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ABSTRACT
Topic modelling and citation recommendation of scientific articles
are important yet challenging research problems in scientific arti-
cle analysis. In particular, the inference on coherent topics can be
easily affected by irrelevant contents in articles. Meanwhile, the
extreme sparsity of citation networks brings difficulty to a valid
citation recommendation. Intuitively, articles with similar topics
are more likely to cite each other, and cited articles tend to share
similar themes. Motivated from this intuition, we aim to boost the
performance of both topic modelling and citation recommenda-
tion by effectively leverage this underlying correlation between
latent topics and citation networks. To this end, we propose a novel
Bayesian deep generative model termed as Neural Relational Topic
Model (NRTM), which is composed with a Stacked Variational Auto-
Encoder (SVAE) and a multilayer perception (MLP). Specifically,
the SVAE utilizes an inference network to learn more represen-
tative topics of document contents, which can help to enrich the
latent factors in collaborative filtering of citations. Furthermore, the
MLP network conducts nonlinear collaborative filtering of citations,
which can further benefit the inference of topics by leveraging the
knowledge of citation networks. Extensive experiments on two
real-world datasets demonstrate that our model can effectively take
advantages of the coherence between topic learning and citation
recommendation, and significantly outperform the state-of-the-art
methods on both tasks.
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1 INTRODUCTION
Topic modelling and citation recommendation are two widely con-
cerned yet challenging tasks for scientific article analysis [6, 8].
Specifically, with the increasing diversity of interdisciplinary sci-
entific articles, the inference of coherent topics are significantly
challenged by irrelevant contents in articles. Meanwhile, the grow-
ing size of citation networks leads to extreme sparsity of citations,
which poses challenges to a valid recommendation.

Intuitively, when documents display similar topics, they tend to
cite each other with a higher probability. Similarly, articles where
there are citations tend to show some closeness in content themes.
Based on this observation, researchers resort to Bayesian latent
variable models [6, 8, 14, 20, 26] to jointly infer latent topics and pre-
dict citations, such that this underlying correlation can be helpful
for both topic discovery and citation prediction.

Despite the success of these inspiring works, previous meth-
ods mainly suffer from three drawbacks. First, the shallow struc-
ture in previous methods may be insufficient for modeling the
complex correlation between latent topics and citation networks,
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and thus may lead to suboptimal solutions. Although more recent
works [18, 35, 36] can learn latent representations of documents
via deep auto-encoders, the collaborative filtering based on linear
matrix factorization is still insufficient to exploit the underlying
correlation. Second, previous Bayesian models either suffer from
the tricky derivations of variational inference, or the computational
burden of sampling techniques during the approximation of poste-
riors. Although neural topic models [24, 25] are recently proposed
to address the inference problem, they are designed purely for text
analysis without considering the information from citation net-
works. Third, the topic coherence with the presence of citation
network has not been explored in past literature. Topic coherence
has been a long standing problem in topic modelling, which could
also affect the performance of recommendation through the under-
lying correlation in our setting.

In order to address the above problems, we propose a novel
Bayesian deep generative model named Neural Relational Topic
Model (NRTM), which is composed of a Stacked Variational Auto-
Encoder (SVAE) and a multilayer perception (MLP). Specifically,
to resolve the first problem, we incorporate SVAE with MLP to
collectively enhance the model capacity. The topics of learned by
SVAE can enrich the latent factors for MLP, and MLP is able to
perform nonlinear collaborative filtering for citation recommenda-
tion. Conversely, the knowledge from citation networks can also
be transferred back to topic modelling sufficiently via the pow-
erful multilayer perceptions. Therefore, the correlation between
two sources are mutually leveraged in our deep neural architec-
ture. To address the second problem, we adopt neural variational
inference [15] for our Bayesian generative model, leading to an
efficient and black-box learning scheme. For the third challenge, we
directly investigate the topic coherence with the recently proposed
evaluation metrics [29]. The coherence of topics can be improved
by both the expressive SVAE as well as the mutual exploitation of
the correlation between two domains.

In summary, the contributions of our paper are as follows:

• We propose a Bayesian deep generative model named Neural
Relational Topic Model, which can mutually leverage the
underlying correlation between latent topics and citation
networks.

• We adopt neural variational inference for the inference of
document latent topics in our model, leading to an efficient
and black box learning scheme.

• We investigate the coherence of learned topics with the
presence of citation networks, which has not been explored
in past literature to the best of our knowledge. An illustrative
example of learned coherent topics can be found in Table 4.

• Extensive experiments on two real-world datasets demon-
strate that our method effectively leverages the correlation
via deep architectures, and achieves the state-of-the-art per-
formance on both topic modelling and citation recommen-
dation tasks.

2 PRELIMINARIES
In this section, we cover through the necessary background knowl-
edge for our problem. The notations used throughout the paper are
as follows: we denote the citation network as Y ∈ RN×N , where

yi j = 1 stands for a citation (a positive link) between document
i and j, and 0 (a negative link) otherwise. For convenience, we
denote Y(+) as the set of positive links, while Y(−) is the set of
negative links. For document i , the content can be represented by
wi = [wi1, ...,wiDi ] ∈ {0, 1}Di×V , wherewid ∈ {0, 1}V is the d-th
word of document i represented by a one hot vector,Di is the length
of the document andV is the vocabulary size of the corpora shared
by all documents.

We have two tasks to consider: First, we aim at discovering latent
topics from document contents; second, we seek to recommend
relevant citations based on collaborative filtering of historical ref-
erences among documents. We first show how classical methods
tackle the two tasks collectively, then we introduce mean filed and
neural variational inference, the latter of which acts as the building
block to extend classical models to our proposed method.

2.1 Relational Topic Model
Relational Topic Model (RTM) [6] is a traditional Bayesian latent
variable model for joint learning of topics and citation networks.
RTM unifies Latent Dirichlet Allocation (LDA) [3] of topic learning
withmatrix factorization of networkmodelling. Specifically, assume
there are T topics, and β ∈ RT×V is the topic-word matrix where
each row βt ∈ RV is the word distribution of topic t lying on a
simplex. For document i , θi ∈ RT is the topic latent variable, while
zid ∈ RT is the one-hot encoded topic indicator variable for the
d-th word in document i .

The generative process of RTM is as follows:

(1) For each document i:
(a) Draw the topic variable θi |α ∼ Dir(α);
(b) For each wordwid of the document:

(i) Draw the topic indicator variable zid |θi ∼ Multi(θi );
(ii) Draw the wordwid |zid , β ∼ Multi(βzid );

(2) For each observed link yi j between document i and j:
(a) Draw yi j |zi , zj ∼ Bernoulli(ϕ(η⊤zi ◦ zj + ν ));

where zi = 1
Di

∑
d zid , and ϕ(·) is the function parameterized by η

and ν for the Bernoulli distribution. The prediction of links comes
from bilinear matrix factorization with a nonlinear transformation
ϕ(·). Nevertheless, the variational inference in RTM is non-trivial:
the analytical update of variational parameters highly depends
on the choice of ϕ(·) (e.g., probit function or sigmoid function).
Furthermore, the shallow structure of the model may not be able
to capture the underlying coherence of the two tasks.

2.2 Mean Field and Neural Variational
Inference

Variational inference techniques are famous approximation tools
for probabilistic graphical models. Consider a probabilistic model
pλ(x ,θ ) with data x , latent variables θ and parameters λ, we seek
to find the posterior pλ(θ |x) = pλ(x ,θ )/p(θ ) according to Bayes
rules. Most posteriors are intractable, and a substitute way is to by
minimizing the Kullback-Leibler (KL) divergence KL(qγ (θ )∥pλ(θ ))
between approximated posterior qγ (θ ) parameterized by γ and true
posterior pλ(θ |x). However, the mean-filed [32] assumption in VI
highly restricts the flexibility of approximated posterior. Mean-
while, the parameter update usually requires tricky approximations
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(as appeared in RTM), which may not be easily implemented in
practical applications.

Recently proposed Neural Variational Inference (NVI) [15] ad-
dresses the above challenges elegantly with the help of Variational
Auto-Encoders (VAE). Specifically, NVI learns variational poste-
rior qγ (θ |x) and the observation likelihood pλ(x |θ ) based on the
encoding and decoding process of VAE. The reparameterization
trick in VAE allows the gradient of variational parameters to back-
propagate through the random variables [15, 28]. For example, a
univariate Gaussian distributed variable θ ∼ N(µ,σ 2I)) can be repa-
rameterized via a location-scale transformation, i.e., θ = µ + ϵ · σ ,
where ϵ ∼ N(0, I). where ϵ is a randomly injected noise, and param-
eters µ and σ are obtained via the encoder parameterized by γ . NVI
turns to optimize the Evidence Lower Bound (ELBO) as follows:

L(λ,γ ;x) = E[logpλ(x |θ )] − KL(qγ (θ )∥pλ(θ )), (1)

where the first term is the reconstruction loss, and the KL-divergence
is as described before. NVI allows a flexible posterior approximation
without the mean-field assumption, and with the back-propagation
of gradients, the update of variational parameters can be done in a
black-box way.

3 NEURAL RELATIONAL TOPIC MODEL
In this section, we first show how we enhance NVI to learn latent
topics from document contents and develop a neural topic model.
Then we demonstrate how we resort to multilayer perceptions to
capture pairwise interactions among topics, which are then utilized
for citation recommendation. The architecture of our model is pre-
sented in Figure 1, in which two stacked variational auto-encoders
are deployed to learn latent topics for two documents xi and x j
respectively, and their latent topics θi and θ j are concatenated and
fed into a multilayer perception to output the predicted citation
link ỹi j .

3.1 Stacked Variational Auto-Encoders for
Neural Topic Modelling

Previous neural topic models [5, 25, 30] generate document con-
tents with only one-layer decoder which may not fully take the
advantages of deep structure of auto-encoders. In order to obtain
richer representations for the latent topics, we apply a stacked ar-
chitecture to the variational auto-encoder as presented in Figure 1,
which we name as the Stacked Variational Auto-Encoder (SVAE).
With a similar spirit to stacked auto encoder [2], the greedy layer-
wise approach to pretrain the SVAE is adopted to help model learn
more informative features of document contents. Nevertheless,
to fully integrate topic models into the Bayesian framework, the
following issues need to be addressed:
Reparameterization of neural topic models As described in
Section 2.2, a key point that allows the back propagation of varia-
tional parameters is the reparameterization trick. In neural topic
modelling, we have two set of latent variables: topic indicator vari-
able z and topic variable θ . Since z is discrete, its reparameterization

could be troublesome in nature. Thanks to the conjugate Dirichlet-
Multinomial distributions, we can analytically sum out z as

p(wid |θi , β) =
T∑

zid=1
p(wid |zid , β)p(zid |θi )

=

T∑
zid=1

Multi(βzid )Dir(α) = Multi(θiβ), (2)

leading to a topic-document model [30].
However, the reparameterization for the Dirichlet distributed

topic variables θ is more challenging. To deal with this, we choose
Normal distribution as a substitute to Dirichlet distribution, i.e., for
document i,

θi |wi ∼ Dir(αi ) =⇒ θi |wi ∼ N(µi ,σi I), (3)

and the reparameterization can be performed via the location-scale
transformation as described in Section 2.2. Note that unlike LDA,
we do not impose simplex constraints on topic variables θ , but allow
them to be fully inferred by deep neural networks. Although one
can assign softmax transformation over the topic variables θ to
ensure the constraint, such design may restrict the model capacity
and affect the performance of citation recommendation1.
Representation of the topic-word matrix β The representa-
tion of β is a key factor for the quality of topic coherence. Instead
of linearly generating the document contents based on β in LDA, in
NTMs it is done in a nonlinear manner via the decoding process of
VAE, where β is interpreted as the weights of the decoder. Previous
methods such as NVDM [25] and ProdLDA [30] only deploy one
layer on the decoder which may suffer from limited expressiveness
of the structure. Different from them, in our model multiple hidden
layers are stacked for the decoder, hence β can be represented by
the layer-wise product of decoder weights, i.e., β =

∏L
l=L/2W

l ,
where L is the number of layers of the auto-encoder. With such de-
sign, the learning of topic-word matrix β can be fully incorporated
into backpropagation updates of the neural structure.

According to Equation 1, the ELBO of our neural topic model is
formulated as:

L1(wi ) =
1
S

S∑
s=1

Di∑
d

lnpλ(wid |θ
(s)
i , β) − KL(qγ (θi )∥pλ(θi )), (4)

in which the reconstruction loss and the KL-divergence are:

lnpλ(wid |θ
(s)
i , β) = wid ln w̃id + (1 −wid ) ln(1 − w̃id ), (5)

KL(qγ (θi )∥pλ(θi )) =
1
2

T∑
t=1

(µ2it + σ
2
it − (1 + ln(σ 2

it ))), (6)

respectively. Here w̃id = f (wid , λ) is the recovered word for wid
by the SVAE. Since SGVB estimator is generally unbiased with
low variance comparing to other black-box inference methods, e.g.,
BBVI [27], a common practice is to set the number of samples S = 1
for the simplification of computation.

1We conducted experiments and found topic variables with softmax transfor-
mation generally decrease the performance on both topic learning and citation
recommendation.
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Figure 1: The neural architecture of the proposed neural variational topic model. The document contents xi and x j are for-
warded in the stacked variational auto-encoders and their topic variables θi and θ j are generated. Then, the topic variables θi
and θ j are concatenated and fed into the multilayer perception to predict the citation ỹi j .

3.2 MLP: Combining Topic Modelling with
Collaborative Filtering

In collaborative filtering, when it comes to modelling the interac-
tion between two documents, previous works still rely on matrix
factorization and simply apply inner product on the latent features.
In order to efficiently fuse the information from document con-
tents and citation networks, we adopt multilayer perceptions to
replace the inner product and capture the complex interactions
among latent topics. Specifically, for each pair of documents (i, j),
we first concatenate the latent representation θ = [θi ,θ j ] as the
input to the MLP, and perform forward propagation to generate ỹi j
which indicates the probability that document i cites j , as shown in
Figure 1. As in RTM, we assume each yi j is Bernoulli distributed,
so the log likelihood function for yi j can be written as

L2 = E[logp(yi j |θi ,θ j )]

=
∑

(i, j)∈Y(+)

log ˜yi j +
∑

(i,k )∈Y(−)

log(1 − ˜yi j ), (7)

where ỹi j = fη (θi ,θ j ), and fη (θi ,θ j ) is the MLP approximator
parameterized by η. To ensure fη (θi ,θ j ) ∈ (0, 1), we apply the
sigmoid activation function to the output layer.

The MLP architecture can simultaneously benefit topic learning
and citation recommendation. First, the concatenated topic variable
θ conveys the representations of documents to the collaborative
filtering of citations. Second, the back propagation of gradients can
transfer the knowledge of the citation network to update latent
representations of topics. Therefore, the MLP architecture bridges
topic modelling and collaborative filtering in a fully deepwaywhich
can better leverage the coherence between the two tasks compared
to previous MF-based approaches [6, 35, 36].

Combining MLP with SVAE together, the full ELBO for NRTM
can be formulated as:

L = 1
S

S∑
s=1

Di∑
d

lnpλ(wid |θ
(s)
i , β) − KL(qγ (θi )∥pλ(θi ))︸                                                          ︷︷                                                          ︸
L1

+
α

S

S∑
s=1

logp(yi j |θ (s)i ,θ
(s)
j )︸                       ︷︷                       ︸

L2

+β (
L∑
l=1

∥W (l )∥22 +
L
′∑

l ′=1

∥W (l ′ )∥22 )︸                                ︷︷                                ︸
L3

,

(8)

where L1 is the ELBO for topic modelling, L2 is the log likelihood
for collaborative filtering, and L

′
is number of layers in MLP. To

prevent over-fitting, we also assign l2 norms over the weights of
SVAE and MLP denoted as L3. α and β are regularizers for L2
and L3 respectively. The SAVE and MLP can be learned jointly to
minimize the ELBO in Equation 8.

Overall, the generative process formulated in the neural frame-
work of our model can be summarized as follows:

(1) For each document i:
(a) Input the word vectorwid ;
(b) Forward calculation of µi and σi via the encoder;
(c) Draw the noise ϵi ∼ N(0, I) and compute θi = µi + σiϵi ;
(d) Recover the word w̃id via the decoder;

(2) For each observed citation yi j between document i and j:
(a) Draw yi j |θi ,θ j ∼ Bernoulli(fη (θi ,θ j ));

Aside from MLP, our model can be easily extended to other
neural architectures. For example, convolutional neural networks
can be performed on the outer product of θi and θ j so as to model
the pairwise correlations of latent topic spaces [10]. We leave them
as future work.
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Table 1: Statistics of real-world datasets.

Datasets Documents Vocab. Size Citations Sparsity

Citeulike-a 16,980 8,000 44,709 99.974%
Cora 13,147 17,059 57,018 99.967%

3.3 Implementation
Efficient Computation of L Since each document contains
thousands of words, sequentially passing each word wid of doc-
ument i and sample epsilon to calculate L is computationally ex-
pensive. With the exchangeability ofwid , for d = 1, ...,Di , a more
efficient way is to equivalently represent the document content
as xi =

∑Di
d=1wid . Moreover, since zid has been summed out in

Equation 2, we can pass xi directly to SVAE and sample ϵ once
for the entire content of document i . In order to meet the input
requirements of sigmoid cross entropy function in Equation 5, we
further normalize xi as is done in [35].
Negative Sampling For each pair of positive link yi j , we uni-
formly selectNneд negative links associated with document i which
indicate that i does not cite those articles. With negative samples,
the training of the network can acquire both positive and negative
feedback from the observations, leading to a more comprehensive
representation for the documents. In practice we find that nega-
tive sampling can contribute to better performance on both topic
modelling and collaborative filtering. Other studies show that non-
uniform sampling [12] may further improve the performance of
the model.

4 EXPERIMENT
In this section, we present the experiments of NRTM. We evaluate
NRTM for citation recommendation and topic learning separately,
and then provide some qualitative analysis. The code is available at
https://github.com/zbchern/Neural-Relational-Topic-Models.

4.1 Dataset
We evaluate our model on two real world datasets: Citeulike-a2 and
Cora [23]. Citeulike-a is from an online repository that allows users
to create their own collections of papers, and Cora is another widely
used dataset for citations of scientific papers. For both datasets,
we preprocess the data in a similar way to [33, 35], i.e., lemmatize
redundant terms, remove infrequent words and delete documents
with less than 10 citations. We concatenate the title and abstract
as the content for each article. Note that for a fair comparison, we
follow [35] to convert all links to undirected links, although our
method can also be directly applied to directed networks.

The statistics of the proprocessed datasets are summarized in
Table 1. It can be observed that both datasets are extremely sparse.
For each document, we randomly select 80% of the observed cita-
tions for training, and the remaining 20% citations for testing. For
each positive instance in the training set, we randomly draw Nneд
negative samples. Since all documents appear in both training and
testing set, collaborative filtering can be carried out effectively.

2http://www.citeulike.org

Table 2: Summarization of the baselines.

Methods Topic Modelling Recommendation

LDA PGM /

RTM PGM MF

ProdLDA Deep /

ProdLDA+MF Deep MF

NCF / Deep

RDL Deep MF

SVAE Deep /
NRTM Deep Deep

4.2 Experiment Setup
Baselines The baselines listed below are highly related to our
model:

LDA [3] is a well-known Bayesian topic model.
RTM [6] is a classical method that combines LDA with MF to

jointly learn document topics which also generates recom-
mendations for documents.

ProdLDA [30] is the state-of-the art neural topic model that
can learn coherent topic words with efficient computational
estimations for parameters.

ProdLDA+MF initializes the low rank latent factors of matri-
ces by topic embeddings learned by ProdLDA to perform
collaborative filtering on the citation network data.

NCF [11] is the state-of-the art method that performs collab-
orative filtering via neural network. However, NCF does
not leverage document contents as auxiliary information for
citation recommendation.

RDL [35] is the state-of-the-art auto-encoder based method
for network modelling. The prediction of links is similar to
that in RTM. Although RDL is not originally proposed for
learning topics, we adopt the same methodologies as used
in RTM to yield a topic-word matrix β to measure the topic
quality.

Table 2 is a summarization of the baselines in terms of the approach
used for different tasks, where SVAE and NRTM are the proposed
methods in this paper. "PGM" denotes probabilistic graphical mod-
els, "MF" denotes matrix factorization, "Deep" denotes deep neural
network based approaches and "/" indicates the incapability on the
task.

Evaluation Metrics For citation recommendation, we report
two measures of ranking quality: Hit Ratio (HR) and Normalized
Discounted Cumulative Gain (NDCG). HR@K indicates whether the
target is in the top-K of the recommendation list, while NDCG@K
is accumulated from the top of the result top-K list to the bottom,
with the gain of each result discounted at lower ranks. We adopt the
leave-one-out evaluation scheme, and randomly draw 99 negative
samples that are not cited by the document i for each positive link
yi j . All experiments are repeated for 5 times and the average values
of HR and NDCG scores are reported.
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For topic modelling, we report the CV score [29] computed by
Palmetto toolkit3. The CV score is to measure how close the mean-
ings of words are clustered in the topic, and is shown to be more
consistent to human judgment compared to other widely used met-
rics such as PMI and NPMI [16]. We report the CV score averaged
over all topics. Aside from quantitative evaluation of topic mod-
elling, we also present some top-K citation recommendations for
each topic, as well as some cases of the topical indications of the
document contexts.

Parameter Settings For LDA, we use the internal packages pro-
vided by scikit-learn4, and adopt the variational inference for pa-
rameter estimation. For RTM, we search through the concentration
parameter α of Dirichlet distribution and find α = 0.1 can provide
robust and good results across the two datasets. We implement
ProdLDA based on the released code5 of [30], and keep the network
architecture unchanged. For ProdLDA+MF, we first pretrain the
ProdLDA model, and then train the neural network with MF jointly
with the regularizer for the MF loss set as 1000. In terms of RDL, we
set the network structure as V-200-100-T-100-200-V. Recall that V
and T are the vocabulary size and the number of topics respectively.
The regularizers in RDL are set to yield its best performance, i.e.,
λp = 0.1, λe = 50, λw = 0.00001, λs = 0.1 and λn . For NRTM, we
set the hidden layers of SVAE as the same as those in RDL, while
for MLP, we assign 4 fully connected layers (T-T2 -

T
4 -1) as default.

We also vary the layer depth of both SVAE and MLP to verify the
effectiveness of our deep neural structure in Section 4.5. We set
α = 1000, β = 0.0001 for all experiments. Before we jointly train
the SVAE and the MLP, we first pretrain the network layer-wisely
for SVAE as described in Section 3.1.

We use the Adam optimizer with the learning rate of 0.001. For
negative sampling, we consistently draw 5 negative links for each
positive link for all network based approaches. We also report the
effect of the number of negative samples in Section 4.5.

4.3 Citation Recommendation
The HR and NDCG scores are reported in Figure 2, according to
which we have the following observations:

• NRTM generally outperforms all the baselines by a large
margin, especially when K is large, which demonstrates
the superiority of NRTM in citation recommendation. The
performance of NRTM indicates that our model can indeed
effectively fuse the information of latent topics to help the
collaborative filtering for citations, even though the citation
network is extremely sparse.

• RDL underperforms NRTM in most cases, which demon-
strates that the matrix factorization may not be effective for
the collaborative filtering for citations. Nevertheless, since
RDL is also a deep auto-encoder based approach, the learned
document embeddings could still benefit the collaborative
filtering to a great extend compared to ProdLDA+MF and
RTM.

3https://github.com/dice-group/Palmetto
4http://scikit-learn.org
5https://github.com/akashgit/autoencoding_vi_for_topic_models

• NCF also achieves comparable performance to RDL, even
though NCF only utilizes the network structure. This indi-
cates that the neural collaborative filtering framework can
effectively learn the pairwise interactions of document em-
beddings.

• ProdLDA+MF does not show competitive performance com-
pared to NRTM, RDL and NCF, which suggests that the
latent topics inferred by the in ProdLDA cannot benefit col-
laborative filtering. This phenomenon can be attributed to
that one-layer decoder prevents it from learning informative
representations from documents.

• RTM has the lowest scores among all methods on both
datasets. The phenomenon can be explained by its shallow
structure which may not be able to fully learn the document
embeddings and fuse them into the collaborative filtering
task.

To further verify the effectiveness of our model, we vary the
number of topics from 10 to 50 with an interval of 10, and corre-
sponding results of HR@10 and NDCG@10 are shown in Figure 3.
It can be observed that our NRTM achieves the highest scores for
different number of topics on both datasets, and it is not very sen-
sitive to the number of topics. For instance, NRTM with 20 topics
is enough to achieve competitive results on both datasets. The ex-
cellent performance and robustness of our model indicate that the
neural architecture grants NRTM with the superior learning ability
even with small number of latent dimensions. RDL again ranks in
the second place, while it can be more easily affected by the number
of topics. NCF is still competitive to RDL, which demonstrates the
power of neural network for collaborative filtering. ProdLDA+MF
outperformes RTM by a large margin on Citeulike-a, but is slightly
better on Cora. Overly, RTM ranks the last and is very sensitive to
the choice of the topic number.

4.4 Topic Modelling
Next, we present the results of topic modelling. The CV scores are
shown in Table 3. We can observe that:

• Our NRTM achieves the highest CV scores with both 20
and 50 topics on two datasets. Compared to SVAE, there
is an improvement of the coherence score, especially on
Cora, which verifies NRTM can indeed effectively utilizes
the information from the citation network to learn topics
with better qualities.

• Even without the network knowledge, SVAE also shows com-
petitive performance to joint learning methods such as RDL
and RTM, especially on Citeulike-a. Compared to ProdLDA,
the higher CV scores of SVAE indicate the advantages of its
stacked architecture over the one-layer decoder in ProdLDA.

• ProdLDA+MF even performs worse than the ProdLDA on
both datasets, which is beyond our expectation. We attribute
the decrease ofCV score to the incomplete representation of
latent topics in ProdLDA, which may not effectively leverage
the knowledge from the citation network, and vice versa as
illustrated in Figure 2 and Figure 3.

• In comparisonwith LDA, RTMonly outperforms it on Citeulike-
a with 50 topics. On the other hand, LDA even achieves the
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Figure 2: Performance of HR@K and NDCG@K on the two datasets with K ranging from 1 to 10.
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Figure 3: Performance of HR@10 and NDCG@10 with number of topics varying from 10 to 50.

Table 3: CV scores.

Citeulike-a Cora
20 topics 50 topics 20 topics 50 topics

LDA 0.4081 0.4308 0.4183 0.4308

RTM 0.4501 0.4267 0.3902 0.3844

ProdLDA 0.4509 0.423 0.4295 0.3927

ProdLDA+MF 0.4095 0.3315 0.3997 0.3757

RDL 0.4857 0.4632 0.4663 0.4516

SVAE 0.4957 0.4819 0.4285 0.4084
NRTM 0.5104 0.5028 0.4762 0.4833

highest CV scores among content-only based methods, indi-
cating it as a competitive method in topic modeling.

Qualitative Study To further analyze the topic coherence, we
show the top-10 words concerning the topic "gene" generated by
different approaches as shown in Table 4. We can see that despite
off-topic word "motif" generated by NRTM, ourmethod can still pro-
duce more coherent words for the topic as indicated by theCV score.
SVAE realizes the highest coherence score among the methods that
do not consider the network information. Other approaches such as
LDA produce more irrelevant words like "regulatory", "regulation",
leading to the drop of the CV score.

In Table 5, we also demonstrate the top 3 topics and top 5 recom-
mended citations associated with the most frequently cited article
in the testing set of Citeulike-a. Due to the limited space, we only
report the results obtained by NRTM and RDL. It can be observed

that topics produced by NRTM generally covers "gene" (topic 1),
"rna" (topic 2) and "bioinformation" (topic 3), all of which are related
to the document intuitively as revealed by the title. Besides, the
coherence score also shows that top words within each topic are
highly correlated. RDL also discovers two closely related topics
(topic 1 and topic 2), but topic 3 is less related to the document.
Furthermore, the CV scores of RDL also show that the words are
less correlated compared to those produced by NRTM. In terms
of the recommended citations. NRTM hits 5 out of 5 ground truth
citations with an accuracy of 100%, while RDL only hits 2.

4.5 Further Analysis
In this subsection, we further evaluate the NRTM by considering
the following two questions:
i) Are deep neural networks helpful for leveraging the co-
herence of the two tasks?

To demonstrate the effectiveness of the deep neural architecture,
we consider varying the number of layers for both SVAE and MLP.
Table 6 shows the results for varying layers in SVAE. Note that we
keep the number of topics as 50, and choose a four layer MLP. SVAE-
1, SVAE-2 and SVAE-3 denote the encoders with structures V-100-
50, V-200-100-50, and V-400-200-100-50 respectively, and decoders
are constructed in a symmetric way. It can be observed that with 2
hidden layers, the model achieves the best performance regarding to
both topic learning and citation recommendation. However, SVAE-1
and SVAE-3 show less competitive results. We attribute the drop of
SVAE-1 to the limited expressiveness of the structure, and SVAE-3
to the over-fitting of document contents.
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Table 4: Top 10 words for topic "gene".

Models Top-10 words CV Score

LDA gene, expression, genes, cell, cells, biological, expressive, regulatory, regulation, function 0.4865

RTM human, selection, genetic, evolutionary, genes, evolution, genome, disease, sequence, rate 0.4960

ProdLDA genome, approximately, genomic, brain, regions, proteins, neurons, gene, evolutionary, noncoding 0.4923

ProdLDA+MF gene, mirna, genes, development, genomes, sequence, genomic, context, sequences, needs 0.4879

RDL sequential, genome, genes, human, evolution, evolutionary, dna, genomes, identify, functional 0.5367

SVAE gene, evolutionary, metabolic, genomescale, evolution, motifs, genomic, transcription, cortex, transcriptional 0.5067
NRTM gene, phylogenetic, genes, motifs, protein, proteins, transcription, transcriptional, motif, genomes 0.6232

Table 5: Top 10 recommended citations.

Document entitled "Cytoscape: a software environment for integrated models of biomolecular interaction networks" NRTM

Top 3 topics CV Score
1. genes, gene, protein, rna, genomic, genome, yeast, genomes, dna, mrna 0.7532

2. rna, protein, transcription, microbial, genomes, microarray, pfam, proteins, phylogenetic, eukaryotic 0.6278

3. bioinformatics, databases, habitat, user, functionality, metadata, photographs, communities, indoor, opensource 0.4868

Top 5 documents cite or not?
1. The Biomolecular Interaction Network Database and related tools 2005 update yes
2. Probabilistic model of the human protein-protein interaction network yes
3. Transcriptional Regulatory Networks in Saccharomyces cerevisiae yes
4. The Gaggle: An open-source software system for integrating bioinformatics software and data sources yes
5. Understanding biological functions through molecular networks yes

Document entitled "Cytoscape: a software environment for integrated models of biomolecular interaction networks" RDL

Top 3 topics CV Score
1. rna, protein, transcription, microarray, microbial, genomes, proteins, eukaryotic, pfam, genes 0.6505

2. protein, proteins, rna, cancer, chipseq, genome, genomes, sequencing, genomic, genes 0.5493

3. kernels, queries, basal, retrieval, tasks, software, phylogenetic, swarm, institutions, memory 0.4154

Top 5 documents cite or not?
1. Predicting transcription factor binding sites using local overrepresentation and comparative genomics no

2. Pathway analysis using random forests classification and regression yes
3. Broad network-based predictability of Saccharomyces cerevisiae gene loss-of-function phenotypes yes
4. Comparative protein modelling by satisfaction of spatial restraints no
5. Fast and reliable prediction of noncoding RNAs no

In terms of varying the layers of MLP, we keep the number of
topics to 50, and adopt the SVAE-2 structure. The results are shown
in Table 7, where MLP-1 represents a direct output layer, while
MLP-n denotes n − 1 hidden layers plus the output layer. It can be
observed that with only one layer for the MLP, the performance
significantly decreases. However, as the number of layer increases,
the scores of HR, NDCG as well as topic coherence increase in
general. Although the performance of MLP-2 is slightly better than
that of MLP-3 on Citeulike-a, the best results for different scores
are all attained at MLP-4, while for MLP-5 the performance is also
competitive. Actually when we take more than 6 layers for the MLP,
the performance saturates or even drops slightly due to over fitting,
and we omit the detailed performance due to the limited page. From
Table 7, we know that with proper layer depth for neural structures,
the correlations between latent topics and citation networks can

be well fused and utilized, leading to a better performance on both
tasks.
ii) How does the number of negative samples affect the per-
formance of NRTM?

We now investigate the effect of negative sampling on the per-
formance of the model. Table 8 lists the experimental results with
varying number of negative samples Nneд from 1 to 9 at an interval
of 2. It can be observed that, the best performance of citation recom-
mendation can be achieved at 5 and 7 negative samples respectively
on the two datasets, while more negative samples lead to a longer
training time with little increase on HR and NDCG scores. In terms
of the CV score, we find an intermediate number (i.e., 3, 5 and 7)
of negative samples on the two datasets achieves the highest topic
coherence. However, choosing only 13 negative samples generally
lead to an apparent drop on both the ranking quality and the topic
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Table 6: Performance ofNRTMw.r.t. different number of lay-
ers for SVAE.

Datasets SVAE-1 SVAE-2 SVAE-3

HR@10
Citeulike-a 0.9695 0.9801 0.9614

Cora 0.6140 0.9762 0.9582

NDCG@10
Citeulike-a 0.7519 0.8175 0.7264

Cora 0.7392 0.7719 0.7102

CV-Score
Citeulike-a 0.4768 0.5028 0.4893

Cora 0.4698 0.4833 0.4801

Table 7: Performance ofNRTMw.r.t. different number of lay-
ers for MLP.

Datasets MLP-1 MLP-2 MLP-3 MLP-4 MLP-5

HR@10
Citeulike-a 0.4896 0.9681 0.9743 0.9801 0.9746

Cora 0.4208 0.8860 0.9642 0.9762 0.9601

NDCG@10
Citeulike-a 0.3075 0.7489 0.7565 0.8175 0.8106

Cora 0.2681 0.6995 0.7294 0.7719 0.7683

CV-Score
Citeulike-a 0.4532 0.4867 0.4921 0.5028 0.5016

Cora 0.4456 0.4739 0.4704 0.4833 0.4821

Table 8: Performance of NRTM w.r.t. different number of
negative samples with 50 topics.

Datasets Nneg = 1 Nneg = 3 Nneg = 5 Nneg = 7 Nneg = 9

HR@10
Citeulike-a 0.9626 0.9731 0.9793 0.9801 0.9798

Cora 0.9539 0.9571 0.9679 0.9762 0.9726

NDCG@10
Citeulike-a 0.7110 0.7512 0.7871 0.8175 0.7975

Cora 0.6987 0.7097 0.7598 0.7689 0.7714

CV-Score
Citeulike-a 0.4793 0.5081 0.5028 0.5074 0.4936

Cora 0.4591 0.4684 0.4850 0.4732 0.4833

coherence scores, indicating the necessity to bring more negative
feedback of citations for training.

5 RELATEDWORK
5.1 Topic Modeling with Relational Data
An amount of Bayesian latent variable models are proposed to learn
the complementary information from latent topics and citation
networks. Aside from the Relational Topic Model [6] described in
Section 2.1, Discriminate RTM (gRTM) [8] is a further extension
of RTM that aims at increasing the model capacity by learning a
full interaction matrix as well as the inference accuracy by Gibbs
sampling. Topic-Link LDA [20] collectively considers the topic
similarity and the community closeness to the generative model.

LTAI [14] further incorporates the information of authors to the
generation of citations, leading to a more integrative model.

Despite the success of these models in joint modeling of topics
and relational data, they either suffer from limited model expres-
siveness and tricky derivations of variational inference, both of
which prevent them from being widely applied in practical prob-
lems. Comparing to these methods, our proposed NRTM could learn
more informative representation for topics via the stacked varia-
tional auto-encoder, and can be efficiently inferred in a black-box
way via the SGVB [15] method.

5.2 Neural Topic Modelling
Our NRTM is also closely related to neural topic models [4, 5, 9, 24,
25, 30, 31, 41]. Among these models, an interesting approach is to
adopt neural variational inference [15] to formulate topic modelling
as Bayesian deep generative models [5, 24, 25, 30].

In particular, Neural Variational Document Model (NVDM) [22]
is a bag-of-words generative model that leverages Variational Auto-
Encoders [15] to learn latent representations for documents, through
which the topic-word assignment can be inferred by the weights
of decoders. The recent proposed ProdLDA [30] uses product of
experts to generate the words in replacement of themixture assump-
tion at word-level in LDA, and leads to a significant improvement
on the coherence scores of topics. More recent works [24] extend
neural topic models to Bayesian non-parametric settings, and also
achieve competitive coherence scores compared to ProdLDA.

Inheriting advantages of VAE, these models can be inferred in a
black-box way and is capable of learning deeper representations
for topics. Nevertheless, relational data, as an informative source
to complement the document content, has not been considered in
previous neural topic models. Therefore, in NRTM we consider the
joint learning of article topics and citation networks.

5.3 Collaborative Filtering with Auxiliary
Information

Citation recommendation is also a traditional task in recommender
systems, in which the document contents act as auxiliary informa-
tion. Due to the sparsity of network data, the latent representations
of auxiliary information can provide suggestive insights for valid
recommendations. Matrix factorization based models [1, 13, 21,
37, 38, 40, 42] can be useful tools to learn representations from
network data. In order to further improve the expressiveness of
these models, we resort to deep neural networks. Auto-encoders,
owing to their intrinsic structures to compress data, have been
widely explored to learn representations for the auxiliary knowl-
edge [17, 18, 34–36]. Deep Collaborative Filtering [17] combines
marginalized denoising auto-encoder (mDA) [7] with probabilistic
matrix factorization (PMF) to learn the representations of side in-
formation. Collaborative Deep Learning (CDL) [36] is proposed as a
hierarchical Bayesian neural network to jointly learn the document
features as well as the implicit feedback. Based on CDL, RDL [35]
inherits a similar idea but targets at link prediction problems.

The above approaches are closely related to our NRTM since
auto-encoders are both adopted to learn representations. Neverthe-
less, we further deploy MLPs instead of MF to learn the complex
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interaction of latent topics, which has not been explored to the best
of our knowledge.

Other approaches [11, 19, 39] seek to extend collaborative filter-
ing via neural networks. For instance, Neural Collaborative Filter-
ing [11] passes the latent factors of users/items through multilayer
perceptions and achieves significant better performance than MF
based methods. However, these methods seldom consider capturing
pairwise interactions of latent factors enriched by the auxiliary
information as is done in NRTM.

6 CONCLUSION
In this paper, we propose theNeural Relational TopicModel (NRTM),
a Bayesian deep generative model to mutually leverage the corre-
lation between latent topics and citation networks. We design the
stacked variational auto-encoders, which enjoys two advantages:
First, the stacked architecture brings more representative latent
topics; second, SVAE is equipped with neural variational inference,
and the posterior approximation of latent topics can be done in a
black box manner. To further improve the expressiveness of our
model, we adopt multilayer perceptions to mutually leverage the
correlation between latent topics and citation networks. Experi-
mental results on two real world datasets demonstrate that our
model can effectively take advantage of the underlying correlation,
and outperform the state-of-the-art methods on both tasks.

One promising direction for the future work is to adopt other
neural architectures to further increase the model capacity. An-
other direction is to explore different approximated distributions
over the latent topics so that the model enjoys better probabilistic
explanations as a Bayesian deep generative model.
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