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Two-stage Multi-class AdaBoost for Facial Expression Recognition

Hongbo Deng, Jianke Zhu, Michael R. Lyu and Irwin King

Abstract-Although AdaBoost has achieved great success, it
still suffers from following problems: (1) the training process
could be unmanageable when the number of features is ex-
tremely large; (2) the same weak classifier may be learned
multiple times from a weak classifier pool, which does not
provide additional information for updating the model; (3) there
is an imbalance between the amount of the positive samples
and that of the negative samples for multi-class classification
problems. In this paper, we propose a two-stage AdaBoost
learning framework to select and fuse the discriminative fea-
ture effectively. Moreover, an improved AdaBoost algorithm
is developed to select weak classifiers. Instead of boosting in
the original feature space, whose dimensionality is usually very
high, multiple feature subspaces with lower dimensionality are
generated. In the first stage, boosting is carried out in each
subspace. Then the trained classifiers are further combined
with simple fusion method in the second stage. Experimental
results on facial expression recognition data demonstrate that
our proposed algorithms not only reduce the computational
cost for training, but also achieve comparable classification
performance.

I. INTRODUCTION

AdaBoost is a well-known learning algorithm, which has
been extensively studied in recent years [14], [15], [16]. The
essence of AdaBoost is to learn a number of simple weak
classifiers that are linearly combined into a single strong
classifier. The major advantage of AdaBoost algorithm is the
adaptive selection of discriminative and complementary fea-
tures during the training process. In the past, AdaBoost [15]
has been successfully applied to many different applications,
including object detection [18], face recognition [9], [20],
text categorization [16] as well as proving to be suitable for
feature selection [17].

The objective of AdaBoost is to find a highly accurate
classification rule by fusing many weak classifiers together,
and each of them may be only moderately accurate. More-
over, a separate procedure for computing the weak classifier
is called the weak learner [16]. In [18], the feature selection
is achieved through a simple modification of the AdaBoost
procedure: the weak learner is constrained so that each weak
classifier returned can depend on only a single feature. As
a result, each stage of the boosting process selects a new
weak classifier, which can be viewed as a feature selection
process. Therefore, AdaBoost has also been employed for the
feature selection and fusion [17] with the most discriminative
information. Selectivity reduces the dimensionality of the
feature space that in turn results in significant of the feature
space. Thus, this leads to the significant speed up for the
online classification task.
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Although AdaBoost has achieved great success, it still
suffers from following problems: (1) the training process
could be unmanageable when the number of features is
extremely large, and the most time-consuming step is to
search the optimal feature by the weak learner; (2) the same
weak classifier may be learned multiple times from a weak
classifier pool, which does not provide additional information
for updating the model; (3) there is an imbalance between
the amount of the positive samples and that of the negative
samples for multi-class classification problem. To this end,
we propose an improved AdaBoost algorithm with a simple
weak learner, which is able to deal with these problems.

The contributions in this paper can be summarized as fol-
lows. We propose a two-stage AdaBoost learning framework
to reduce the computational cost for the high-dimensional
features by selecting and fusing the discriminative features
effectively. Moreover, an improved AdaBoost algorithm is
developed to select weak classifiers.

To evaluate the effectiveness of our proposed AdaBoost
algorithms, we apply them to Facial Expression Recognition
(FER) tasks. Facial expressions deliver rich information
about human emotion and play an essential role in human
communications. In order to facilitate a more intelligent
and natural human machine interface for new multimedia
products, automatic facial expression recognition [3], [5],
[13] had been widely studied in the past decade or two,
which has become a very active research area in computer
vision and pattern recognition. Experimental results on facial
expression recognition data demonstrate that our proposed
algorithms not only reduce the training computational cost,
but also achieve comparable classification performance.

The rest of the paper is organized as follows. Section II
reviews the related work in facial expression analysis and Ad-
aBoost. In Section III, we present and formulate our proposed
AdaBoost algorithm that can select the most discriminative
features and construct a real-time strong classifiers. Experi-
ments and performance evaluations are given in Section IV.
Finally, Section V concludes our work.

II. RELATED WORK

In the literature, a number of approaches have been
proposed for facial expression analysis, which includes both
the image sequences based methods [21], [24] and the still
image based ones [4], [23]. As for the image sequences,
several successful approaches have been proposed, such
as Optical Flow models [21] and Hidden Markov Models
(HMM) [24]. On the other hand, the methods for the still
image are categorized into the two classes: holistic spatial
analysis, such as Eigenfaces and Fisherfaces [1], and local
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spatial analysis, like Gabor wavelet [11] and local Principle
Component Analysis (PCA) [3].

Since the feature extraction is very important for the facial
expression analysis, various feature extraction methods were
compared in [3] including Eigenfaces, Fisherfaces, Gabor
wavelets, etc. Moreover, the best performance is obtained
through the Gabor wavelets representation. The number of
Gabor filters used to convolve face images varies with the
applications, and usually 40 filters (5 scales and 8 orienta-
tions) are used [3], [5], [10]. Due to the large number of
convolution operations, the computational cost and memory
requirement of such Gabor features are very large. Addi-
tionally, the dimensionality is incredibly high compared with
the small training samples. In order to ensure a fast online
classification task, the FER process must exclude a large
majority of the available features, and focus on a small set
of critical features. So many AdaBoost algorithms select
the most discriminative Gabor features and combine them
together optimally to construct an effective and real-time
FER system. However, the performance is sensitive to the
selected features.
One of the key issues in AdaBoost [14], [15], [16], [17],

[18] is how to choose the weak classifier (also feature).
The weak classifier could be very simple. In [18], the
weak learner determines the optimal threshold classification
function for each feature, and successfully applied to face
detection. Yang et al. [22] introduced the intra-face and
extra-face difference space for each image pairs, but such
method may generate tremendous imbalance of the positive
and the negative samples. To tackle this problem, we adopt
a difference space between the feature and the mean, which
can utilize the label information.

For feature selection, classifiers with similar features are
more likely to be selected and redundancy will exist among
some selected features. FloatBoost [9] checks previous se-
lected weak classifiers and eliminates non-effective classifiers
during the learning process. Later, Shen et al. [17] extended
the work by incorporating mutual information. However, the
computational cost is extremely high especially when the
number of features is large. To handle this problem, we
adopt a decay factor in the weak learning process. Recently,
random subspace method has been applied in various ma-
chine learning tasks to attack the high dimensional data. The
sample features are divided into n disjoint subspaces [2] or
random subspaces [ 19], then boosting method is used on each
of the subsets independently. Inspired by those approaches,
we propose a two-stage multi-class AdaBoost algorithm to
select and combine discriminative Gabor features, which not
only reduces the training computation, but also achieves
comparable classification performance.

III. ADABOOST LEANING ALGORITHM

In this section, we first describe the formal setting in
AdaBoost learning, and then review the original multi-class
AdaBoost algorithm. Finally, we present and formulate our
proposed two-stage multi-class AdaBoost method.

A. Preliminaries
Let denote X as the sample space, and Y is a finite set of

classes. The size of Y is defined as k = YI. In the multi-
class single-label case, a sample pair is represented by (x, Y),
where x C X, Y C Y. Y[l] for I C Y is defined as

{ +1 if I y
Y [l] 1=f

The objective of AdaBoost learning [16] is to find a
classifier f: X x Y --> R with interpretation that, for a
given sample x, the labels in Y should be ordered according
to f (x, .). That is, a label 11 is considered to be ranked higher
than 12 if f (X, l1) > f (X, 12). If 1i is the associated label for
x, then a successful learning algorithm tend to rank label li
higher than others. Therefore the output label I corresponding
to sample x is determined by

I = arg max f (x, li).
li(cY

(2)

B. Weak Learner

To simplify the the weak learning process, we choose a
simple and effective weak classifier function h(x, 1), called
a threshold function, on the jth coordinate of x in the n-
dimensional space. In order to fully utilize the discriminative
information, a difference space between the feature x and the
mean is employed to determine the weak classifier

(3)
where p,u is the mean feature vector of the class 1, b is a
threshold, and superscript j denotes the jth coordinate of x.
For each feature, the weak classifier determines the optimal
threshold classification function. Therefore, a weak classifier
pool XH is constructed through the threshold function h(x, 1).
Assuming I is the label of a sample x, and then (x-

,Ui) is a positive example; otherwise, (x -,Ul) is a negative
example. Comparing to the intra-face space and the extra-
face space [9], the advantage of such method is to utilize the
discriminative information without generating imbalance of
the positive and the negative samples.

C. Original Multi-class AdaBoost Algorithm
The idea of AdaBoost is that the weak classifiers are

used to form a highly accurate prediction rule via calling
the weak classifiers repeatedly on different distributions over
the training samples [15]. Moreover, AdaBoost algorithm
maintains a set of weights as a distribution Dt over samples
and labels. On each round t, the distribution Dt is passed
to the weak learner who searches a weak classifier ht. The
output of the weak learner is a classifier h: X x Y >

{-1, +1}. Over a number ofT rounds, T weak classifiers try
to exhaustively search the one with the maximum weighted
classification rate. The parameter rt is then used to update the
distribution Dt so that the weights of misclassified samples
are increased and the weights of correct classified samples
are decreased. In this way, the algorithm focuses on difficult
training samples, increasing their representation in successive
training sets. Finally, a strong classifier is constructed through

(1)

hj (x, 1) = st'gn [ (x pl)j b] .
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Algorithm 1 Original Multi-class AdaBoost
Given: m training samples (xi,Yi),...,(Xm,Ym), and the
weak classifier pool XH {hj (x, 1)}.

i: Initialize: Di (i, 1) = I/mk, i' = I...ml I = i... k,
where k= IY.

2: for t = I...T do
3: Under the distribution Dt, find a weak classifier

ht: X x Y -> {-1,+1} from XH {hj(x,l)} to
maximize the absolute value of

ht = arg max rj,

where rj = Ei,I Dt(i, )Yi[l1]hj(xi, ).
Prerequisite: rt > 0, otherwise break the loop.
Choose at C JR, typically at = 'ln 1+rt2 1 rt b
Update the distribution:

D t+(,I= Dt(i, I) exp(-atYi [ ]ht(xi, I))zt
where Zt is a normalization factor, so that Dt+± will
be a distribution.

end for
Output the final strong classifier:

f(x, ) = Etatht(x, 1).

Algorithm 2 Improved Multi-Class AdaBoost
Given: m training samples (x1,Yi),... ,(Xm, Yi), the weak
classifier pool 'H {hj (x, 1)}, and the number of the weak
classifier T.

i: Initialize: Di (i, 1) = I/mk, Pi 1,) = 1, i= 1....ml
j 1...n,l 1.... k, where k Y,n = H.

2: for t = I ...T do
3: Under the distribution Dt, find a weak classifier

ht: X x Y -> {-1,+1} from XH {hj(x,l)} to
maximize the absolute value of

ht = arg maxrj,
hjeH

4:
5:

6:

7:

8:RETURN f(x,l).

Pt+±(j,l) =Pt(j,l)+1,

where r, Z,Ei I Dt(i,l)Yl[l]hj(xi,l)whererj = Ei'l Pt Oll)
Prerequisite: rt > 0, otherwise break the loop.
Choose at C JR, typically at = 'ln 1+rt11trtn
Update the distribution:

D t+i I) =.Dt (i, I) exp(-'atYi[1]ht(xi, I))zt
where Zt is a normalization factor, so that Dt+± will
be a distribution.

end for
Output the final strong classifier:

f(x, ) = Etatht(x, 1).
a weighted vote of the weak classifiers. The details of the
original algorithm are described in Algorithm 1.

RETURN f(x,l).

D. Proposed Two-stage Multi-class AdaBoost Algorithm

Although the Algorithm 1 is simple and effective for
boosting the weak classifiers, it has two distinct drawbacks.
First, the same weak classifier with very high classification
rate may be selected many times, which has no more contri-
bution to the final strong classifier. In the extreme, when ri
almost approximate 1, the worst case is that most of the
selected weak classifiers are the same one, which results
in generalization error. Second, the training process could
be unmanageable when the number of features is extremely
large (10,000+).

To tackle the first problem, a decay factor is employed
to constrain the selection of duplicated weak classifiers.
P(j, 1) is denoted as the decay factor for each weak classifier
in the weak classifier pool 'H, which increases one for
current selected weak classifier. The optimization solution
is formulated as follows:

ht = arg max Dt(i,l )Yl1h(xi,) (4)

During the weak learning process, all weak classifiers com-

pete to be selected. The basic idea of our proposed AdaBoost
is to prevent from learning the previous selected weak
classifiers by reducing their probability, and to restrain the
previous selected weak classifiers. With the same number

of selected weak classifiers, experiments demonstrate that
the performance is better than that of the original one. The
details of improved multi-class AdaBoost is summarized in
Algorithm 2.

The overall time complexity of the algorithm is dominated
by Step 3 and Step 6. In Step 3, it involves with searching the
optimal weak classifier by weak learner, and the complexity
is 0(mkn) (n cx IXl) in this work. For Step 6, it will cost
0(mk) operations to update the distribution. The overall
time complexity of the algorithm is O(Tmk(n + 1)) (Z

O(Tmkn) for n > 1). Hence, the time-consuming step is
to search feature space exhaustively to find the optimal weak
classifier, especially for those high dimensional feature.

In order to reduce the computational cost for such high
dimensional feature, we propose a two-stage AdaBoost learn-
ing framework to address the second problem. According
to the sample features, we divide the feature space X to
M disjoint subspaces Xi. Then we first perform AdaBoost
algorithm on each subspace to obtain M AdaBoost classifiers
respectively. Since these classifiers are trained independently,
the computation can be parallel on multiple computers.
Then a simple sum rule is adopted to combine successively
complex classifiers S(x, 1). The details of our algorithm are

shown in Algorithm 3.
As mentioned above, the complexity of the Step 3

is O(TTmkni) (ni cx XSi ) in Algorithm 3, then the

4:
5:

6:

7:
8:

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 11,2021 at 06:55:47 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 3 Two-stage Multi-class AdaBoost
Given: m training samples (xi,Yi),...,(xm, Yin), the weak
classifier pool 'H {hj (x, 1)}, and the number of the weak
classifier T.

1: Initialize: Divide X to M subspace X1, X2, .. , XM, and
lXUI = Ei li

2: for i = 1 ...M do
3: Pass parameter Xi x Y, T, 'H to AdaBoost, and get

T weak classifiers.
4: Get individual strong classifier fi Xi x Y -*> R.
5: end for
6: Output the final combined strong classifier:

S(R R S) = Ei fi((l. 1)
RETURN S(x, 1).

overall complexity to learning T weak classifiers is
O(ZJi mkni) = ( Tmkn). We can observe that the
complexity is reduced greatly to select T weak classifier.
The performance of the two-stage AdaBoost is evaluated in
Section IV-D.2

IV. EXPERIMENTAL RESULTS

In this section, we report empirical evaluations of our
proposed algorithm for facial expression recognition. We first
describe the details of our testbeds, and then discuss our pre-
processing and feature extraction methods. Finally, we show
the experimental results. In addition, we also implemented
PCA and Linear Discriminant Analysis (LDA) as baseline
methods for the feature selection. The experiments were
conducted on a PC with 3.0GHz CPU and 1GB memory.

AR dataset consists of over 3,200 color frontal facial
images belong to 126 subjects. For each subject, these
images were recorded in two different sessions separated
by two weeks, and each session took 13 images. In our
experiment, four images with different facial expressions are
selected. Therefore, there are a total of 1,008 images. For
each subject, one image of each expression is selected as the
training samples, while the other is employed as the testing
samples. We perform the trial using two-fold cross-validation
to calculate the average recognition rate.

B. Preprocessing

Before extracting the features from facial images, the
preprocessing procedure performs the following steps in
order to obtain the normalized pure expression images:

* Detect the centers of the eyes manually.
* Rotate to line up the eye coordinates.
* Crop the face region and resize to fixed size of 128 x 96.
* Use a histogram equalization method to eliminate the

illumination effect.
As shown in Figure 1, the facial images are both geometri-
cally and photometrically normalized.

A. Experimental Datasets

To evaluate the performance of the proposed method for
facial expression recognition, we have collected two different
kinds of datasets as our experimental testbeds. One is the
JApanese Female Facial Expression (JAFFE) Database [11].
The other is the AR Database [12]. Table I summarizes the
detailed information of the datasets used in our experiments.

TABLE I

THE FACIAL EXPRESSION IMAGE DATASETS USED IN THE EXPERIMENTS.

Dataset #total #expression (E) #person (P) #per E & P
|JAFFE 213 7 10 3 - 4

AR 1008 4 126 2

(a) JAFFE dataset (b) AR dataset
Fig. 1. Example images from JAFFE dataset and AR dataset. (a) From
left to right: anger, disgust, fear, happiness, neutral, sadness and surprise.
(b) From left to right: neutral, smile, anger, scream.

C. Gabor Feature Extraction

Benefited from the optimal localization properties in both
spatial analysis and frequency domain, the Gabor filters have
been proven to be a very useful tool in computer vision and
image analysis [6], [7], [8], [10], [11], [23].

1) Gabor Filters: In the spatial domain, a Gabor filter is a
complex exponential modulated by a Gaussian function [8].
The Gabor filter is usually defined as follows,

JAFFE dataset contains 213 images of seven facial
expressions posed by ten Japanese female persons. Every
person posed three or four examples for each of the seven fa-
cial expressions (happiness, sadness, surprise, anger, disgust,
fear, neutral). For the experiments reported in this section,
two images for each expression of each subject are randomly
selected for training, while the remaining data are employed
for testing. Due to the limited size of the JAFFE dataset, we
perform the trial using three-fold cross-validation to obtain
the average recognition rate.

e_ ( 2 2 ) [eiwx' _ e

x = x cos 0 + y sin 0, y' =-x sin 0 +

,a 2 <n 2
2 ]

ycos 0,
(5)

where (x, y) is the pixel position in the spatial domain, w
the radial center frequency (scale), and 0 the orientation of
Gabor filter. Different choice of w and 0 generates different
Gabor filter. In this paper, a Gabor filter bank G(3 x 8) with
3 scales and 8 orientations is selected.
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2) Gabor Feature Representation: The Gabor feature rep-
resentation of an image I(x, y) is the convolution of the
image with the Gabor filter 4b(x, y, w1p, Or,) as given by:

Ou,(x, Y) = I(x, Y) * (, Y, gu Sv) (6)
where "*" denotes the convolution operator. Figure 2 shows
the magnitudes of the convolution outputs of a face image
with 3 scales and 8 orientations.

Fig. 2. The magnitudes of the Gabor feature representation.

The Gabor feature set consists of 24 Gabor component-
features S {O, I (The output of a Gabor filter is called
a Gabor component-feature). To encompass the properties
of spatial locality and orientation selectivity, we concate-
nate [10] all the outputs of Gabor filter bank and derive
the Gabor feature vector. Typically, the augmented Gabor
feature vector x is constructed by concatenating its rows (or
columns), which is able to be defined as follows:

x = (°11°12 **°v

to 24 Gabor component-features for JAFFE and AR dataset.
More specifically, the recognition performance of 24 individ-
ual AdaBoost classifiers with 60 selected features are shown
in Table II. The row ,u corresponds to different scale, and
the column v corresponds to different orientation of Gabor
component-features.
We plot the curves of average correct recognition rates

corresponding to different number of weak classifiers in
Figure 3. It indicates that our proposed algorithm performs
much better than original algorithm when the number of
selected classifiers increases. Moreover, both algorithms ob-
tain similar recognition rates when only few classifiers are
selected. This implies that the redundancy among selected
classifiers increases with the number of weak classifiers in
original algorithm. As illustrated in Figure 3(a), our proposed
algorithm with 60 weak classifiers even outperforms the
original algorithm with 200 weak classifiers. From above,
we can conclude that the proposed AdaBoost algorithm
(Algorithm 2) can achieve better results and restrain the
selection of the duplicated weak classifiers.

TABLE II

CORRECT RECOGNITION RATES OF 24 INDIVIDUAL CLASSIFIERS USING

ALGORITHM 2 WITH 60 SELECTED FEATURES FOR JAFFE DATASET (%).

/-\v 11 I
1 1 73.3
2 77.3
3 80.0

2 3 4 5 6 7
82.6 74.6 73.3 73.3 76.0 78.6
81.3 92.0 77.3 70.6 77.3 84.0
88.0 89.3 81.3 80.0 84.0 88.0

l82.6
84.0
78.6

(7)
where T is the transpose operator. In practice, the dimension-
ality of a Gabor feature vector is very high. Hence, the com-
putational cost and memory requirements are prohibitively
quite large.

D. Experimental Results
Two experiments are designed. In the first experiment, our

improved AdaBoost (Algorithm 2) and the original AdaBoost
(Algorithm 1) are compared in the classification performance
using JAFFE dataset. The second experiment is designed to
evaluate the effectiveness of the two-stage learning frame-
work on the JAFFE and the AR datasets. If the feature has
4608 dimensions, Algorithm 1 costs about 14.1 seconds to
find one weak classifier, while it only needs 0.43 seconds
to get one weak classifier for Algorithm 2, which validates
the computation complexity analysis in Section III-D. The
baseline experiment is performed using the PCA method
on the total Gabor features (3 scales and 8 orientations).
In addition, the LDA method is also implemented, similar to
the Fisherfaces method [1] method, which applies LDA after
PCA dimensionality reduction.

1) Experiment 1: To compare our improved algorithm
with the original one, we applied both AdaBoost algo-
rithms on Gabor component-feature o,>. For each Gabor
component-feature, an AdaBoost classifier will be trained to
select 200 weak classifiers (features) respectively. In total, 24
individual AdaBoost classifiers are obtained corresponding

(a) JAFFE (b) AR
Fig. 3. Performance evaluation for the original AdaBoost algorithm and
our improved AdaBoost algorithm.

2) Experiment 2: We now empirically evaluate the two-
stage AdaBoost algorithm on the JAFFE dataset and the AR
dataset. In the first stage, 24 individual AdaBoost classifiers
corresponding to 24 Gabor component-features are obtained
for further fusion of multiple classifiers in our experiment. In
the second stage, the final strong classifier is able to be con-
structed by combining all the individual classifiers according
to the summation fusion rule. Actually, the best performance
of individual classifier reaches 92.0% in Table II, and the
final strong classifier further improves the performance to
96.89%. In the stochastic discrimination theory, classifiers
are constructed by combining many components that have
weak discriminative power but generalize very well.

Table III reports the correct recognition rates of Two-
stage AdaBoost, PCA and LDA on JAFFE and AR datasets.

f \ r l - r - r - r r - r - r - r - n
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TABLE III

CLASSIFICATION PERFORMANCE OF TWO-STAGE ADABOOST VS PCA vs LDA (%).

Two-stage AdaBoost (# of weak classifiers )
Dataset PCA LDA 5 10 20 40 60 80 100 120 140 160 180 200
JAFFE 80.00 95.56 93.34 96.00 96.44 96.89 96.89 97.78 97.33 97.33 97.33 96.89 97.33 97.33
AR 83.28 90.09 84.89 86.33 87.80 87.47 88.10 88.53 88.82 87.94 88.44 88.66 89.16 89.06

Here # of weak classifiers refers to the number of weak
classifiers selected by each individual classifier, not the total
number. As for JAFFE and AR dataset, the performance of
Two-stage AdaBoost algorithm, with only 5 selected weak
classifiers, is much better than the baseline PCA. Moreover,
the classification performance improves with the number of
weak classifiers. The best performance for JAFFE dataset
achieves 97.78%, better result than the LDA method. As
for the AR dataset, although the performance of Two-stage
AdaBoost is slightly worse than the LDA method, the key
point is that a strong classifier can be constructed by choosing
only 10 or 20 weak classifiers, which is much better than
PCA and LDA for online classification tasks.

V. CONCLUSIONS

In this paper, we propose a novel two-stage multi-class
learning framework to attack the problem of computation
complexity for high-dimensional features. Moreover, an im-
proved AdaBoost algorithm is developed to restrain previous
selected weak classifiers. The advantages of our proposed
techniques are explained and demonstrated. We perform the
experiments on both JAFFE and AR datasets to evaluate the
algorithm. The experimental results demonstrate that our pro-
posed algorithm is effective and promising for reducing the
training computation complexity and achieving comparable
classification performance in facial expression recognition.
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