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ABSTRACT
Most existing recommender systems focus on modeling the rat-
ings while ignoring the abundant information embedded in the re-
view text. In this paper, we propose a unified model that com-
bines content-based filtering with collaborative filtering, harness-
ing the information of both ratings and reviews. We apply topic
modeling techniques on the review text and align the topics with
rating dimensions to improve prediction accuracy. With the in-
formation embedded in the review text, we can alleviate the cold-
start problem. Furthermore, our model is able to learn latent top-
ics that are interpretable. With these interpretable topics, we can
explore the prior knowledge on items or users and recommend
completely “cold” items. Empirical study on 27 classes of real-
life datasets show that our proposed model lead to significant im-
provement compared with strong baseline methods, especially for
datasets which are extremely sparse where rating-only methods can-
not make accurate predictions.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information filtering;
I.2.6 [Artificial Intelligence]: Learning-parameter learning

Keywords
Collaborative Filtering; Content-based Filtering; Cold-start Prob-
lem

1. INTRODUCTION
With the ever growing number of choices available online, rec-

ommender systems are becoming more and more indispensable.
We rely on them to select favorite songs from millions of collec-
tions in music streaming services like Spotify and iTunes Radio.
We depend upon them to suggest interesting movies in movie rat-
ing website such as IMDb and video streaming providers such as
Netflix. Amazon uses recommender systems to suggest products to
potential users. Now the company even takes it to another level by
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Figure 1: Percentage of items having less than 10 ratings and
more than 30 words in various Amazon datasets

shipping the products to the warehouse near the customer based on
speculated order produced by recommender systems1.

Although recommender systems employed in industry seem to
perform well in practice, there are some deficiencies with exist-
ing approaches. The first problem confronted with most recom-
mender system is their inability to deal with so called cold-start
problem [28]. When a new user joins a recommender system, there
is little data available for the system to learn the preferences of
the user accurately. Without an accurate representation of the user,
the system cannot make recommendations confidently. Similarly,
the systems defer the recommendations for newly included items as
well. The cold-start problem leads to poor experience for new users
and also when recommending new items. In real-life recommender
systems, the cold-start problem is a severe problem. Shown in Fig-
ure 1 are the statistics of 5 categories in Amazon datasets [16].
Across the 5 listed datasets, over 80% of items have few ratings
(less than 10). While at the same time, over 70% of items have
review text at length (over 30 words). The ratings alone are in-
adequate to learn the preferences accurately. Review comments
complement the ratings by providing rich knowledge of the items
and preferences of the users. Harnessing the information embed-
ded in the review text is the key to successful recommendation in
such scenarios.

Another drawback of existing recommender systems is their poor
interpretability, making further understanding of users’ preference
as well as items’ properties impossible. For example in matrix-
factorization [25] based methods, we learn two latent feature ma-
trices corresponding to users’ latent features and items’ latent fea-
tures. The dot product between a user’s and an item’s feature vector
is used to predict the rating that the user would assign to the item.
It is challenging to associate these real valued features with con-

1http://on.rt.com/c8v82n
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ceivable physical meanings. We know that a user might like an
item due to a particular latent feature since they both have a large
positive (or negative) value on that feature. But we have no clue of
the feature’s physical meaning. Does it mean that the user is fond
of Sci-Fi and the movie belongs to Sci-Fi genre? Or is it that the
user loves the leading actor of the movie? We do not know. In fact,
it is possible that each feature corresponds to a combination of the
human interpretable features, rendering the feature interpretation
problem more difficult.

Both of the above problems can be solved or at least alleviated
by combining content-based filtering and collaborative filtering. In
collaborative filtering, we make predictions on a user’s preferences
over items based on all users’ past ratings. Collaborative filter-
ing rooted in the keen observation that users who shared similar
preferences in the past tend to rate similarly in the future. A col-
laborative filtering model uses only the past rating information and
does not take the contents of the items into consideration. On the
other hand, content-based filtering approaches the recommendation
problem by analyzing the content of the items and matches it with
the preference of a user.

In a recommender system, apart from an integer score, users are
often allowed to write text reviews about the item to complement
the rating. The review text contains a source of rich information
explaining the reason why the user assigns such a rating to the
item. These reviews provide text contents of the items, which can
be leveraged to alleviate cold-start problem when the ratings are
sparse. This is because the information embedded in the text review
is much richer that an integer rating. When we have few ratings, it
is nearly impossible to learn an accurate feature of the concerned
user/item. However, the text review might allow us to better es-
timate the features. To solve the interpretation problem, we align
latent topic spaces with the rating spaces. Each latent dimension
is tagged with a word cloud, explaining the physical meaning of
the dimension. For example, when we see that a user and a movie
have large positive value on the third feature, which has text la-
bel “thriller, sci-fi, nolan”, we know that this user likes the science
fiction thriller movie directed by Christopher Nolan.

Interpretability and the cold-start problem are not two isolated
problems. Learning an interpretable model could help alleviate the
cold-start problem [1, 13]. We can leverage prior knowledge of
items and suggest completely “cold” items with confidence. For
example, if we know that a user assigns high scores for the topic
tagged with “fantasy, adventure, peter, jackson”, a recommender
system can confidently recommend “The Hobbit: There and Back
Again” (a fantasy adventure movie directed by Peter Jackson) to
the user even if this movie is not being shown yet.

The contribution of this paper is three-fold. First, we propose a
novel method to combine content-based filtering seamlessly with
collaborative filtering, modeling the reviews and ratings simultane-
ously. Secondly, we derive an efficient collapsed Gibbs sampling
method to learn the model. Thirdly, we demonstrate our model’s
advantage in prediction accuracy compared with previous work, es-
pecially under the cold-start setting, on large real-life datasets with
millions of users and items. We also show the interpretability of
the model using a few examples.

2. RELATED WORK
Recommender systems can broadly be classified into two types:

content-based filtering [21] and collaborative filtering. Content-
based filtering recommends an item to a user by matching up the
features of the item with the preferences of the user, both of which
are learnt by analyzing the contents and profiles. Collaborative
filtering (CF), on the other hand, approaches the recommendation

problem by analyzing the co-occurrence patterns of user-item pair,
which is often attached with an integer rating. There are extensive
investigations on collaborative filtering, from neighborhood-based
methods [27, 11] to model-based methods [9, 26]. Recently, some
methods concentrated on ranking [10, 24] the items better. Other
approaches leveraged social [14, 15] and side information [32] to
improve the performance.

Due to the advantage of taking the review text into considera-
tion, there are a few efforts [2, 4, 16, 17] explored the combina-
tion of content-based filtering and collaborative filtering. In the
early work [17], the authors cast the content-based filtering as a
classification problem, using which they filled out some of the un-
observed user item rating matrix and apply collaborative filtering
methods on this denser matrix. The authors of [2] cast the recom-
mendation problem as an ordinal regression problem and applied a
combination of kernels to handle the side information. In [4], the
authors found that there were a few aspects that affect how users
rate items. They harnessed the information embedded in the review
text to learn how a user weights these aspects and how an item dis-
tributes on these aspects. However, their method required human
annotators with expert domain knowledge to pre-define these as-
pects rather than learning them automatically from the reviews.

In the recent work [16], the authors proposed the Hidden Factors
and Hidden Topics (HFT) model, which learnt a Latent Dirichlet
Allocation (LDA) [3] model for items using the review text and
a matrix factorization model to fit the ratings. To bridge the gap
between the stochastic vector obtained from LDA and the real-
valued vector in MF model, the authors proposed a transforma-
tion to link the two. Their method demonstrated significant im-
provement over baseline methods that use ratings or reviews alone.
However, the transformation function they employ, the exponential
function, fixed the relationship between latent vector in MF and the
topic distribution. Although a parameter is employed to maintain
a more flexible relationship, it is still difficult to ensure that this
transformation is correctly scaled.

In [8, 29, 30], the authors also considered the interpretable as-
pects to make better predictions. However, their approaches differ
from ours in that either they had explicit ratings per aspect (i.e.,
multiple ratings on prescribed aspects per user item pair), or these
aspects were inferred from other context than review text. In an-
other line of research called sentiment analysis [6, 12], a positive
or negative label rather than an integer score is learnt for a short
text. Our work also differs from [18], which recommends person-
alized reviews. In [31], the authors proposed Collaborative Topic
Regression (CTR) to suggest scientific articles to potential readers.
Later work [22] extended it to take the social network among users
into consideration. As pointed out in [16], the latent dimensions
they discovered were not necessarily correlated with ratings.

3. RATINGS MEET REVIEWS
Our model, titled “Ratings Meet Reviews” (RMR), is a proba-

bilistic generative model that combines a topic model seamlessly
with a rating model. We describe it as follows.

3.1 Model and Notations
Suppose there are N users U = {u1, u2, · · · , uN}, M items
V = {v1, v2, · · · , vM}, a set of observed indices Q = {i, j},
where {ui, vj} ∈ U × V defines the observed ratings X = {xi,j},
each of which is optionally associated with a review ri,j = {w|w ⊂
V } of length Li,j , where V is the set of vocabulary used in the re-
view text. Alternatively, let Uj denote the indices of users who have
rated item vj . Let K denote the number of topics.
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RMR operates on items2, which has an intrinsic distribution θ
on topics. This distribution describes the proportion that the item
belongs to each topic.

We present the generative process below:

1. For each user u ∈ U :

(a) For each latent topic dimension k ∈ [1,K]:

i. Draw µu,k ∼ Gaussian(µ0, σ
2
0)

2. For each latent topic dimension k ∈ [1,K]:

(a) Draw ψk ∼ Dirichlet(β)

3. For each item v ∈ V:

(a) Draw topic mixture proportion θv ∼ Dirichlet(α)

(b) For each description word wv,n:

i. Draw topic assignment zv,n ∼ Multinomial(θv)

ii. Draw word wv,n ∼ Multinomial(ψzv,n)

(c) For each observed rating assigned by u to v:

i. Draw topic assignment fv,u ∼ Multinomial(θv)

ii. Draw the rating xv,u ∼ Gaussian(µu,fv,u , σ
2).

From the generative process, we can identify that the text re-
views are generated similarly as the LDA model. We use a mixture
of Gaussian rather than matrix factorization based methods [16, 31]
to model the ratings. These user-topic specific Gaussian distribu-
tions have clear interpretations. They describe how a user values
the aspects denoted by each latent topic. The item is modeled as
a distribution of topics, which together with the user-topic specific
Gaussian distributions determine how a user would rate the item.
The ratings and review text are connected by the same item topic
distribution θ. The more a user talks about certain aspects con-
cerning an item, the higher the distribution will be on these topics,
which in turn affects the rating that the user would assign to the
item.

We choose to model ratings using mixture of Gaussians for two
reasons. First, we can avoid the difficult choice of the transfor-
mation function employed in [16]. As discussed above, the trans-
formation function is restrictive and the scaling parameter is non-
trivial to select. Secondly, we can retain the interpretability of the
topics with no compromise. The interpretability of the latent di-
mensions is an important factor to solve the cold start problem.
Take book recommendation for example, when a user showed strong
interest in dimension with high probability on words “da vinci code
dan brown”. We can confidently recommend Dan Brown’s new
book “Inferno”. We are able to associate the latent dimensions with
the prior knowledge (for example, Meta data) that is available with-
out ratings or reviews.

Given the generative process, the probability of observing the re-
view text and the ratings given the model parameters Θ = {θ, ψ, µ}

2RMR is symmetrical in that the topic distribution θ can also be
user specific. We found, however, that item specific θ performs
better in practice.

is

P (w,x|Θ;α, β, µ0, σ
2
0 , σ

2) =

M∏
j=1

P (θj |α)
∏
i∈Uj K∑

f=1

P (f |θj)P (xi,j |µi,f , σ2)

Li,j∏
l=1

K∑
z=1

P (z|θj)P (wl|ψz)


(

N∏
i=1

K∏
k=1

P (µi,k|µ0, σ
2
0)

)(
K∏
k=1

P (ψk|β)

)
. (1)

If we take the log of Eq. (1), we get the log-likelihood of model pa-
rameters. However, because of the summation inside the log, direct
optimization is not feasible. We subsequently develop an efficient
collapsed Gibbs sampling method to learn the model parameters in
Section 3.3. We now take a deeper look at RMR and compare it
with HFT and CTR.

3.2 Comparison with HFT and CTR
Shown in Figure 2 are the graphical models of RMR and several

related work. As is clear from the figure, the left parts of CTR,
HFT and RMR resemble LDA, which was originally proposed by
David Blei et al. to learn the latent topics in a corpus of documents
(items in our setting) in an unsupervised manner. The LDA algo-
rithm assumes there are K latent topics in the corpus, which are K
multinomial distributions over the vocabulary. Each document in
the corpus is a mixture of these topics. A document specific topic
distribution over theK latent topics, θj with Dirichlet prior α, gov-
erns how much weight each topic takes in document j. This θj is
a length-K stochastic vector with non-negative entries which sums
up to 1.

Both HFT and CTR adopt the matrix factorization method to
model the ratings. Arrange users’ ratings on items in a partially
observed matrix X ∈ RN×M . The matrix factorization model as-
sumes that X has a low rank structure and thus can be decomposed
in to the product of two matrices UTV , where both U and V are
of rank K � min(M,N). The columns of U and V can be in-
terpreted as the latent features of users and items respectively. The
dot product between a user’s feature vector and an item’s feature
vector approximates the rating that the user would assign to the
item. To regularize the value that the latent features can assume,
often zero-mean isotropic Gaussian priors are placed on both the
user and item latent features. The objective function of a matrix
factorization model can be formulated as follows,

L =
∑
i,j∈Q

(UTi Vj −Xi,j)2 + λU‖U‖F + λV ‖V ‖F , (2)

in which the first term is the difference between observed and pre-
diction and the rest are regularization terms.

Clearly, there is a discrepancy between the item topic distribu-
tion θj in LDA and the item feature vector Vj in MF model. The
former is a distribution which is all positive and sums up to 1 while
the later can assume any real value. Both HFT and CTR try to align
the item features with the item topic distribution and hence the rich
text review can be exploited to better model the item features. The
main difference between HFT and CTR model lies in the way they
align the topic distribution θj and the item feature Vj . In CTR, the
item feature Vj is assumed to be a Gaussian random variable with
mean θj and precision c. In other words, the θj is taken as the de-
fault value of Vj , but the later can adapt to match the ratings. If
an item receives a lot of ratings, it is possible that Vj differs from
θj significantly. The interpretation of the latent topics in such case
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Figure 2: Graphical Models

might be distorted. CTR model was proposed to recommend scien-
tific articles to potential readers, which is a one-class collaborative
filtering task [7, 20]. It adopt the strategy to set different c for
observed ratings (Xi,j = 1) and unobserved ratings (Xi,j = 0).
In our setting, we try to match only the observed ratings with the
given rating scales (for example, 1 to 5). On the other hand, HFT
adopts a fixed transformation function to map one-to-one between
θj and Vj . In Figure 2(c), we use a dashed line to represent this
relationship. The HFT model is effectively a matrix factorization
model with the item feature regularization replaced by the corpus
likelihood. This fixed transformation function is difficult to select
and restrictive in modeling capability.

RMR adopt a mixture of Gaussian to model the ratings. The
mixture proportion is assumed to have the same distribution as the
topic distribution. Thus when there are few ratings for an item, the
text review can still allow us to learn the topic distribution θ accu-
rately. We avoid the difficult choice of the transformation function
in HFT and retain the interpretability of the latent topics.

3.3 Collapsed Gibbs Sampler
To develop a Gibbs sampler for RMR, we need to specify the

conditional probability of the hidden variables z and f , which are
the hidden topics associated with the observed words w and ob-
served ratings x, P (z, f |w,x). This conditional probability does
not have a closed form and is difficult to sample directly. The col-
lapsed Gibbs sampler runs a Markov chain that uses the full con-
ditional in order to simulate it. In our case, we need to specify the
following two conditional probabilities

P (zi = j|z¬i,w, f ,x), P (fi = j|z,w, f¬i,x). (3)

We will briefly derive the expression for the second probability in
Eq. (3). Using Bayes’ theorem and the conditional independence,
we obtain

P (fi = j|z,w, f¬i,x)

∝ P (xi|fi = j, f¬i,x¬i)P (fi = j|f¬i, z) (4)

Now we will derive the expression for the two terms in Eq. (4). Let
the index i denote the rating assigned by user u to item v.

P (xi|fi = j, f¬i,x¬i)

=

∫
µu,j

P (xi, |µu,j , fi = j)P (µu,j |f¬i,x¬i)dµu,j (5)

The second term in Eq. (5) is a Gaussian distribution, because

P (µu,j |f¬i,x¬i) ∝ P (x¬i|µu,j , f¬i)P (µu,j). (6)

SinceP (µu,j) is GaussianN (µ0, σ
2
0) and conjugate toP (x¬i|µu,j , f¬i),

the posterior distributionP (µu,j |f¬i,x¬i) will be GaussianN (µi, σ
2
i ),

where

σ2
i =

1

σ2
0

+
|xju,(·)|
σ2

, (7)

µi = (σ2
i )−1(

µ0

σ2
0

+

∑
m x

j
u,m

σ2
). (8)

The predictive posterior in Eq. (5) is GaussianN (µi, σ
2
i +σ2

0) [19].
Similarly, the expression for the second term in Eq. (4) is

P (fi = j|f¬i, z) ∝
∫
θv

P (fi = j|θv)P (θv|f¬i, z)dθv, (9)

of which the second term is

P (θv|f¬i, z) ∝ P (f¬i|θv)P (z|θv)P (θv). (10)

Again, since P (θv) is Dirichlet(α) and conjugate to P (f¬i|θv) and
P (z|θv), the posterior is also a Dirichlet distribution and the pos-
terior predictive of Eq. (9) is

P (fi = j|z, f¬i) =
nvf,¬i,j + nvz,j + α

nvf,¬i,(·) + nvz,(·) +Kα
. (11)

Combine the result in Eq. (5) and Eq. (9), we get the expression for
the full conditional for the first probability in Eq. (3)

P (fi = j|z,w, f¬i,x)

∝ N (xi|µi, σ2
i + σ2

0)
nvf,¬i,j + nvz,j + α

nvf,¬i,(·) + nvz,(·) +Kα
, (12)

and by employing a similar procedure, we get the expression for
the first probability in Eq. (3)

P (zi = j|z¬i,w, f ,x)

∝
nwi
¬i,j + β

n
(·)
¬i,j + |V |β

nvz,¬i,j + nvf,j + α

nvz,¬i,(·) + nvf,(·) +Kα
. (13)

We summarize the notations used in the derivation process in Ta-
ble 1. Note that we omit the ¬i subscription in some of the nota-
tions to save space. With this notation, it means that when counting
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Symbol Description
|xju,(·)| # of ratings assigned by u with topic j
xju,m value of rating assigned by u to m with topic j
nvz,j # of z of item v assigned to topic j
nvz,(·) total # of review words v received
nvf,j # of f of item v assigned to topic j
nvf,(·) total # of ratings item v received
nwi
j # of word wi assigned to topic j
n
(·)
j total # of words assigned to topic j

Table 1: Notations

the respective values, we exclude current word wi or current rating
xi.

3.3.1 Readout Parameters
Once the sampling process is finished, we can readily readout

the model parameters

θv,j =
nvz,j + nvf,j + α

nvz,(·) + nvz,(·) +Kα
,ψj,wi =

nwi
j + β

n
(·)
j + |V |β

, (14)

and

µu,j =

(
1

σ2
0

+
|xju,(·)|
σ2

)−1(
µ0

σ2
0

+

∑
m x

j
u,m

σ2

)
. (15)

The notations denote the same meaning as is in Table 1, except that
the counters now count all effective samples.

3.3.2 Time and Space Complexity of the Sampler
Our collapsed Gibbs sampler mainly use the following coun-

ters to keep track of current states: counter nvz,j of size M × K,
counter nvf,j of size M ×K, counter nw¬i,j of size V ×K, counter∑
m x

j
n,m of sizeN×K and counter |xjn,(·)| of sizeN×K. Other

than the above listed counters, there are summation counters that
are one order smaller than the above counters and thus negligible.
So the total Space complexity is O((M +N + V )×K).

To sample z or f conditioned on everything else, we only need
to calculate the conditional probabilities in Eq. (3). This operation
requires O(K) operations. Given a fixed K, our sampler scales
linearly with the length of the observed review text and the number
received ratings. Usually the number of latent topics K is small,
making our sampler scales up well. Note that training a RMR
model is faster than training a HFT model [16]. This is because
the later one requires an additional step to learn the feature vectors
for all the users.

3.4 Prediction
In order to make a prediction that user u assigns to item v, we

compute the expected value

xu,v =
∑
k

θv,kµv,k. (16)

In practice, we compute the empirical global mean g, user bias bu
and item bias bv for all users and all items from the training set.
We feed the x′u,v = xu,v − g − bu − bv to the sampler and when
making predictions, add g, bu, and bv back.

4. EXPERIMENTS
We conduct an empirical study of RMR and various baseline

models to show the following facts:

1. Our model leads to significant improvement on prediction ac-
curacy across various categories of items over several strong
baseline models.

2. Our model learns latent topic dimensions that are clearly in-
terpretable.

3. Our model performs better in datasets which are extremely
sparse, which resembles the cold-start settings.

4.1 Dataset
We use the Amazon Review dataset collected by [16]. This

dataset is a collection of 27 datasets corresponding to various types
of items that are available on Amazon3. This is the largest rat-
ing dataset with text reviews publicly available, to the best of our
knowledge. We show the statistics of the datasets in Table 2. Refer
to Table 2; there are two facts that are evident immediately. First,
the datasets are extremely sparse. The sparseness would clearly de-
teriorate the performance of most existing recommender systems
which only model the ratings. Secondly, a review contains 116.87
words on average across all categories. As will be apparent in the
results shown later, these review texts are key to model the ratings
accurately.

4.2 Baseline Methods
We compare our model with four baseline models MF, LDAMF,

CTR and HFT.

• MF This is the standard matrix factorization model as is de-
scribed in [25]. We ignore the review texts completely and
model the ratings only. This is typically a very strong base-
line model in collaborative filtering [10, 23].

• LDAMF This baseline model is proposed in [16]. This base-
line model tries to harness the information in the review text
by fitting an LDA model on the review text and then treat
the learnt topic distribution on items (or users) as the latent
factors in matrix factorization models. By holding the latent
factors for items (or users) fixed, the latent factors for users
(or items) are learnt by gradient descent methods.

• CTR This is the state-of-the-art method that recommends
scientific articles to potential interested readers [31]. The
CTR model solves the one-class collaborative filtering prob-
lem by using different precision parameter c. In our setting,
we use it to match the observed integer ratings using the same
precision c. We employ LDA-C [3] to pre-train the model.
Note that CTR utilizes both ratings and reviews information.

• HFT This is the state-of-the-art method that combines re-
views with ratings [16]. HFT models the ratings using a ma-
trix factorization model with an exponential transformation
function to link the stochastic topic distribution in model-
ing the review text and the latent vector in modeling the rat-
ings. The topic distribution can be modeled on either users or
items. On most datasets, the item specific topic distribution
produces more accurate predictions. We report the results
whichever are more accurate.

3The statistics of category Baby we calculated differs from the de-
scription provided on the webpage and we exclude it from consid-
eration.
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Dataset #users #items #review #words words/review reviews/item
Arts 24,071 4,211 27,980 2,006,874 71.73 6.64

Jewelry 40,594 18,794 58,621 3,100,948 52.90 3.12
Industrial Scientific 29,590 22,622 13,7042 6,920,151 50.50 6.06

Watches 62,041 10,318 68,356 5,436,671 79.53 6.62
Cell Phones and Accessories 68,041 7,438 78,930 7,567,961 95.88 10.61

Musical Instruments 67,007 14,182 85,405 7,442,294 87.14 6.02
Software 68,464 11,234 95,084 11,012,882 115.82 8.46

Gourmet Foods 112,544 23,476 154,635 10,542,984 68.18 6.59
Office Products 110,472 14,224 138,084 11,206,338 81.16 9.71

Automotive 133,256 47,577 188,728 13,249,641 70.21 3.97
Patio 166,832 19,531 206,250 17,290,881 83.83 10.56

Pet Supplies 160,496 17,523 217,170 18,684,153 86.03 12.39
Beauty 167,725 29,004 252,056 17,889,577 70.97 8.69
Shoes 73,590 48,410 389,877 23,604,059 60.54 8.05

Kindle Store 116,191 4,372 160,793 21,533,201 133.92 36.78
Clothing and Accessories 128,794 66,370 581,933 34,267,151 58.89 8.77

Health 311,636 39,539 428,781 33,277,423 77.61 10.84
Toys and Games 290,713 53,600 435,996 35,034,001 80.35 8.13

Tools and Home Improvement 283,514 51,004 409,499 34,591,409 84.47 8.03
Sports and Outdoors 329,232 68,293 510,991 38,898,738 76.12 7.48

Video Games 228,570 21,025 463,669 55,532,148 119.77 22.05
Home and Kitchen 644,509 79,006 991,794 81,923,017 82.60 12.55

Amazon Instant Video 312,930 22,204 717,651 88,958,349 123.96 32.32
Electronics 811,034 82,067 1,241,778 124,064,510 99.91 15.13

Music 1,134,684 556,814 6,396,350 774,791,468 121.13 11.49
Movies and TV 1,224,267 212,836 7,850,072 997,261,969 127.04 36.88

Books 2,588,991 929,264 12,886,488 1,613,603,531 125.22 13.87
All categories 6,643,669 2,441,053 34,686,880 4,053,795,667 116.87 14.21

Table 2: Statistics of the datasets

4.3 Evaluation
We use Mean Squared Error (MSE) to evaluate various models.

For each of the dataset, we randomly select 80% as training set
up to 2 million reviews. The remaining reviews are split evenly
into validation set and testing set. The initial latent variables z
and f are uniformly randomly assigned. We run 2500 iterations
with a thinning of 50 iterations to get samples and MSE readout.
We report the MSE of the testing set which has the lowest MSE
on the validation set. The training of the baseline methods MF,
LDAMF, CTR and HFT follow the same routine described in [16].
We use K = 5 for all models. We set hyperparameters4 α = 0.1,
β = 0.02, µ0 = 0, σ2

0 = 1 and we use the empirical variance of
x as σ2. In practice, the time required to train the RMR model is
about half the time spend on training the HFT model on the same
machine.

4.4 Rating Prediction
Shown in Table 3 are the MSE results. The best MSE of each

dataset is in bold. We listed the performance of various models on
the datasets and the average improvement. The standard deviations
of MSE results are shown in parenthesis. Out of the 27 datasets,
RMR performs the best on 19 datasets among all considered meth-
ods.

Compared with matrix factorization (MF column in Table 3),
RMR performs better on 26 out of the 27 datasets with an average
improvement on MSE of nearly 8%. Matrix factorization method
usually performs well in practice [10, 23] and is a strong baseline
method. However, as is shown in our case, in datasets which are
extremely sparse, MF is unable to learn an accurate representation
of users/items and thus under-performs other methods which take
the review text into consideration. However, in the datasets such
as Music, Movies and TV and Books, which are relatively denser
4We searched through the parameters linearly and reported hyper-
parameters which performed the best.

compared with other datasets; the MF method still performs very
well.

The baseline method LDAMF, which was proposed as a base-
line method in [16], is probably the simplest model that combines
review text and ratings. This baseline method takes the item topic
distribution produced by LDA as the feature vectors for the items
and then learns the user feature vectors by fitting the observed rat-
ings with item features fixed. The feature vectors of items are learnt
using only the reviews, which might be sub-optimal to fit the rat-
ing data. The expressiveness is thus restricted and we think this
restriction caused the nearly 8% improvement produced by RMR.

Compared with CTR, which take the full advantage of the com-
bined information of both the reviews and ratings, our proposed
model still leads to an average improvement of 3.28% and performs
better on 25 out of the 27 datasets. Similar to LDAMF, CTR takes
the item topic distribution produced by LDA as the initial item fea-
tures. However unlike LDAMF, during the training period, CTR
alters both the user features and item features to fit the ratings. The
regularization parameter λV controls how much the item features
can deviate from the item topic distribution vectors. It performs
better due to the more flexible modeling capability. However, the
CTR does not perform as well as RMR in the extremely sparse
datasets such as Arts and Jewelry. We observe that during the ex-
periment, CTR can learn a model that fits the data with a small
training error. But the generalization of the learnt model to the
unobserved rating is not as good. Note that we report the perfor-
mance of CTR on the test set by setting λV and λU to the value
which gives best performance on validation set. So the issue of
under-regularization is minimized. The performance of CTR on
the relatively dense datasets is very competitive.

Compared with HFT, another recommendation method that takes
review text into consideration, RMR is still able to improve the per-
formance by 1.22% on average and performs better or equally well
in 21 out of 27 datasets. As discussed in previous sections, we think
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Figure 3: Gain in MSE for user with limited training data

the fixed one-to-one mapping between the item topic distribution
and item feature vector impose restrictions of the expressiveness of
HFT and allow RMR to out-perform it. Due to large size of the
datasets, the improvements reported are significant at 1% level.

We consider the improvements of RMR over CTR (3.28%) and
HFT (1.22%) significant because both of these two baselines are
full-fledged models that take both the ratings and reviews into con-
sideration. Also, these improvements are verified on 27 real-life
datasets. In a real system where recommendation plays a central
role, e.g. Amazon, Netflix, these improvements could lead to bet-
ter revenue and profit.

4.5 Cold-start Setting
An interesting phenomenon we found in the results is that the

improvement of RMR over the traditional collaborative filtering
methods (matrix factorization) is more significant for datasets that
are sparse. For classes such as Arts, Industrial Scientific, RMR
show substantial improvement. In such cases, the number of rat-
ings is too scarce to model the items and users adequately. The text
in the review associated with the ratings come as rescue, which al-
low our model to learn a more accurate topic distribution. Whereas
for classes such as Music, Movies and Books, which are the largest
3 datasets with larger reviews per user and reviews per item, the
traditional methods tend to produce accurate predictions. We fur-
ther verify this finding by comparing the performance of RMR with
MF on users with limited training data. Shown in Figure 3 is the
gain of RMR compared with MF for users with limited training
items. We show the result on two datasets due to space limit and
the phenomenon repeats across all the datasets. As we can see, our
model gains the most when the user has few training items. The
performance gain starts to decrease with the number of training
items available for each user. This further demonstrates that RMR
is valuable for the cold-start settings.

4.6 Interpretability of Topics
Apart from being more accurate at prediction, another advantage

of RMR is that it learns interpretable latent topics. We show two
examples of the top words in each topic learnt in RMR in Table 4
and Table 5. Table 4 shows the top words for topics learnt with
software dataset. Note that Roxio is software for burning DVDs
and Quicken is personal financial software. Leopard and Tiger are
the code name of Mac OS X and Parallels is a popular virtual ma-
chine on OS X. The fourth topic is about the company Microsoft
and its products and the last topic is related to Linux. Table 5 shows
the top words for topics learnt with Movie and TV dataset. The first
topic is dedicated to workout related videos. The second topic con-
tains commonly used words to describe TV series. Batman, Matrix
trilogy, Alien and Harry Potter are either science fiction, adventure
or fantasy movies. Godzilla is a disaster thriller and Hitchcock is

roxio quicken leopard office suse
contacted son os excel accounts

perfect pick parallels 2007 2004
burning given apple student nav

dvds spanish turbo activation federal
care starting tiger microsoft symantec

Table 4: Top words for topics in Software

workout season batman disney godzilla
yoga match effects christmas hitchcock

workouts episodes alien animation kidman
videos seasons harry kids murder

exercises vs matrix shrek densel
cardio episode edition animated nicole

Table 5: Top words for topics in Movie and TV

a famous director of psychological thrillers. Nicole Kidman is the
leading actress of the classic thriller “Eyes Wide Shut”.

Clearly these interpretable topics would help us understand items
and users better. For items, the top topic words can be employed as
extended tags attached to the item and may improve the prediction
accuracy in a tag-aware recommender system [5]. We may also
gain better understanding of items by analyzing the topic distri-
bution similarities. For users, once obtaining the topic preferences,
we can recommend “cold” items which have few or no ratings to the
users with confidence. For example, if we know that a user tends
to rate high for topic three and five in Table 5, we can confidently
recommend the movie “Interstellar” (a Sci-Fi Thriller movie) even
if this movie is not being shown yet. Our prior knowledge of items
therefore can help alleviate the cold-start problem.

5. CONCLUSION
In this paper, we propose a model that combines content-based

filtering with collaborative filtering seamlessly. By exploiting the
information in both ratings and reviews, we are able to improve the
prediction accuracy significantly across various classes of datasets
over existing strong baseline methods, especially under the cold-
start settings where the data are extremely sparse. We develop an
efficient collapsed Gibbs sampler for learning the model parame-
ters. Our model also learns topics that are interpretable, enabling
us to exploit prior knowledge to alleviate the cold start problem.
We plan to explore RMR’s ability in discovering user communities
and new genres in future work.
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