) [8]. However, concolic execution has not yet gained

wide usage in the industrial area.

One well-known reason is that concolic execution does

not scale to large-size programs. Many approaches have

been proposed to improve the scalability, such as parallel

processing [9], state merging [2], and efficient search strat-

egy [10]. However, we observe that even for many small-size

programs, real-world concolic execution tools cannot achieve

the ideal performance in code coverage. Investigating the

limitations of concolic execution tools and the corresponding

challenges are essential for attracting the attention of research

communities. Also, without a clear understanding of the

usability issues, concolic execution users would not know

whether the technique meets their needs, or how to engage

the technique in a proper way.

In this paper, we systematically investigate the underlying

challenges of concolic execution tools on small-size binary

programs. To this end, we first discuss the theoretical

background of concolic execution, and summarize four error

types which may occur during different stages of symbolic

reasoning: Es0, which occurs if symbolic variables are not

correctly declared; Es1, which occurs during instruction

tracing; Es2, which relates to data propagation; and Es3,

which relates to constraint modeling. Then we propose seven

technical challenges that may raise such errors: symbolic

variable declaration, covert symbolic propagation, parallel

program, symbolic array, contextual symbolic value, symbolic

jump, and floating-point numbers. Incapable of handling the

technical challenges would cause reachable code unexplored,

or vice versa. Further, we propose two scalability challenges

and emphasize that small-size programs may also incur

scalability issues for concolic execution tools. The essential

idea is that small-size programs can have high complexity.

The challenges that can increase program complexity while

incurring a small overhead in program size include: extensively

using external function calls, or using crypto functions (e.g.,

SHA1) which involve complex problems beyond the capability

of computers.

To demonstrate that such challenges are non-trivial for real-

world concolic execution tools, we design a set of programs

which illustrate the challenges, and then evaluate them against

three popular concolic execution tools: BAP [11], Triton [6],

and Angr [5]. Our preliminary results show that each of our

proposed challenges contain samples that cannot be addressed

by all these tools, which implies none of the challenges are

trivial. Specifically, Angr can only solve four out of 22 cases,

while BAP and Triton perform worse. We further investigate

the causes and find that the failures for BAP and Triton are not

only due to the challenges but also by their own deficiency and

bugs, such as unsupported instructions. In comparison, Angr

has better support for instruction lifting, as well as employing

some advanced features, such as symbolic memory addressing.

Our work is the first systematic study on the challenges

of performing concolic execution on small-size binaries. It

would serve as an essential reference for concolic execution

researchers to improve their tools, and for the users to properly
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use the technique. To better serve the community in this area,

we release our program set as open source.

The rest of this paper is organized as follows. We first

introduce the related work in Section II. Then we discuss

the technique of concolic execution in Section III and

propose the challenges accordingly in Section IV. We discuss

our evaluation approach and results in Section V. Finally,

Section VI concludes the paper.

II. RELATED WORK

Concolic execution and symbolic execution have received

extensive attention in the last decade. Existing work in this

area mainly focuses on using the technique to carry out specific

software analysis tasks (e.g., [1, 3, 4]), or proposing new

approaches to improve performance issues, such as [9, 12].

In such papers, the limitations and challenges of symbolic

executions are occasionally discussed, such as path explosions

in [12], system and library calls in [13]; however, they are not

systematically studied as we do in this paper.

The papers most close to our work are [14, 15], which focus

on investigating the limitations and challenges of software

testing tools with symbolic analysis features. Qu and Robinson

conduct a case study on the limitations of concolic testing tools

for source code(e.g., KLEE) and examined their prevalence in

real-world programs. Concolic testing tools for source code

are different from those for binaries, and they suffer different

challenges. For example, data structures, and pointers are

challenging problems for source code analysis, but binary

programs neither exhibit data structures nor employ pointers.

Another similar work by Cseppento and Micskei also focuses

on symbolic execution techniques for source code [15], which

are different from ours. Because we study the challenges

of an entirely different area, as a result, our evaluation

experiment shares no common tools with any of the two

papers. Another work by Kannavara et al. [16] also points out

several challenges that have hindered the adoption of concolic

execution; however, it does not examine the prevalence of the

challenges in real-world tools.

In a nutshell, this work is a pilot study on the challenges

of concolic execution on small-size binaries. Although some

challenges we discussed in this paper are not newly proposed,

to our best knowledge, we are the first to systematically study

them for small-size binary programs.

III. BACKGROUND

A. Theoretical Background

Concolic execution has two phases, a concrete execution

phase and a symbolic reasoning phase. The concrete execution

phase executes the program and generates a trace of executed

instructions, while the symbolic reasoning phase analyzes the

trace and calculates new test cases that can trigger unexplored

control flows. The two phases work alternatively so that all

the possible control flows can be explored eventually.

Formally, we can use Hoare Logic [17] to model the

symbolic reasoning problem. Hoare Logic is composed of

basic triples {S1}P{S2}, where {S1} and {S2} are the

assertions of symbolic variable states and P is a program

spinet or command. The Hoare triple says if a precondition

{S1} is met, when executing P , it will terminate with the

postcondition {S2}. Using Hoare Logic, a concrete execution

can be modeled as:

{S0}P0{S1,Δ1}P1...{Sn,Δn}Pn

{S0} is the initial symbolic state of the program; {S1} is

the symbolic state before the first conditional branch with

symbolic variables; Δi is the corresponding constraint for

executing the following instructions, and {Si} satisfies Δi;

Pi represents a sub-trace of instructions. A symbolic executor

can compute an initial state {S′0} (i.e., the concrete values for

symbolic variables) which can trigger the same sequence of

instructions. This can be achieved by computing the weakest

precondition (aka wp) backward using Hoare Logic:

{Sn−1} = wp(Pn−1{Sn}), s.t. {Sn} sat Δn

{Sn−2} = wp(Pn−2{Sn−1}), s.t. {Sn−1} sat Δn−1

...

{S1} = wp(P1{S2}), s.t. {S2} sat Δ2

{S0} = wp(P0{S1}), s.t. {S1} sat Δ1

Recursively, we can get a constraint model in conjunction

normal form: δ1 ∧ δ2 ∧ ... ∧ δk. Computing symbolic values

that can satisfy the model is a satisfiability problem and the

solution is a test case {S′0} that can trigger the same control

flow.

Concolic execution searches test cases that can trigger un-

explored control flows via generating new constraint models.

We may negate δi and cut off the tail instructions to generate

a new constraint model: δ1 ∧ δ2 ∧ ... ∧ δi. Note that, if we do

not remove constraints δi+1 ∧ ... ∧ δk, the constraint models

may have no solutions.

Finally, when sampling {Pi}, not all instructions are useful.

We only keep the instructions whose parameter values depend

on the symbolic variables. We can demonstrate the correctness

by expending any irrelevant instruction Ii to X := E, which

manipulates the value of a variable X with an expression

E. Suppose E does not depend on any symbolic value, then

X would be a constant, and should not be included in the

weakest preconditions. In practice, it can be realized using

taint analysis techniques.

B. Conceptual Framework

Now we discuss how the theoretical model can be im-

plemented in practice. Since binary programs do not exhibit

explicit variables and types, the symbolic state {Si} and

constraint Δi are represented with symbolic memories. The

program Pi is represented with assembly instructions. A

detailed framework which technically synthesizes the whole

concolic execution process is shown in Figure 1.
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Fig. 1: A conceptual framework for concolic executing binary programs

Vertically, the framework includes several rounds of con-

crete executions, and each round is initiated with a new setting

of symbolic values. Horizontally, each round includes several

essential steps for symbolic reasoning.

Instruction Tracing: In this step, the concolic executor

records the instructions during concrete execution. This can

be achieved based on CPU tools (e.g., Intel Pin [18]), or

machine emulation tools (e.g., QEMU [19]). In general, not all

instructions are our interests. A forward taint analysis process

can be employed to filter out the unrelated instructions.

Instruction Lifting: This step interprets the semantic of each

assembly instruction with a form of intermediate language

(IL), and lifts the whole trace into intermediate representatives

(IR) using the IL. In this way, the original operations on

registers and memories can be explicitly modeled.

Constraint Extraction: Each branch with symbolic con-

ditions indicates a new control flow possibility. Concolic

execution extracts the constraint model for each branch via

recursive symbolic expression substitution. Each concrete

execution round may generate several constraint models

depending on the number of conditional branches along the

trace. The constraint models are generally described with a

language of satisfiability modulo theories (SMT), such as

SMT-Lib [20].

Constraint Solving: A constraint solver is employed to

search solutions for each constraint model. There are several

popular constraint solvers off-the-shelf, such as MiniSat [21]

and Z3 [22].

After new test cases are generated, a scheduler prioritizes

the newly generated test cases, and determines which one

should be used in the next round of concrete execution.

This process is carried on until all test cases are explored.

In practical implementations, a checkpoint mechanism can

be used to further facilitate concolic execution by saving

redundant executions.

Note that some concolic execution tools (e.g., Angr) adopt a

hybrid concolic execution approach rather than our discussed

framework. Such tools lift the whole program into IR first

and then perform dynamic symbolic execution on the IR.

In this way, the efforts in redundant instruction lifting can

be saved. However, such tools also inherit the drawbacks

of static analysis and emulation, and they are vulnerable

to sophisticated obfuscation techniques (e.g., code mutation).

Considering the popularity of camouflages in binaries, our

conceptual framework is more reliable for binary analysis.

IV. CHALLENGES

In this section, we first overview the errors that may occur

during concolic execution, and then discuss the challenges that

may incur such errors; finally, we discuss the scalability issues

for small-size programs.

A. Errors for Symbolic Execution

When performing symbolic reasoning, errors can be intro-

duced in four stages.

• Es0: Symbolic variable declaration errors, which happen

before symbolic reasoning. As a result, insufficient

constraints can be generated for triggering new control

flows.

• Es1: Instruction tracing and supporting errors, which

happen when some instructions are missing, or are not

supported for instruction lifting.

• Es2: Data propagation errors, which can be introduced

when some instructions are not correctly interpreted, or

when memories are not correctly modeled. As a result,

the symbolic states are not correct computed.

• Es3: Constraint modeling errors, which can be introduced

when a required satisfiability modulo theory is not

supported.

The listed errors are not independent. Any error in one stage

can cause other errors in its posterior stages.
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B. Accuracy Challenges

Real-world binaries exhibit rich diversities in syntax and

semantics. A program (e.g., Malware) can employ rarely used

syntax to avoid analysis, which may incur errors in symbolic

reasoning. Table I demonstrates a list of such technical

challenges with the corresponding errors they may incur.

TABLE I: A list of challenges, and the corresponding errors

they may incur.

Challenge
Stage of Error

Es0 Es1 Es2 Es3

Symbolic Variable Declaration � � � �

Covert Symbolic Propagation - - � �

Parallel Program - - � �

Symbolic Array - - - �

Contextual Symbolic Value - - - �

Symbolic Jump - - - �

Floating-point Number - - - �

1) Symbolic Variable Declaration: Symbolic variables are

the factors that affect program execution. Such factors include

program arguments, and other runtime information from the

context, such as time. In general, symbolic variables should

be declared before concolic execution. An attainable approach

is to consider the arguments to the program (i.e., argv) as

symbolic variables; however, it is frustrating to consider all

possible factors. Besides, even for the symbolic variables from

argv, concolic executors may not be able to handle varying

lengths of symbolic variables automatically.

Figure 2(a) demonstrates an example where a logic bomb

(i.e.,Bomb()) can only be triggered at a specific time. To

explore the bomb path, a concolic executor should declare

tv as a symbolic variable, and then solve the constraint for

tv. Failure in handling the challenge incurs Es0.

2) Covert Symbolic Propagation: When extracting con-

straint models, the symbolic data propagation process should

be correctly recognized. However, some data propagation are

not explicit. An extreme case happens when the symbolic

values are saved outside the process (e.g., into a file), and

then read back to the process. Tracking such data propagation

would be challenging.

Figure 2(b) demonstrates an example where the value of

argv[1] determines whether a logic bomb can be triggered.

However, argv[1] is propagated via a file in a covert way.

Failure in handling the challenge incurs Es2.

3) Parallel Program: Traditional data-flow analysis ap-

proaches generally cannot handle concurrent programs. Data

propagation among threads may have many possibilities, and

modeling such data-flow is very expensive.

Figure 2(d) demonstrates a parallel program which imple-

ments two threads. The symbolic value from the main thread

is processed in another thread with a self-incremental function.

Then the symbolic value is evaluated against the condition for

trigger the bomb path. If a concolic execution tool does not

support concurrent programs, it may raise Es2 and generate a

wrong test case for triggering the bomb.

4) Symbolic Array: When symbolic values serve as pointers

or offsets to access data in memory, challenges arise for

generating constraint models. An effective constraint model

should include all the data within the memory region so that

a solver can infer which data satisfies the model. Otherwise,

Es3 occurs.

Figure 2(c) demonstrates an example with a one-level

symbolic array. To execute the bomb path, 6 should be

assigned to the argv[1] as an array index.

5) Contextual Symbolic Value: Symbolic values can be

used as parameters for retrieving data from the environment

(e.g., disk). The challenge is similar to symbolic array and is

more complex.

Figure 2(e) shows such an example. If argv[1] points to

a file that can be opened by the program, the bomb would

get triggered. However, it is difficult for concolic executors to

interpret the semantic and to know which file exists on disk.

6) Symbolic Jump: After each round of concrete execu-

tion, the instructions which indicate branches with symbolic

conditions should be extracted, so that the constraint models

can be generated respectively. However, such branches can be

performed in covert ways. For example, we may use symbolic

values as the offset of an unconditional jump. Theoretically,

we may assign different values so that the program can jump

to any address within the program. In this way, symbolic jump

acts similarly as a conditional jump.

Figure 2(f) demonstrates a code snippet where the symbolic

value determines the target address of the unconditional jump.

To trigger the bomb, we may simply assign 7 to argv[1].

Failure in handling symbolic jump incurs Es3.

7) Floating-point Number: When the symbolic conditions

involve floating-point numbers, errors may occur. A floating-

point number (f ∈ F) approximates a real number (r ∈ R)

with a fixed number of digits in the form of f = significand∗
baseexp. The representation is essential for computers, as the

memory spaces are limited in comparison with the infinity

of R. As a tradeoff, floating-point numbers have only limited

precision, which causes some unsatisfiable constraints over R

can be satisfied over F with a rounding mode.

Figure 2(g) demonstrates such an example. The conditional

expression 1024 + x = 1024 && x > 0 has no solutions for

x over R, but it has solutions over F, such as 0.00001.

C. Scalability Challenges

Small-size programs may also lead to path explosions.

The essential idea is that small-size programs can have high

complexity. This can be achieved in two ways: extensively

using external function calls, or using a crypto function that

has high complexity. We discuss the two challenges in bellow.

1) External Function Call: Shared libraries, such as libc

and libm (i.e., a math library), have been widely used in

binaries. They provide some basic function implementations

to facilitate software development. External functions become

the augmented part of a program once being called, and they

enlarge the code complexity in nature.
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(a) Symbolic variable declaration. (b) Covert Symbolic propagation. (c) Symbolic array.

(d) Parallel program. (e) Contextual symbolic value. (f) Symbolic jump.

(g) Floating-point number. (h) External function call. (i) Crypto function.

Fig. 2: Exemplary programs that pose challenges for concolic execution.

A simple situation is that external functions do not return

values, or the returned values are not employed in conditions.

We demonstrate the idea with Figure 3. When commenting

the printing code in line 7, only five instructions propagate

the symbolic values (i.e., argv), and the solution can be

any integers equal to, or greater than 0x32. But when we

enable the printing code, 61 more instructions get involved,

including some conditional instructions. As a result, 0x32 no

longer qualifies the constraint model. In this way, the number

of available control flows for checking grows in polynomial

to the complexity of printf. If such external functions are

not our interests, we may ignore their extra constraints in

this case. However, it would be incorrect if external functions

return values, and the values are used in conditions. Figure 2(h)

demonstrates another example, where the sine of a symbolic

value is calculated via an external function call (i.e., sin),

and the result is used to determine whether a bomb should be

triggered. In this situation, the conditions within the functions

should not be ignored. Otherwise, it is based on an error

assumption that a new test case generated under the new

constraint model can always trigger the same control flow

within the external function. If a program extensively uses

such external functions, scalability issues would occur.

2) Crypto Function: Crypto functions (e.g., hash function)

are very complex. When employing crypto functions in

a program, the number of conditional branches along the

instruction trace of a concrete execution can be very large.

More importantly, secure crypto functions are resistance

to cryptanalysis, which implies the hardness in reverse

Fig. 3: An example of the extra constraints incurred by external

function calls. We initiate argv[1] to 7 and then concolic

executing the program with BAP.

computation. For a hash function, we cannot compute the

plaintext of a hash value. For a symmetric encryption function,

we cannot compute the key when given the pairs of plaintext

and ciphertext.

Figure 2(i) demonstrates a code snippet which employs

SHA1 function. If the hash result of the symbolic value

equivalents to a predefined value, the bomb would be

triggered. However, it is difficult since SHA1 cannot be

reversely calculated.

Finally, we do not intend to propose a complete list of all

challenges. Loop is an exception which we haven’t discussed
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because it has already gained much attention. Users may

extend the list with new challenges following our approach.

V. EVALUATION

To show that the proposed challenges are non-trivial for

real-world concolic execution tools, we design a set of

small-size programs which illustrate the challenges, and then

evaluate them against three popular concolic execution tools.

Our dataset and testing scripts are available online1 to facilitate

users to repeat our experiment.

A. Dataset

The overall idea is to test whether a code block can be

explored by concolic execution tools. In our dataset, each

program has been placed with a logic bomb. To trigger the

bomb, a problem which illustrates a challenge has to be solved.

If the bomb can be triggered by a correct test case, it implies

the tool has successfully addressed the problem or vice versa.

Our dataset includes over 20 programs for X86 64, which

cover all the discussed challenges. For each challenge, we

implement several programs. Either each program involves a

unique technical problem (e.g., covert propagation via file),

or introduces a problem with a different complexity setting

(e.g., one-level symbolic array, and two-level symbolic array).

Table II demonstrates our program samples.

To avoid noise, each program in our dataset only reserves

a simple implementation of the challenge. The sizes of the

binary programs in our dataset are within the range of [10K

bytes - 25K bytes], with a median of 14K bytes. In this way,

the concolic execution tools have lower chances to be affected

by other unexpected limitations.

B. Tools and Settings

We choose three popular concolic execution tools for

evaluation: BAP, Angr, and Triton. Our choosing strategies

are that: 1) the tool should be able to perform concolic

execution on binaries; 2) the tool should have high impact

in communities and is under maintenance; 3) it should be

released as open source so that we can investigate thoroughly

via code review. To our best knowledge, only these three tools

can meet our standards. They are available on Github and

have received hundreds of stars. By default, we use their latest

stable versions for evaluation. Note that there are other famous

symbolic execution tools which do not meet our requirements.

For example, KLEE is a popular symbolic execution tool but

cannot process binaries [12]; PySymEmu has not been updated

for almost a year [23]; Mayhem is not publicly released [2].

Next, we first briefly introduce the tools and then discuss

our experimental settings for them.

1) Concolic Execution Tools: BAP is an OCaml/C++

project maintained by Carnegie Mellon University [11]. It

implements a Pin tool [18] for instruction tracing. The

instructions are then lifted to BAP IL. BAP adopts CVC as a

default constraint modeling language and employs STP [24]

for constraint solving.

1https://github.com/hxuhack/logic bombs

Triton is a C++/Python project maintained by Quark-

sLab [6]. It also leverages Pin to trace instructions. Different

from BAP, it directly lifts the instructions into SSA (single

static assignment), which is convenient for generating con-

straint models. Triton employs SMT-Lib [20] as the constraint

modeling language and Z3 [22] as the constraint solver.

Angr is a python project maintained by University Califor-

nia of Santa Bara. The instruction lifter is based on VEX [25],

which lifts the whole program into VEX IR. Then a symbolic

execution engine (i.e., SimuVEX) is employed to perform

symbolic execution on the IR directly. To support virtual

execution on IR, Andr simulates system calls in SimuVex.

Angr also follows SMT-Lib to generate constraint models and

uses Z3 as the constraint solver.

2) Settings: Among these tools, Triton dedicates on con-

colic execution, so we can use its native script for concolic

execution. BAP and Angr have rich features for program

analysis and require users to customize their own scripts based

on tool APIs. So we should customize our testing scripts for

BAP and Angr.

For Angr, our script first loads the binaries as VEX IR,

and then performs directed symbolic execution [26]. In this

way, the script can examine whether a bomb path is reachable

and outputs the corresponding symbolic values. Angr provides

two operations about whether loading dynamic libraries for

analysis. For a better comparison, we report results for both

the two settings separately. BAP and Triton do not have the

options because all the instructions from dynamic libraries

should be traced.

BAP is a primitive tool that provides no systematic support

for concolic execution. It can only output values that trigger

the current control flow. Therefore, our experiment for BAP

includes both concolic execution and manual checking. We

first execute the tool with concrete values that can trigger the

bomb path. If BAP correctly solves the problem, we think

it incurs no errors when handling the challenge. Then we

check whether it suffers path explosions by concolic executing

the program over several other concrete values and examine

whether BAP can merge different values that trigger the

same path. Finally, we confirm our result via reviewing the

corresponding source code.

C. Evaluation Results

Our results are shown in Table II. Among 22 logic bombs,

Angr achieves the best performance with four cases addressed;

Triton solves 1 case, and BAP solves 2. If a reachable bomb

path is deemed as unreachable, it implies an error occurs and

we label the result with a corresponding error type. If a tool

exits abnormally with exceptions (e.g., memory out), or gives

no feedback for 10 minutes, we label the result with E. It is

worth noting that for all the challenges, there exist at least one

test case which cannot be handled by all the tools. The results

imply all the proposed challenges are non-trivial.

We further investigate the root causes of the results. Angr

successfully handles variant lengths of argv, because it

enables users to specify a fixed length of bits for the symbolic
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TABLE II: Experimental results on whether a concolic execution tool can handle our challenging program. The error types

which incur the failures are also reported if applicable. �: Success; Es#: Fail; E: Exit abnormally; P: Partial success for Angr

if the generated symbolic values are insufficient for triggering the path due to system call simulation.

Category Challenge Sample Case
Tool Performance

BAP Triton Angr Angr-NoLib

Accuracy
Challenge

Symbolic Variable
Declaration

Employ time info in conditions for triggering a bomb Es0 Es0 Es0 Es0

Employ web contents in conditions for triggering a bomb Es0 Es0 E E
Employ the return values of system calls in conditions Es0 Es0 P P

Employ the length of argv[1] in conditions Es2 Es0 � �

Covert Symbolic
Propagation

Push symbolic values into the stack and pop out Es1 � � �

Save symbolic values to a file and then read back Es2 Es2 E Es2

Save symbolic values via system call and then read back Es2 Es2 P P
Change symbolic values in an exception (argv[1] = 0) � Es1 E Es2

Change symbolic values in an file operation exception Es2 Es2 Es2 Es2

Parallel Program
Change symbolic values in multi-threads via pthread � Es2 Es2 Es2

Change symbolic values in multi-processes via fork/pipe Es2 Es2 Es2 �

Symbolic Array
Employ symbolic values as offsets for a level-one array Es3 Es3 � �

Employ symbolic values as offsets for a level-two array Es3 Es3 Es3 Es3

Contextual Symbolic
Value

Employ symbolic values as the name of a file Es2 Es3 Es2 Es2

Employ symbolic values as the name of a system call Es2 Es3 Es2 Es2

Symbolic Jump
Employ symbolic values as unconditional jump addresses Es3 Es3 Es2 Es2

Employ symbolic values as offsets to an address array Es3 Es3 Es3 Es3

Floating-point
Number

Employ floating-point numbers in symbolic conditions Es1 Es1 E Es3

Scalability
Challenge

External Function
Call

Employ symbolic values as the parameter of sin Es1 Es1 E Es2

Employ symbolic values as the parameter of srand Es2 E E Es2

Crypto Function
Infer the plain text from an SHA1 result E E E Es2

Infer the key from an AES encryption result Es2 Es2 Es2 Es2

variables. The higher bits can be fill up with 0 if they are not

useful in the final symbolic values. Angr also solved the case

with one-level symbolic array, because it can model memory

with a map from indexes to expressions. This feature enables

it to store and load values based on the index. However, Angr

cannot handle more complex cases, such as two-level symbolic

array, and using symbolic jump address within arrays. This

implies that symbolic array still cannot be fully supported.

When Angr thinks a bomb can be triggered but generates

insufficient symbolic values for triggering the bomb, we label

the result as P (partial success). This is because Angr adopts

system call simulation, and may simply think a system call

can return any value that satisfies a constraint, which is not

true actually. When there are unsupported system calls, it has

higher chances to incur errors. For example, Angr cannot

handle the fork case due to unsupported system calls when

dynamic libraries are loaded. There are similar issues when

unloading dynamic libraries into SimuVEX. In this mode,

Angr doesn’t need to explore the details of external functions

but may think any values can be returned by external functions.

Such an approach facilitates Angr to explore more paths, but

it also has drawbacks in generating wrong symbolic values. To

verify our idea, we design a negative bomb which is guarded

under a constant false predict using square operations (e.g.,

x2 == −1). Theoretically, the bomb should not be triggered;

however, Angr aggressively assigns return values to the pow

function, and thinks the bomb path can be triggered.

For Triton and BAP, they both employ no sophisticated

techniques to handle the proposed challenges and suffer many

failures related to Es2 and Es3. Besides, there are several

Es1, because the binaries contain instructions that cannot

be lifted. Specifically, Triton does not support the floating-

point instructions, such as cvtsi2sd and ucomisd. When

symbolic variables are propagated in such instructions, the

error occurs and propagates. As a result, the constraint models

may either contain no symbolic variables or have wrong

expressions.

For scalability challenges, no tool can solve any of the cases

correctly. Our expected result for scalability problem is E,

which means the concolic executor exits abnormally due to

resource constraint. However, only half of our results are E,

while the other half of them are Es#. This is because some

errors happen during symbolic reasoning.

Finally, even for the same case, the failures of different tools

may be incurred with different error types. For example, Angr

thinks the bomb path in the symbolic jump case is reachable

but calculates a wrong result. It is likely that the error is

incurred during data propagation. In comparison, BAP and

Triton even do not have mechanisms to handle such jump,

and the failure should be caused by a constraint extraction

issue.

D. Lessons Learnt

1) Limitations of Concolic Execution: Our experimental

result shows that even the state-of-the-art concolic execution

tools are far less than perfect. There are several non-trivial

accuracy challenges which cannot be easily addressed. As a

result, real-world concolic execution tools are not as reliable

as their theoretical models. Also, even small-size programs
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may incur scalability issues. Understanding the limitations of

concolic execution tools and knowing the characteristics of the

target codes beforehand would be helpful for users to employ

the technique appropriately.

2) Application Issue: We use two major application sce-

narios to illustrate the impacts of the challenges. The first

scenario is bug detection [1]. Bugs may happen at any

place in any control flow. Thus achieving high control

flow coverage is essential for detecting bugs. However, our

discussed challenges are prevalent in real-world programs [15],

and thus pose concolic execution fails in achieving an ideal

coverage. Integrating other testing approaches, such as random

testing or fuzz testing, are helpful for bug detection. Besides,

some concolic execution tools leverage simulation techniques

to improve the coverage, but such tools may incur many false

positives.

Another scenario is deobfuscation. Obfuscation generally

increases code complexity by introducing opaque predicates

(e.g., constant) and bogus codes, while deobfuscation removes

the obscurity and redundancy. Theoretically, concolic execu-

tion is effective for deobfuscating such programs via dead code

(i.e., bogus codes) elimination. However, when composing

opaque predicates leveraging the challenges we investigated

in this paper, it would incur troubles for deobfuscation.

VI. CONCLUSION

To summarize, this paper serves as a first attempt to

investigate the challenges of concolic execution on small-size

binary programs. We have systematically proposed four types

of errors which may occur in different symbolic reasoning

stages, and seven challenges that can incur such errors in real-

world concolic execution tasks. We have also proposed two

challenges that may incur scalability issues when performing

concolic execution on small-size programs. To show that the

proposed challenges are non-trivial, we have conducted real-

world experiments, which includes a set of 22 binary programs

and three most popular concolic execution tools. To facilitate

further study in this area, we release our dataset as open

source. This paper would serve as an essential reference for

concolic execution researchers to improve the technique, and

for the users to properly use it.
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