
N-version Obfuscation

Hui Xu†‡ Yangfan Zhou⋆‡Michael R. Lyu†‡

†Department of Computer Science, The Chinese University of Hong Kong
‡ Shenzhen Research Institute, The Chinese University of Hong Kong

⋆ School of Computer Science, Fudan University

ABSTRACT

Although existing for decades, software tampering attack is
still a main threat to systems, such as Android, and cyber
physical systems. Many approaches have been proposed to
thwart specific procedures of tampering, e.g., obfuscation
and self-checksumming. However, none of them can achieve
theoretically tamper-proof without the protection of hard-
ware circuits. Rather than proposing new tricks against
tampering attacks, we focus on impeding the replication
of software tampering via program diversification, and
thus pose a scalability barrier against the attacks. Our
idea, namely N-version obfuscation (NVO), is to automat-
ically generate and deliver same featured, yet functionally
nonequivalent software versions to different machines or
users.

In this paper, we investigate such an idea on Android
platform. We systematically design a candidate NVO
solution for networked apps, which leverages a Message
Authentication Code (MAC) mechanism to generate the
functionally nonequivalent diversities. Our evaluation result
shows that the time required for breaking such a software
system increases linearly with respect to the number of
software versions. In this way, attackers would suffer great
scalability issues, considering that an app can have millions
of users, each using different versions. With minimal NVO
costs, effective tamper-resistant security can therefore be
established.

Keywords

Software Security, Obfuscation, Reverse engineering, Tamper-
resistance

1. INTRODUCTION
Software is vulnerable to tampering attacks after release.

Attackers may bypass its license checking mechanism to use
restricted features, or they may pack malicious payloads
into the original software and disseminate repacked ver-
sions [53]. More severely, tampering attacks even became

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CPSS’16, May 30-June 03, 2016, Xi’an, China.

c© 2016 ACM. ISBN 978-1-4503-4288-9/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2899015.2899026

a major threat to cyber physical systems (e.g., smartphone,
Android auto [1]) as many of them adopt Android as
their operating system, which is more vulnerable than
conventional embedded systems [26]. Once cyber physical
systems are tampered, it may incur not only security issues,
but also some safety consequences. To protect software
from being tampered, two major classical approaches have
been proposed, i.e., obfuscation and self-checksumming.
On one hand, software can be protected with obfuscation
approaches to deter attackers from interpreting and locating
target code spots. On the other hand, software can
embed self-checksumming code to detect whether it has
been tampered during execution. Nonetheless, once such
tricks have been recognized, skillful attackers can design
hand-crafted tools to launch attacks. It is often believed
that software cannot achieve theoretically tamper-resistance
without trusted hardware circuits [10]. But hardware-based
approaches suffer compatibility issues with current PC or
smartphone taxonomy as they require specifically tailored
hardware, hence research on purely software-based approach
is nontrivial. In this paper, we investigate a more robust
tamper-resistant solution which would not be defeated even
due to the exposure of tricks, and does not rely on hardware
circuits.

Our approach is based on the fact that besides successfully
tampering a software instance, a general tampering attack
also includes a replication and dissemination phase, so as
to affect more hosts and gain as much benefit as possible.
Intuitively, we may not guarantee a software instance to be
fully tamper-resistant, but we can nullify the applicability
of the tampering solution on general machines, other than
the attacker’s experimental one. Such an idea is inspired
by the existing program diversification approach [19], which
prevents the spreading of attacks by making intrusions
much harder to replicate. If an attacker wishes to launch
the intrusion on another machine, she has to work on
it specifically. In this way, we can disarm the ability
of automated contagion so as to control the scope of
potential damages. According to a recent survey [25],
existing software diversification approaches only consider
functionally equivalent programs, which can be effective
against several kinds of attacks such as return oriented
programming [34], but not for tampering. Note that
functional equivalence guarantees the universal applicability
of a software package on multiple hosts. If a package itself is
tampered before installation, its dissemination can hardly be
obstructed. Therefore, an effective program diversification

22

approach is demanded for impeding software tampering
attacks.

As a first attempt, we propose to deliver the same
featured, but functionally nonequivalent software versions
to different machines. We name the approach as N-version
obfuscation, and succinctly describe its major properties:
metamorphic, homomorphic, and automated. The meta-
morphic property requires each version of the software to
be unique in functionality so as to avoid the infection of
tampering; the homomorphic property enables a univer-
sal handler to handle the difference among versions; and
finally, the automated property automates the process of
the compiling and delivery of the N versions of obfuscated
software. We further provide a candidate solution for
applications of client-server architecture, i.e., by integrating
a MAC mechanism with functionally nonequivalent SHA1
algorithms [3] into the original software, it can be resistant
to tampering infection. We show that our candidate
solution is applicable to many software integrity protection
problems. Finally, it is worth noting that NVO itself
provides no protections against tampering; however, it can
be applied seamlessly to other existing tamper-resistant
approaches, and hence equip them with the replication-
resistant property. Our security analysis result shows that
the attacking complexity incurred by NVO increases almost
linearly with the number of functionally nonequivalent
software versions, which would pose a scalability barrier
against tampering attacks considering that an application
can have millions of versions used by different users.

The rest of this paper is organized as follows. We first
give more details about the motivation and background in
Section 2. We then introduce our approach with a candidate
solution in Section 3. Section 4 evaluates the effectiveness
of our approach. The related work is discussed in Section 5.
Finally, Section 6 concludes this paper.

2. MOTIVATION AND BACKGROUND

2.1 Adversary Model
In this work, we consider the hostile host model [38],

which has been widely adopted by existing software tamper-
resistance work, such as [14, 21]. We assume that to launch
such tampering attacks, attackers can use malicious host to
analyze the software, and they can fully inspect the software
execution step by step.

Note that our assumption requires weaker security pro-
tection from the host or hardware, and is more general.
Other systems (e.g., some cyber physical systems) may
have security chips which can provide stronger protection
leveraging hardware circuits. Our approach in this paper is
also applicable to these scenarios.

2.2 Software Tampering Insight
Software delivered to end users is vulnerable to tampering.

Attackers may modify the original program execution logic
for specific purposes. Generally, the modification can be
achieved in two ways: software repacking and dynamic
injection. We discuss these two approaches as follows.

2.2.1 Software Repacking

For many reasons, software installation packages down-
loaded by the users may not be the original ones. Take
Android apps as an example, adversaries may replace the

original advertisement module within the package for extra
profits; or they may have planted malicious payloads in the
repacked package. Such repacked Android apps are very
common in either Google Play or third-party markets [52].

One important reason for the widespread of Android app
repacking is that repacking Android apps is generally much
easier than repacking traditional PC software written in C or
C++, or iOS apps written in Objective C. Android program
is mainly written in Java, and its installation package is
delivered to end users in a compressed file (APK) with an
apk extension. One major component of the installation
package is the classes.dex, which wraps all the java classes.
To interpret the program logic of the app, one may convert
the classes.dex to either Java bytecode (i.e., jar file) or
Dalvik bytecode (i.e., smali code) with corresponding tools
(e.g., dex2jar, apktool). Unlike the assembly language, the
bytecodes are very easy to be interpreted by programmers.
Figure 1 shows some examples of such bytecode snippets.
The modification of an APK can hence be achieved by
rewriting the target bytecode.

(a) The Java bytecode browsed in jd-jui

(b) The corresponding smali code

Figure 1: Example code segments disassembled from
an Android installation package

It is worth noting that there are already many ex-
isting mechanisms to protect users from using repacked
apps. Developers may adopt obfuscation techniques during
compilation (e.g., using ProGuard [5] offered by Google),
which generally hide the meaning of the classes, functions,
and variables, by translating their names to meaningless
alphabets. Adversaries may encounter much difficulties
in understanding the program. However, many important
components cannot be obfuscated, such as the standard
Android and Java methods. Only with such limited in-

23

formation about the program, adversaries can add pay-
loads, e.g., they may add a payload by simply invoking
system.load() in onCreat(), a function commonly used
to start an Android program (or Activity). The discussed
obfuscation approaches are mainly effective in protecting
the apps from plagiarism, which requires comprehensive
understanding about the code. Another official package
integrity protection mechanism offered by operating system
is a digital signature-based APK originality verification
mechanism. However, many personal developers sign the
APK with a self-signed digital certificate, which cannot be
verified. To promote the convenience for both developers
and users, Android generally does not strictly forbid the
installation of such APKs signed by untrusted digital certifi-
cate, and hence severely degrade effectiveness of the security
mechanism.

2.2.2 Dynamic Injection

Attackers may also manipulate an app during its exe-
cution, e.g., by injecting a library into the app process
using Linux ptrace tool. This approach is widely adopted
by viruses, which inject either inspection code to monitor
the program execution, or place a back door to control it.
Besides viruses, powerful anti-virus software also uses the
same way to ‘protect’ their users’ security. Figure 2(a)
demonstrates the footprint of dynamic injection launched
by a famous Android security software package. The dy-
namically injected payloads can be very powerful, and cause
severe security threats to users. Figure 2(b) demonstrates a
credential leakage experiment on a VPN client of a famous
vendor (whose name is not disclosed in this paper for
security reasons), where we can easily obtain the login
credentials by injecting a payload. Moreover, according to
another experiment with 100 popular apps, over 90% of
them can be dynamically injected [47].

Footprint of injection

(a) The app (pid:3789) has been injected a library by LBE.

(b) A credential hacking experiment by dynamically hijacking
the function java...tostring().

Figure 2: Examples of dynamic injection

2.3 Tamper-resistance Background
In this section, we first overview the reverse engineering

techniques, and then discuss several major approaches
against specific procedures of reverse engineering.

2.3.1 Reverse Engineering Overview

Reverse engineering is the core technology for software
tampering. It involves a process that analyzes and ma-
nipulates a software package based on its executables, e.g.,
in an executable and linkable format (ELF). Anti-reversing
techniques impede such a process by placing tricks in the
executables to fool the analyzer. General reverse engineering
on ELF files involves two phases: a disassembly phase and
an analyzing phase. The disassembly phase decodes the
ELF binaries to assembly code, which can be performed
automatically by some tools (e.g., IDA). We can hardly
impede the decoding because eventually the processor has
to be able to decode and execute the file. Therefore, the
reverse engineering and corresponding anti-reversing efforts
mainly lie in the analysing phase.

There are two general ways to do reverse analysis, i.e.,
the offline approach and the online approach. The offline
approach does not execute the assembly code, but directly
analyzes it using static reverse engineering tools such as
IDA [4]. If a program has not been properly obfuscated,
its control flow graph (CFG) can be easily derived, which
shows the assembly code in blocks, and indicates their call
relationships. In this way, the complexity of analyzing the
assembly code can be simplified. CFG can provide great
assistance for reverse engineers to grasp the meaning of the
low-level assembly code which has little semantics. Even
though many powerful offline analysis tools are available off-
the-shelf, pure offline analysis still suffers hard limitations
in detecting some anti-reversing protections, e.g., runtime
code unpacking is widely used by malware to escape static
analysis. Therefore, adversaries may also execute the code
to obtain execution instruction traces [35] or to debug the
code step by step and perform the analysis, which is known
as online reverse-engineering [17]. Such an analysis process
is generally not affected much by obfuscation [49], and
adversaries can leverage a set of system monitoring tools
to monitor the output of a code snippet, which facilitates
the reverse engineering process.

There are many tricks that have been proposed to obstruct
the analyzing phase. Next, we discuss the major approaches
and their limitations.

2.3.2 Obfuscation

To protect programs from being analyzed, a few obfus-
cation approaches have been proposed [50]. The main idea
of obfuscation is to introduce some redundancies into the
original program, while the original functionality of the pro-
gram is still preserved. Several methods have been proposed
to achieve this. For example, a developer can use opaque
constant to add blocks of junk code that would never be
executed. Fig. 3(a) shows such an example. The developer
may further create NP-hard problems by introducing pointer
analysis difficulties as discussed in [24] and [32]. Another
method is to confuse the trigger condition of one code block
with one-way function, so that the static analyzer cannot
infer whether the block would be executed or is redundant.
Fig. 3(c) shows an example of transferring an obvious
condition into an opaque condition with a hash function.
Besides, unsolved conjectures have been proposed to confuse
the exit criteria of loops, e.g., Fig. 3(b) is an example
of using Collatz Conjecture. Such obfuscation techniques
can introduce great difficulties to general static analysis
tools for analyzing the CFG and grasping the meaning of

24

assembly code. However, all the obfuscation approaches
have vulnerabilities. For example, opaque constant is
vulnerable to symbolic execution which implements a smart
constraint solver, and unsolved conjectures are vulnerable
to homemade tools which can recognize the patterns of
conjectures [30, 48]. Barak et al. have theoretically proved
black-box obfuscation is not possible [7]. We conclude the
limitation of obfuscation techniques as Collberg stated in
[13]:

“Given enough time, effort and determination,
a competent programmer will always be able to
reverse engineer any application.”

int b = getchar();

//always true

if () {

foo();

}

else {

junk();

}

(a) Opaque constant

int x = 2000;

while (x > 1) {

if (x % 2 == 1) {

x = 3 * x + 1;

}

else x = x / 2;

if (x == 1)

foo();

}

(b) Collatz Conjecture

if ()

foo();

/*Original code:*/ /*After obfuscation:*/

if ()

foo();

(c) One way function

Figure 3: Demonstration of obfuscation approaches
with different tricks. The original code for Fig. 3(a)
and Fig. 3(b) is foo();

2.3.3 Anti-debugging

Researchers have suggested to set traps with anti-debugging
code to hinder debugging. For example, one may simply
check the debug register to detect if a debugger is present,
or count the execution time of a code block to detect if it has
been paused, and then penalize the debugger [20, 41]. Again,
if the trick of anti-debugging code is recognized, adversaries
can suppress the checking by patching the binaries, or simply
switching to another debugger.

2.3.4 Self-checksumming

When deriving enough understanding about the code, ad-
versaries can manipulate the binaries by adding or deleting
some code according to a specific purpose while preserving
its ability of execution. A possible way to detect such
code patching is to use self-checksumming code. The basic
idea is to pre-calculate a value of relative address (i.e., the
checksum), and let the program fetch instructions during ex-
ecution according to such a value. If the checksum governed
regions have been tampered, the instruction would not be
correct, and the program would likely to suspend [46]. Using
overlapped self-checksumming code can further increase the
strength of protection. However, it can be defeated by
carefully detecting and removing them [36] or exploring the
vulnerabilities [46] of the execution environment.

2.3.5 Watermarking

Watermarking is an approach for software plagiarism de-
tection. General watermarking approaches embed stealthy
watermark messages into the software to declare the own-
ership, which can be extracted and verified by arbitrators
who know the secrets to extract the watermark. Due
to security reasons, traditional watermark verification is
generally conducted offline only by a few organizations.
However, they cannot meet the requirement for detecting
fake apps. Recently, several new watermarking approaches
have been proposed for Android apps, which can be used
for online watermark verification and detecting repacked
apps accordingly, such as [37, 52]. Although helpful in code
originality verification, it cannot detect whether a software
package has been tampered, if the original authorship
information (e.g., package name) has been kept. In other
words, watermarking cannot prevent software tampering but
instead it discourages software piracy.

To conclude, there is still no overwhelming anti-reverse
engineering method, i.e., software can never be made fully
resistant to tampering without hardware protection.

2.4 Challenge of Tamper-resistant Apps
General applications can be very complex. They can

involve classes written in Java, native code written in C
or C++, and other third-party libraries, all of which are
vulnerable to be tampered. Therefore, a universal safeguard
is required to protect the integrity of each component. Since
no general tools can be applied for such heterogeneous
code, the implementation of tamper-resistance to the whole
program would be labour intensive. Moreover, mobile apps
are usually upgraded more frequently than general PC
software, so that their testing strategy and releasing criteria
cannot be as rigorous as PC. Consequently, the labourious
tamper-resistant implementation and testing would likely to
slow down the releasing speed, or insufficient testing on such
low-level code tends to cause more bugs.

Besides applicability issues with respect to software devel-
opment lifecycle, overhead should also be carefully consid-
ered. Traditional anti-tampering approaches usually work
by adding extra code to the original program, which can
complicate the control flow of the original program, or
by performing some integrity checking. Such approaches
inevitably incur overhead, and a trade-off between the
effectiveness and the overhead should be considered. In
order to run smoothly on a resource-constrained mobile
device, the app cannot afford much overhead.

Finally, according to the literature [10], it is impossible
for software to be absolutely secure against analysis without
specific hardware protection. Although there are some
existing solutions for Android apps, such as the ProGuard
offered by Google [5], DexGuard [2], and AppInk [52],
there is no general criteria about what tamper-resistant
level can be acceptable, i.e., secure enough. In this
regard, app developers would face difficulties in choosing
an anti-tampering approach among various approaches off-
the-shelf. It is urgent to develop an anti-tampering solution
whose effectiveness can be quantified, and referenced by the
developers.

3. OUR PROPOSED APPROACH
While achieving theoretically tamper-proof is hardly pos-

sible, our idea is to pose the tampering attack unscalable

25

Figure 4: The conceptual framework of NVO

with an NVO approach. In this section, we formally define
the idea of NVO, and then discuss a candidate solution with
its application scenario.

3.1 General Idea of NVO
We formally define the NVO problem as the following:

Given an algorithm A, how to automatically generate a large
set of functionally nonequivalent algorithms {C1, ...Cn},
which are similar to A, and their parent algorithm P , so
that they meet the following three properties:

Homomorphic: When performing on the same task, P can
output the same result as Ci, if the gene vector {g1, ...gn}
of Ci is known to P .

Metamorphic: When performing on the same task, Ci and
Cj generally output different results.

Automated : The generation and delivery of {C1, ...Cn}
can be automated.

Figure 4 demonstrates the conceptual framework of NVO.
The producer generates a set of functionally nonequiva-
lent individuals, i.e., {C1, ...Cn}. To communicate with
each individual and process their requests, the handler is
equipped with the parent algorithm P . Suppose the software
architecture is in client-server mode, we can deploy the
handler at the server side, and deliver the individuals to
the client side. In this way, the client can have functionally
nonequivalent diversities according to the metamorphic
property, and the homomorphic property enables the server
to handle such diversities. To make the idea practical, the
generation and delivery of such diverse software versions
should be automated.

3.2 A Candidate Solution
To apply NVO on apps, one major issue to address is

regarding which part of an app can have effective func-
tionally nonequivalent diversities. Intuitively, there are two
possible ways: we can either find the candidate code snippet
in the original program, or add some extra code to the
original program. Generally, the first approach is program
dependent, and can hardly be generalized. Hence, our
approach is to add extra code which can achieve the intended
diversities.

A possible way is to add MAC to the original program.
MAC is a popular mechanism adopted by client-server com-
puting architecture to check the integrity and authenticity
of messages. When a client sends a request to the server,
it calculates the MAC of the request and appends it to
the original request. The server validates the MAC first
and then processes the request. We can leverage the MAC
to create clients with functionally nonequivalent diversities.
More specifically, the diversity can be introduced based
on the hash algorithm (e.g., the Secure Hash Algorithm
1 (SHA1)), which is one major component of a MAC
algorithm. Fig. 5 illustrates such a mechanism. Each client

���������	
�

���������

������

	
�

��
��

	
�

��

������

���������
��������

���������	
�

���������

	
�

��
��
�

���

Figure 5: A sample application of NVO for tamper
resistant apps

is embedded with a unique SHA1-based MAC calculation
algorithm. To successfully perform a request to the server,
it has to send the identification (such as machine serial
number or user id), the request, and the MAC together to
the server. The server queries the genes of a client from its
local N-version database according to the identification of
the client, and then verifies the MAC. The distribution of
such diverse programs can be achieved by implementing the
MAC in mobile code (i.e., a dynamic library), and delivering
it by the server upon request. In other words, the client
software can be launched without the library at the first
time and then requests the server for the library. The server
randomly chooses a library from a pool of pre-compiled
libraries and delivers it to the client; in the meanwhile, the
server records the mapping between the genes of the client
and its unique identification in the N-version obfuscation
database. A detailed safeguard delivery and initialization
process is shown in Figure 6.

In the following paragraphs, we first show a viable means
to solve the NVO problem with SHA1 algorithm, and then
discuss the security measurements which can be built on the
mechanism.

3.2.1 N-version Obfuscated SHA1

Our approach leverages the iterations of calculations
needed by SHA1 to generate functionally nonequivalent
diversities. The main loop of original SHA1 (Algorithm 1)
includes 80 rounds of iterations. Each iteration takes one
plaintext block (w[i]) into calculation. For every twenty
rounds, the calculation (the equation for generating f and
the value of k) switches to another one. Even though there
are some security considerations of choosing a specific cal-
culation for each round, to our best knowledge, no evidence
shows the programs would suffer great security degradation
if we switch them with each other. Therefore, we can
diversify the original SHA1 algorithm by choosing different
sequences of equations for generating f and sequences of
values of k, which are the genes of individuals. We can also
design a parent algorithm which can receive the genes of an
individual, and process data input according to the setting
of genes. Algorithm 2 shows such a parent algorithm we
designed. In Algorithm 2, the pointer array of equations
(f genes[80]) for generating f and the value array of k

(k genes[80]) for the 80 rounds of iterations are passed to the
algorithm as the genes of a child. It is clearly seen that, given

26

Server

NVO Service

Module

App Service

Module

App Client

User Opens

the App

Check Safeguard

Existence

Load the

Safeguard

Request for

Safeguard

Get IMEI

Request for

Safeguard

Not exist

existed

[IMEI]
Recode IMEI

Safeguard Pair
[IMEI]

Send the

Safeguard

[safegu

ard]

Send the

Safeguard

[safegu

ard]
Get the

Safeguard

Load the

Safeguard

Calc N-Hash(m)

Verify Safeguard
Request for

verification
[m],[h]

Verify the

Digest
[m][h]

Send the Result
[safegua

rd]
Send the Result

[safegu

ard]
Get the Result

Waiting for

Operation

Figure 6: A sample activity diagram for automating
safeguard delivery and initialization. The diagram
uses IMEI as the unique id that maps with the
safeguard version. [m,h] is the request message and
the corresponding hash value.

the same input w[80], the parent algorithm can compute the
same result as a child when f genes[80] and k genes[80] are
properly set.

Data: w[80]
// blocks of plaintext
for i = 0; i < 80; i++ do

if 0 ≤ i ≤ 19 then

f ← (b AND c) OR ((NOT b) AND d);
k ← 0X5A827999;

end

if 20 ≤ i ≤ 39 then
f ← b XOR c XOR d;
k ← 0X6ED9EBA1;

end

if 40 ≤ i ≤ 59 then
f ← (b AND c) OR (b AND d) OR (c AND d);
k ← 0X8F1BBCDC;

end

if 60 ≤ i ≤ 79 then

f ← b XOR c XOR d;
k ← 0XCA62C1D6;

end

temp← (a LEFTROTATE 5) + f + e+ k +w[i];
e← d;
d← c;
c← b LEFTROTATE 30 ;
b← a;
a← temp;

end

Algorithm 1: The main loop of SHA1

3.2.2 Security Built-on MAC

The N-version obfuscated SHA1 program itself provides
little effectiveness against software tampering attack. How-
ever, it is resistant to replication, because the MAC of repli-
cated programs cannot be verified by the server. Therefore,
it can serve as a basis for software integrity checking, and
equip programs with replication-resistance property. In this
section, we discuss one possible way to build such security
features on top of the MAC.

Data: f genes[80], k genes[80],w[80]
for i = 0; i < 80; i++ do

Call f genes[i];
// Pointer to F0, F1, F2 or F3
F TAIL(k genes[i],w[i]);

end

Function F0()
f ← (b AND c) OR ((NOT b) AND d);

Function F1()
f ← b XOR c XOR d;

Function F2()
f ← (b AND c) OR (b AND d) OR (c AND d);

Function F3()
f ← b XOR c XOR d;

Function F TAIL(k,w)
temp← (a LEFTROTATE 5) + f + e+ k + w;
e← d;
d← c;
c← b LEFTROTATE 30;
b← a;
a← temp;
Algorithm 2: A parent algorithm for SHA1

Data: dict < segment >
// A list of predefined segment with name and size
Function IntegrityChk()

pid← getpid();
file← open (/proc/pid/maps);
while line← readline(file) != EOF do

segName← GetSegName(line);
segSize← GetSegSize(line);
if !dict.contains(segNmae) then

Reaction();
else

if dict.getsize(segNmae)!=segSize then

Reaction();
end

end

end

Algorithm 3: An exemplary integrity checking function

A viable means is to implement an integrity checking
function aligning with the MAC in the safeguard, so that it
can serve as a safeguard for the whole app. By interleaving
the code of the integrity checking function with the MAC
algorithm, the integrity checking can be triggered when cal-
culating a MAC. Algorithm 3 shows an exemplary integrity
checking function for the apps of Android operating system.
The function navigates the maps file of the app process itself,
which records the program segments and their addresses in
the memory. It then compares the record with a previously
defined standard dictionary by the developers. If there is any
abnormal segment in the maps, i.e., the integrity has been
violated, a responsive mechanism can be triggered. Such an
approach is effective in detecting either software repacking
or dynamic injection attacks as we have discussed in Section
2. For example, Algorithm 3 can detect the tampering
in Fig. 2(a) by finding that com.lbe.../client.jar is an
abnormal segment.

If an attacker has successfully tampered one copy of the
safeguard (e.g., removing the integrity checking function)
and replicated it on other machines, the server can detect the
replication because of an incorrect MAC, i.e., inconsistent
mapping between the identification and the genes. We
may further implement a reaction mechanism to renew the
safeguard or crash the client software directly.

27

3.2.3 Protect the Genes

Genes are the secrets for the diversity, and should not
be easily extracted by adversaries. Without protection,
the N-version software executables are generated in plain
ELF binaries. Adversaries may find the gene sections by
comparing several versions of the software, and extract
the genes manually, or even automatically. Figure 7
demonstrates the genes of the safeguard located using
IDA. To provide protections for the secrets from being
extracted, we randomly change the meaning of the genes,
i.e., the same value of f genes[i] for different versions may
trigger different operations. We further adopt two methods
to protect the meaning of genes from being reasoned:
functional obfuscation, and control flow obfuscation with
opaque constant.

(a) Genes in the .rodata section of the safeguard
using IDA View

(b) The bits of genes using Hex View

Figure 7: The genes can be located with IDA

a) Functional obfuscation: Adversaries may reason the
meaning of the gene by checking the call relationship with
some functions (e.g., F0, F1 in Algorithm 2). We hence
obfuscate the functions in each version from being located.
Firstly, we change the function names to random strings,
so that the functions can be easily located by their names.
Secondly, we change the order of those functions, so that
they appear at different positions of the executables. In this
way, even the genes are extracted, adversaries will still have
trouble to map the genes with the functions.

b) CFG obfuscation: In this step, we obfuscate the CFG,
so that even the functional obfuscation can be penetrated,
the calling relationship between the genes and the functions
would not be easily solved. To this end, we adopt the ob-
fuscation approaches proposed in [32], which composes NP-
hard problems with function pointers and opaque constants.
A comparison of the instructions before and after the CFG
obfuscation is shown in Figure 3.2.3.

Finally, it is worth noting that the obfuscation protections
we adopt to protect the secrets in this section are all
functional equivalent transformations. The NVO approach
itself does not provide any resistance to reverse engineering.
However, our approach can be seamlessly integrated with
other aiti-reverse engineering protections, such as anti-
checksumming. We may use them together to provide better
tamper-resistant capabilities.

3.2.4 Automated N-version Generation

We automate the process of generating N-version SHA1
algorithms based on LLVM, which is a widely used open-

(a) Before CFG obfuscation, the function calling can be
easily mapped with the genes in the jump table.

(b) After CFG obfuscation, the function calling related to
the genes has been obfuscated using opaque constants and
sub jump tables.

Figure 8: A control flow obfuscation example for the
switch-case code block

source compiler that supports extensions. LLVM first
represents the source code with Abstract Syntax Tree
(AST), and then transfers it into intermediate code (IR),
which would finally be compiled into executables according
to a specific platform. The automation can be achieved
in two ways: in AST level by customizing a libtooling

(i.e., a LLVM tool that can manipulate the source code of
a target AST branch during the compilation process), or in
IR level by adding extra N-version obfuscation passes to the
compiler. We suggest the second way because IR is language
and machine independent, and thus more advantageous in
crafting an obfuscator with better adaptability.

According to Algorithm 2, each gene (either fp[i] or k[i])
has four possibilities, so we can use two bits to represent
a gene. In each compilation, we first randomly generate
two 160-bit long sequences: one as the chromosome for the
equation function pointer (i.e., fp[80]) and the other as
the chromosome for the value option of k (i.e., k[80]). We
then replace the corresponding code with hardcoded genes.
Similarly, we can implement the obfuscation approaches
by adding obfuscation passes for protecting the genes in a
similar way as that in [22].

28

3.3 Approach Discussion
Several ideas proposed in literatures are very close to

NVO, such as white-box encryption, and N-version pro-
gramming (NVP). In this section, we compare NVO with
these ideas to show their difference and clarify why NVO is
a unique approach for security.

3.3.1 White-box Encryption

NVO creates functional nonequivalent diversities among
versions in the level of program logics. A question to ask
is why we do not simply use different keys to compose
diversities? For example, we may use a keyed-hash message
authentication code (HMAC) algorithm and hardcode a
unique symmetric key into each version. Note that such
an approach is also effective, but it is more vulnerable
than our proposed NVO approach, because hiding a key
(i.e., white-box cryptography) is more difficult than hiding
the program logic [11]. White-box cryptography can be
viewed as an extreme circumstance of NVO with only
key diversities. Besides, white-box cryptography does
not stress on producing diversities, which is the major
focus of NVO. Essentially these two approaches are two
orthogonal frameworks, each with its own objectives and
algorithms. Nevertheless, our approach may incorporate
white-box cryptography for a hybrid security mechanism.

3.3.2 N-version Programming

NVO improves software security by automatically gener-
ating different versions of software. The idea is inspired
by the classical N-version Programming (NVP) approach,
which improves software reliability by independently design-
ing different versions of software, so that the same bug may
not happen in all versions [9, 29]. Although the two ideas are
similar, they target on solving different issues, and they are
very different in several key aspects. A detailed comparison
of NVO versus NVP is show in Table 1.

Table 1: A comparison of NVP versus NVO
NVO NVP

Purpose
Security:

tampering resistant
Reliability:

fault tolerant
Fault Malicious faults Accidental faults

Assumption
Independent
obfuscation

Independent
programming

Program
Functionally
nonequivalent

Functionally
equivalent

Generation
Automatically

generated
Independently

designed
Population Very large Very small

Effectiveness O(N) security
1− (1− R)N

reliability
Cost O(1) O(N)

4. EFFECTIVENESS EVALUATION
The goal of our work is to impede tampering replication by

creating diverse software instances, and thus increasing the
tampering complexity for intruding multiple clients. In this
evaluation section, we first discuss the effectiveness of NVO
in thwarting tampering replication, and then evaluate the
complexity incurred by NVO for intruding multiple software
clients. Our evaluation process only considers the software
tampering attack, and does not consider other types of

attacks, such as side-channel attacks, or attacks in the
network layer.

4.1 Approach Effectiveness
Suppose a program has adopted the protection mechanism

discussed in Section 3.2. A decent attacker wishes to manip-
ulate the program binaries for a specific purpose, through
either software repacking or dynamic injection. To this
end, she has to disarm the security safeguard by removing
or modifying the security code discussed in Algorithm 3.
According to the adversary analysis, the safeguard cannot be
simply removed or disabled from the app, because the MAC
mechanism rested in the safeguard needs to be executed.
However, in a hostile host environment, the software can
be fully inspected. Through careful analysis, the attacker
may discern that the protection lies in the integrity checking
function of Algorithm 3. If she is skillful and spends
enough efforts, she can further disable the checking by
carefully modifying the function, such as suppressing the
reaction. If there is no NVO protection, the attacker may
replicate the repacked app, or apply her dynamic injection
scripts on other machines, and the whole software system
would be contaminated. However, NVO can impede such
replication of tampering attack, with detailed discussions in
what follows.

If the attacking type is app repacking, then the repacked
app replicated on multiple machines would have the same
genes for the MAC algorithm. Suppose the app (e.g., ebank)
uses UserID as the corresponding unique ID for the genes (as
we have discussed in Figure 5), then the server would receive
mismatching MAC from the app that has been logged on,
and thus can detect that the client app has been tampered.
In this way, we may take advantage of the user’s credential,
which cannot be easily faked. But what if the app mainly
provides services to anonymous users that do not require
logging on? Generally, such kind of apps do not have strong
security requirement. Having said that, NVO still works for
such apps by employing other information as the ID, such as
the International Mobile Equipment Identity (IMEI). The
major difference is that IMEI can be faked much easier.
For example, the repacked app can hardcode the faked
IMEI corresponding to the genes of the app. However,
when replicating on multiple machines, the server would
detect the abnormality that multiple clients are using the
same IMEI. In a nutshell, due to the divergence property
of NVO, the server can detect app repacking attack when
the app is communicating with the server. Such a detection
condition is trivial because for many apps, pure clients are
useless unless they can interact with the server (e.g., ebank,
shopping), or obtain rich contents from the server (e.g.,
news, videos).

If the attacking type is dynamic injection, the sample
integrity checking function (e.g., Algorithm 3) is effective
in detecting the tampering. Although it relies little on
the NVO mechanism, the NVO hardens the security of
the integrity checking function against being suppressed.
For example, if the attacker seeks to suppress the security
checking in Algorithm 3, an intuitive way is to disable
the Reaction() function. To locate the function within
the ELF file, the attacker may either check the related
ELF table (e.g., .dynsym and .rel.plt) dynamically or
hardcode the address of the function into the malicious code.
However, our NVO implementation transforms such self-

29

defined function names to a random alphabet combination
for each version, so that the dynamic approach cannot know
which symbol designates the target function. Besides, the
hardcoded address also cannot work because the function
would appear at different positions of the binaries for each
version, due to our functional obfuscation implementation.

4.2 Protection Strength
To enable the replication of tampering attacks, the at-

tacker need to bypass or thwart our NVO settings. In-
tuitively, she may either suppress the security checking in
each version dynamically or she may create a library which
is similar to the parent algorithm, and extracts the genes
of each version dynamically. We discuss the complexity for
these two kinds of attacks in what follows.

4.2.1 Disarm Security Checking

In order to suppress the security checking one machine,
the attacker has to obtain the safeguard on that machine,
and then remove the checking instructions within the safe-
guard. If the safeguard is protected with interleaved self-
checksumming code [8], a successful tampering requires
removing all the self-checksumming code at the same time,
of which the chance is very low without sophisticated
analysis. Existing approaches on identifying such code
generally require dynamic taint analysis and debugging [36].
Empirically, the time required to tamper each safeguard is
not negligible.

Let t0 denote the time needed for analyzing one software
copy and tampering it on the attacker’s own hostile host.
The time complexity is O(1), which equals to tampering
one software copy without NVO. Let t1 denote the time
needed to fetch the safeguard on another machine, so as to
replace it, and t2 denote the time needed to tamper it. If
the attacker wishes to tamper the software on n machines,
the total time can be estimated as t0+n∗ (t1+ t2). Because
of the interleaved self-checksumming code, t2 should not be
negligible [35], hence the complexity can be approximated
to O(n).

4.2.2 Universal Attacker

Another possible tampering approach is to build an
algorithm similar to the parent algorithm, which calculates
the hash value according to the genes of a specific child.
Such an approach requires the attacker to be able to extract
the genes from each safeguard. To this end, the attacker
may compare the difference between two implementations,
and locate the genes. If the attacker has derived enough
knowledge on our NVO theory and implementation, such
kind of attack is theoretically possible. However, in our
NVO implementation, the meanings of the genes differ in
different versions, because they have been obfuscated with
opaque constants [32]. To our best knowledge, existing
work on breaking such obfuscated programs requires either
symbolic execution with sophisticated constraint solvers
or complicated taint analysis [49], which is computational
intensive and time-consuming. Let t3 denote the time
needed to extract the genes of a safeguard. The time
needed to tamper the software system can be estimated to
t0 + n ∗ (t1 + t3). Because efficient automatic deobfuscation
is hard to achieve, t3 should not be negligible [6, 16].
Therefore, the complexity still equals to O(n). Note that

n can be made arbitrarily large as the obfuscation task can
be fully automated.

Finally, our complexity analysis results rely on the prob-
lem incurred by traditional anti-tampering protections. But
different from the traditional work, we do not require the
anti-tampering protections to approach theoretical secure,
which can hardly be guaranteed. We only require that the
protections cannot be thwarted automatically, which is more
sound and realistic.

5. RELATED WORK
In this section, we first overview the literature about

Android app tampering and protection, which takes ad-
vantage of a specific platform; we then review important
work in software reverse engineering area, which is more
general. Finally, we discuss the work that applies program
diversification to improve software security and reliability,
and discuss our difference with them.

5.1 Tamper-resistant Apps
To protect apps from unauthorized manipulation, Google

offers ProGuard [5], which is a free Android program
obfuscater and optimizer that can make the application
harder to be analyzed. Comparatively, DexGuard [2] is a
commercial tool build on ProGuard, and is more powerful.
However, they both provide no features against tampering
replication.

Recent literature in protecting users from using tampered
apps mainly focuses on detecting repacked apps in a large
scale, such as [18, 39, 43, 44, 53, 54]. However, these
investigations are not quite related to our problem. Several
other investigations focus on detecting repacked apps with
watermarking approaches [37, 52]. Wu et al. propose the
idea of manifest app and the corresponding tool, AppInk
[52]. AppInk can take the source code of an app as input
and automatically generate a new app with a transparently-
embedded watermark and the associated manifest app. The
manifest app can then be used for verification purpose
by triggering certain app control flows to regenerate the
watermark. Ren et al. propose another watermarking
solution (i.e., Droidmarking) for app plagiarism detection.
Droidmarking is based on a primitive called self-decrypting
code, and the watermark locations are not intentionally
concealed. These watermarking approaches are generally
effective for app repacking detection within the scope of
code plagiarism, but they are not effective for other kinds
repacking, such as third-party library replacement.

To protect the apps from being repacked, Wu et al.
propose an approach that re-encodes an Android app with a
transformed virtual instruction set, so that the app cannot
be inspected by general reverse engineering tools [51]. To
run the protected app, the developers can use a specialized
execute engine for these virtual instructions. The idea
is similar to another work proposed by Shu et al. [42].
These approaches can increase difficulties for interpreting
the program, and are effective against popular reverse
engineering tools. But their security relies on the secret
of the instruction translation table, which can be discovered
manually by decent adversaries.

As we have discussed, existing work in this area mainly
focuses on increasing the difficulty of repacking, or the
detection of repacked apps. Our work is different from them

30

in that we focus on decreasing the reusability of repacked
app.

5.2 Reverse Engineering
Software protection is a research problem since decades

ago. The proposed solutions are generally two-fold: hard-
ware circuit assisted solutions which provide better security
assurance, or pure software solutions which enjoy better
adaptability than general hardware [10]. For our research
problem, hardware circuit assisted solutions are not appli-
cable because of their requirement on specific hardware, so
we mainly discuss the pure software solutions.

The literature on software protection with anti-reverse
engineering approaches aims at different purposes. While
some researchers look for protections against piracy [27, 32]
and intrusion [8], others investigate on impeding malware
against detection [31, 33, 40]. However, they share a set of
common protection techniques with only slight difference.
Obfuscation is a basic software protection approach. It
can complicate the binaries, and increases the difficulty of
the reverse engineering. Ogiso et al. propose to obfuscate
the code by constructing an NP-Hard complexity problem,
which requires to determine the real function pointer from an
array of pointers [32]. However, this approach is vulnerable
to symbolic execution with constraint solvers. To thwart
symbolic executions, Sharif et al. notice that some code
blocks can be concealed by setting a trigger condition with
a one-way function, so that the constraint solver cannot
solve [40]. Wang et al. propose another obfuscation
technique to combat the symbolic execution by exploring the
general limitation of symbolic execution tools in analyzing
loops. Their idea is to employ unsolved conjectures [45] to
confuse the termination condition of loops. The approach
is vulnerable when the tricks of unsolved conjectures are
recognized. Other than setting tricks on the source code,
Linn et al. propose to obfuscate the binaries directly
by inserting some error bits, which can be automatically
corrected during execution by the CPU but not by the
current disassembly tools [27]. The security of such a pro-
tection is very limited and vulnerable to dynamic analysis,
i.e., the actual instruction trace can be easily obtained
once the software is being executed. To deter dynamic
analysis with debuggers, Oishi et al. propose to engage
some camouflaged anti-debuggers, which, however, is not
effective for homemade debuggers. On protecting software
from tampering, another general popular approach is to
detect the unauthorized modifications during runtime by
employing a self-checksumming mechanism [8, 21]. The self-
checksumming mechanism applies redundantly overlapped
checksum testers inside the program to verify its integrity.
On the other side, several investigations focus on defeating
the protections [31, 36, 46, 49]. Wurster et al. propose to
defeat the self-checksumming approach with a duplicated
memory attack, and examine its effectiveness on several
popular CPU types [46]. Qiu et al. propose to identify the
self-checksumming code using taint analysis approaches [36].
Yadegari et al. find a more general way of deobfuscating an
obfuscated algorithm [49]. Our work is different from all the
existing work in that we focus on impeding the replication
of software tampering, which is not yet properly addressed.

5.3 Software Diversification
The idea of software diversity is initially proposed for

fault tolerance or software reliability engineering, which is
known as N-version programming [9, 28]. Cohen in [12]
firstly proposes to create functionally equivalent programs
to enhance software security. Forrest et al. in [19] also
state that the beneficial effects of diversity in computing
systems have been overlooked, and introducing diversities
into computer systems can make them more robust to
replicated attacks. They propose several possible ways to
create such diversities with respect to the program behavior,
including adding nonfunctional code, refactoring code, or
diversifying the memory layout. Crane et al. in [15] build
upon fine-grained code diversification to prevent code-reuse
attacks. They adopt function permutation [23], register
allocation randomization, and callee-saved register save slot
reordering [34] in the diversification process. However, to
our best knowledge, all these investigations do not consider
to automatically generate functionally nonequivalent pro-
grams to improve tamper-resistance as a holistic approach.

6. CONCLUSION
This work focuses on impeding the replication of software

tampering, which is a unique perspective for anti-tampering
research. We propose the N-version obfuscation (NVO)
approach, which automatically generate and deliver func-
tional nonequivalent software versions to different machines.
In this way, the original tampering approach, which could
be either software repacking or dynamic injection, will
not adapt to work on machines other than the attacker’s
experimental one. To demonstrate its applicability in
practical scenarios, we propose a candidate solution for
general networked applications. Specifically, the candidate
solution introduces functional nonequivalence by adding or
using a MAC mechanism. Our evaluation result shows that
the achieved functionally nonequivalent diversities can be
effective against tampering replication, and the complexity
to tamper the software system is linearly increased with the
number of software versions, which can be automatically
generated with trivial cost.

Although the NVO idea is promising, this work can be
extended in various ways. Our candidate solution highly
depends on the characteristic of network communications
and the MAC mechanism. More solutions are expected in
the future to help us explore the technique more thoroughly.
Besides, our candidate solution simply incorporates existing
anti-tampering approaches. A systematic study on how to
effectively combine them are needed. Finally, the candidate
solution has not been examined publicly, and its security
should be further improved with real applications.

Acknowledgements

This work was supported by the National Basic Research
Program of China (973 Project No. 2014CB347701), the
Key Project of National Natural Science Foundation of
China (Project No. 61332010), the Research Grants Council
of the Hong Kong Special Administrative Region, China
(No. CUHK 14205214 of the General Research Fund),
and 2015 Microsoft Research Asia Collaborative Research
Program (Project No. FY16-RES-THEME-005). Yangfan
Zhou is the corresponding author.

7. REFERENCES
[1] Android Auto. https://www.android.com/auto/.

31

[2] DexGuard. https://www.guardsquare.com/dexguard.

[3] FIPS Pub 180-4: Secure Hash Standard (SHS).
http://csrc.nist.gov/publications/fips/fips180-4/
fips-180-4.pdf.

[4] IDA. https://www.hex-rays.com/products/ida/.

[5] ProGuard. http://developer.android.com/tools/help/
proguard.html.

[6] A. Appel. Deobfuscation is in np. Princeton
University, Aug, 21:2, 2002.

[7] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich,
A. Sahai, S. Vadhan, and K. Yang. On the (im)
possibility of obfuscating programs. In CRYPTO,
pages 1–18. Springer, 2001.

[8] H. Chang and M. J. Atallah. Protecting software code
by guards. In Security and Privacy in Digital Rights
Management, pages 160–175. Springer, 2002.

[9] L. Chen and A. Avizienis. N-version programming: a
fault-tolerance approach to reliability of software
operation. In Proc. the 8th IEEE International
Symposium on Fault-Tolerant Computing, pages 3–9,
1978.

[10] Y. Chen, R. Venkatesan, et al. Oblivious hashing: A
stealthy software integrity verification primitive. In
Information Hiding, pages 400–414. Springer, 2003.

[11] S. Chow, P. Eisen, H. Johnson, and P. C. V. Oorschot.
White-box cryptography and an aes implementation.
In Selected Areas in Cryptography, pages 250–270.
Springer, 2003.

[12] F. B. Cohen. Operating system protection through
program evolution. Computers & Security,
12(6):565–584, 1993.

[13] C. Collberg, C. Thomborson, and D. Low. A
taxonomy of obfuscating transformations. Technical
report, Department of Computer Science, The
University of Auckland, 1997.

[14] C. S. Collberg and C. Thomborson. Watermarking,
tamper-proofing, and obfuscation-tools for software
protection. IEEE Trans. on Software Engineering,
28(8):735–746, 2002.

[15] S. Crane, C. Liebchen, et al. Readactor: Practical
code randomization resilient to memory disclosure. In
Proc. of the 36th IEEE Symposium on Security and
Privacy, volume 15, 2015.

[16] D. Dunaev and L. Lengyel. Complexity of a special
deobfuscation problem. In Proc. of the 19th IEEE
International Conference and Workshops on
Engineering of Computer Based Systems, pages 1–4,
2012.

[17] E. Eilam. Reversing: secrets of reverse engineering.
John Wiley & Sons, 2011.

[18] P. Faruki, V. Laxmi, V. Ganmoor, M. S. Gaur, and
A. Bharmal. Droidolytics: robust feature signature for
repackaged android apps on official and third party
android markets. In Proc. of the 2nd IEEE
International Conference on Advanced Computing,
Networking and Security, pages 247–252, 2013.

[19] S. Forrest, A. Somayaji, and D. H. Ackley. Building
diverse computer systems. In Proc. of the 6th IEEE
Workshop on Hot Topics in Operating Systems, pages
67–72, 1997.

[20] M. N. Gagnon, S. Taylor, and A. K. Ghosh. Software
protection through anti-debugging. 2007.

[21] B. Horne, L. Matheson, C. Sheehan, and R. E. Tarjan.
Dynamic self-checking techniques for improved tamper
resistance. In Security and Privacy in Digital Rights
Management, pages 141–159. Springer, 2002.

[22] P. Junod, J. Rinaldini, J. Wehrli, and J. Michielin.
Obfuscator-llvm-software protection for the masses.
2015.

[23] C. Kil, J. Jim, C. Bookholt, J. Xu, and P. Ning.
Address space layout permutation (aslp): Towards
fine-grained randomization of commodity software. In
Proc. of the 22nd IEEE Annual Computer Security
Applications Conference, pages 339–348, 2006.

[24] W. Landi and B. G. Ryder. Pointer-induced aliasing:
A problem classification. In Proc. of the 18th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 93–103, 1991.

[25] P. Larsen, S. Brunthaler, and M. Franz. Automatic
software diversity. 2015.

[26] L. Lei, Y. Wang, J. Zhou, D. Zha, and Z. Zhang. A
threat to mobile cyber-physical systems: Sensor-based
privacy theft attacks on android smartphones. In
Proc. of the 12th IEEE International Conference on
Trust, Security and Privacy in Computing and
Communications, pages 126–133, 2013.

[27] C. Linn and S. Debray. Obfuscation of executable
code to improve resistance to static disassembly. In
Proc. of the 10th ACM Conference on Computer and
Communications Security, pages 290–299, 2003.

[28] M. R. Lyu et al. Handbook of software reliability
engineering. IEEE Computer Society Press, 1996.

[29] M. R. Lyu and Y.-T. He. Improving the n-version
programming process through the evolution of a
design paradigm. IEEE Transactions on Reliability,
42(2):179–189, 1993.

[30] J. Ming, D. Xu, L. Wang, and D. Wu. Loop:
Logic-oriented opaque predicate detection in
obfuscated binary code. In Proc. of the 22nd ACM
SIGSAC Conference on Computer and
Communications Security, pages 757–768, 2015.

[31] A. Moser, C. Kruegel, and E. Kirda. Limits of static
analysis for malware detection. In Proc. of the 23rd
IEEE Annual Computer Security Applications
Conference, pages 421–430, 2007.

[32] T. Ogiso, Y. Sakabe, M. Soshi, and A. Miyaji.
Software obfuscation on a theoretical basis and its
implementation. IEICE Trans. on Fundamentals of
Electronics, Communications and Computer Sciences,
86(1):176–186, 2003.

[33] P. O’Kane, S. Sezer, and K. McLaughlin. Obfuscation:
The hidden malware. 2011.

[34] V. Pappas, M. Polychronakis, and A. D. Keromytis.
Smashing the gadgets: Hindering return-oriented
programming using in-place code randomization. In
Proc. of the 33rd IEEE Symposium on Security and
Privacy, 2012.

[35] J. Qiu, B. Yadegari, B. Johannesmeyer, S. Debray,
and X. Su. Identifying and understanding
self-checksumming defenses in software. 2015.

[36] J. Qiu, B. Yadegari, B. Johannesmeyer, et al. A

32

framework for understanding dynamic anti-analysis
defenses. In Proc. of the 4th ACM Program Protection
and Reverse Engineering Workshop, 2014.

[37] C. Ren, K. Chen, and P. Liu. Droidmarking: Resilient
software watermarking for impeding android
application repackaging. In Proc. of the 29th
ACM/IEEE International Conference on Automated
Software Engineering, pages 635–646, 2014.

[38] T. Sander and C. F. Tschudin. Protecting mobile
agents against malicious hosts. In Mobile Agents and
Security, pages 44–60. Springer, 1998.

[39] Y. Shao, X. Luo, C. Qian, P. Zhu, and L. Zhang.
Towards a scalable resource-driven approach for
detecting repackaged android applications. In Proc. of
the 30th ACM Annual Computer Security Applications
Conference, pages 56–65, 2014.

[40] M. I. Sharif, A. Lanzi, J. T. Giffin, and W. Lee.
Impeding malware analysis using conditional code
obfuscation. In Proc. of the 15th Annual Network &
Distributed System Security Conference (NDSS), 2008.

[41] T. Shields. Anti-debugging: a developers view, 2010.

[42] J. Shu, J. Li, Y. Zhang, and D. Gu. Android app
protection via interpretation obfuscation. In Proc. of
the 12th IEEE International Conference on
Dependable, Autonomic and Secure Computing, 2014.

[43] M. Sun, M. Li, and J. Lui. Droideagle: seamless
detection of visually similar android apps. In Proc. of
the 8th ACM Conference on Security & Privacy in
Wireless and Mobile Networks, page 9, 2015.

[44] H. Wang, Y. Guo, Z. Ma, and X. Chen. Wukong: a
scalable and accurate two-phase approach to android
app clone detection. In Proc. of the ACM
International Symposium on Software Testing and
Analysis, pages 71–82, 2015.

[45] Z. Wang, J. Ming, C. Jia, and D. Gao. Linear
obfuscation to combat symbolic execution. In Proc. of
the 16th European Symposium on Research in
Computer Security (ESORICS). Springer, 2011.

[46] G. Wurster, P. V. Oorschot, and A. Somayaji. A
generic attack on checksumming-based software
tamper resistance. In Proc. of the 26th IEEE
Symposium on Security and Privacy, 2005.

[47] H. Xu, Y. Zhou, C. Gao, Y. Kang, and M. R. Lyu.
Spyaware: Investigating the privacy leakage signatures
in app execution traces. In Proc. of the 26th IEEE
International Symposium on Software Reliability
Engineering (ISSRE), 2015.

[48] B. Yadegari and S. Debray. Symbolic execution of
obfuscated code. In Proc. of the 22nd ACM SIGSAC
Conference on Computer and Communications
Security, volume 15, pages 732–744, 2015.

[49] B. Yadegari, B. Johannesmeyer, et al. A generic
approach to automatic deobfuscation of executable
code. Technical report, 2015.

[50] F. Zhang, D. Wu, P. Liu, and S. Zhu. Program logic
based software plagiarism detection. In Proc. of the
25th IEEE International Symposium on Software
Reliability Engineering (ISSRE), 2014.

[51] W. Zhou, Z. Wang, Y. Zhou, and X. Jiang. Divilar:
Diversifying intermediate language for
anti-repackaging on android platform. In Proc. of the
4th ACM Conference on Data and Application
Security and Privacy, pages 199–210, 2014.

[52] W. Zhou, X. Zhang, and X. Jiang. Appink:
watermarking android apps for repackaging
deterrence. In Proc. of the 8th ACM Symposium on
Information, Computer and Communications Security,
pages 1–12, 2013.

[53] W. Zhou, Y. Zhou, X. Jiang, and P. Ning. Detecting
repackaged smartphone applications in third-party
android marketplaces. In Proc. of the 2nd ACM
Conference on Data and Application Security and
Privacy, pages 317–326, 2012.

[54] Y. Zhou and X. Jiang. Dissecting android malware:
Characterization and evolution. In Proc. of the 33th
IEEE Symposium on Security and Privacy, 2012.

33

