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Abstract—Collaborative filtering (CF), aiming at predicting
users’ unknown preferences based on observational preferences
from some users, has become one of the most successful methods
to building recommender systems. Various approaches to CF
have been proposed in this area, but seldom do they consider the
dynamic scenarios: 1) new items arriving in the system, 2) new
users joining the system; or 3) new rating updating the system are
all dynamically obtained with respect to time. To capture these
changes, in this paper, we develop an online learning framework
for collaborative filtering. Specifically, we construct this frame-
work consisting of two state-of-the-art matrix factorization based
CF methods: the probabilistic matrix factorization and the top-
one probability based ranking matrix factorization. Moreover, we
demonstrate that the proposed online algorithms bring several
attractive advantages: 1) they scale linearly with the number of
observed ratings and the size of latent features; 2) they obviate
the need to load all ratings in memory; 3) they can adapt to new
ratings easily. Finally, we conduct a series of detailed experiments
on real-world datasets to demonstrate the merits of the proposed
online learning algorithms under various settings.

I. INTRODUCTION

With the emergence of large-scale online user-contributed

websites and online shopping websites, e.g., Amazon, IMDB,

etc., users are presented with unprecedentedly large amount

of items. On one hand, users can easily get stuck in the

information-overloading problem, and how to select favorite

items from millions of options becomes a major bottleneck.

On the other hand, it is important for vendors to find out

users’ preferences so as to boost sales. Recommender systems,

aiming at selecting attractive items for users, become one

promising technology to resolve the aforementioned problems.

Collaborative filtering (CF) methods are one of the major

approaches to recommender system. In CF, users are allowed

to rate the items as an indicator of preference. These ratings,

in which users’ preference patterns and items’ specific features

embed, are collected to make predictions. Traditional collabo-

rative filtering methods adopt batch-trained algorithms. These

methods suffer from two major drawbacks. First, they scale

poorly. The nature of many CF algorithms make them hard

to be parallelized and recently there are a few works try to

investigate this approach. Before training, they require that all

data are available. During training, at each iteration, all ratings

must be scanned through once to perform the algorithms. This

is very expensive since real-world datasets cannot be loaded

into the memory easily. The second drawback of batch-trained

algorithms is that they are unsuitable for dynamic ratings.

A recommender system may change in one of the following

ways: 1) a new user may join the system and rate existing

items; 2) a new item may appear in the system and existing

users may purchase and rate it; and 3) existing users may

purchase and rate existing items; in other words, ratings are

collected over time. In these cases, to capture the change, the

batch-trained CF methods have to rebuild the model, which is

very expensive.

Online learning algorithms, as an alternative to parallel

algorithm, emerge as a natural solution to attack the incre-

mental rating problem. In the literature, although there are

several tasks [1], [2], [3], [4], [5] investigating online learning

for collaborative filtering, they did not explore the complete

properties of online algorithms. In addition, none of previous

work considers ranking-oriented collaborative filtering. Hence,

in this paper, we study online algorithms from various aspects

to solve the issues facing batch-trained CF algorithms and pre-

viously proposed online learning algorithms. Our contributions

include:

• We apply the proposed online learning framework to both

rating-oriented matrix factorization (MF) based methods

(PMF) and ranking-oriented MF-based methods (RMF).

Our proposed online learning algorithms can handle new

rating incrementally without retraining the models. To our

best knowledge, this is the first attempt to develop online

algorithms for ranking-oriented CF methods.

• We develop the online learning algorithms employing

two approaches, stochastic gradient descent and the dual-

average method. We provide succinct and efficient so-

lutions to both of them. All the online algorithms scale

linearly with the number of observed ratings and memory

consumption is linear in the number of users and the

number of items.

• Finally, we conduct a series of detailed experiments

on real-world datasets to demonstrate the merits and

properties of the proposed online learning algorithms.

The remainder of this paper is organized as follows. In

Section II, we briefly review some related work. Section III

discusses in more detail regarding two models for which

we develop online algorithms, namely probabilistic matrix

factorization and top-one probability based ranking matrix

factorization. We present our online algorithms in Section IV.

Experimental results and analysis are shown in Section V and
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conclusions are drawn in Section VI.

II. RELATED WORK

In this section, we review related work on collaborative

filtering and online learning.

A. Collaborative Filtering

Collaborative filtering techniques for recommender systems

are generally categorized into two types: memory-based meth-

ods and model-based methods. With different optimization

objectives, collaborative filtering can be classified into rating-

oriented methods, which try to minimize error between pre-

diction and true rating, and ranking-oriented methods, which

try to rank the items in a correct order.

Memory-based methods manipulate the ratings assigned by

users directly in making predictions. For rating-oriented ap-

proaches, user-based methods [6] and item-based methods [7],

[8], [9] are mostly studied. Besides rating-oriented methods,

Liu et al. proposed [10] a pairwise ranking-oriented method

called EigenRank, and reported it attains more credible ranking

scores.

Memory-based methods are easy to implement and un-

derstand, they are used in a lot of real-world systems [8].

However, they impose several limitations. First, they are more

susceptible to the data sparsity problem because in order to

measure the similarities, two users need to rate at least some

items in common. Furthermore, as they manipulate the ratings

directly, the time complexity and memory consumption can be

potentially very expensive.

Model-based approaches, on the other hand, provide a

systematic way to train a predefined compact model in the

training phase that explains observed ratings, which is then

used to make predictions. Usually, model-based CF methods

can achieve better performance [11]. Various approaches,

including rating-oriented methods [11], [12], [13], [14], [15]

and ranking-oriented methods [16], [17], have been proposed.

Model-based methods hold several appealing properties.

First, they often have a clear interpretation. Secondly, once

trained, they can produce predictions much more efficiently

compared with memory-based methods. Finally, we are able

to gain specific insights concerning the community structure

in several latent feature-based methods. Hence, we focus on

model-based approaches, specifically PMF and RMF, in this

paper.

B. Online Learning

Online learning algorithms have been extensively studied in

content-based filtering [18], [19], [20], which is another major

approach to recommender system. However, in collaborative

filtering, there are only limited investigations. In [4], an online

algorithm is developed for memory-based collaborative filter-

ing. In [2], [21], online algorithms for Non-negative Matrix

Factorization (NMF) are considered. In [3], an online algo-

rithm is conducted on a mixture of memory-based and model-

based algorithms, where the data are dynamically clustered.

The involved models, however, are different from what we

consider as the matrix factorization models. Another work

related to our work is [5], which applies online algorithms

on sparse models in computer vision area. In [1], a gradient

descent method on matrix factorization with (or without)

features by directly minimizing the square loss is proposed

to convert a batch-trained algorithm into an online version.

It ignores regularization effects and may be suboptimal under

certain conditions.

Although adapting the model-based collaborative filtering

methods by online algorithms, e.g., stochastic gradient descent

method [22], [23], can involve substantial implementation

efforts, the real properties such as efficiency, convergence

etc. of the various algorithms are still not well-investigated.

This unexplored territory motivates us to study the online

learning algorithms for PMF and RMF thoroughly. To be more

specific, we investigate both stochastic gradient descent and

dual averaging methods on both rating-oriented and ranking-

oriented MF methods.

III. MODEL-BASED MATRIX FACTORIZATION

In this section we present PMF, RMF and their batch-

trained algorithms. Suppose that we are given a set of N
users U = {u1, u2, · · · , uN} and a set of M items I =
{i1, i2, · · · , iM}. Users’ rating on the items forms an N ×M
matrix R, where the element rui denotes user u’s rating on

item i. Alternatively, we denote all observed ratings in a set

of triplets as (u, i, r) ∈ Q, where u is the user id, i is the item

id, and r is the rating given by u to i. Usually, the rating r is a

value in the range [Rmin, Rmax]. Often, we map it to [0, 1] by

(r−Rmin)/(Rmax−Rmin). In the following, we assume that

r have all been mapped to [0, 1]. To avoid clutter notations,

we use gij to denote g(UT
i Vj) and g′ij to denote the derivative

of the logistic function g′(UT
i Vj), where g(x) is the logistic

function to be defined in Eq. (2).

The problem of matrix factorization collaborative filtering

is to learn two low-rank feature matrices, U and V , where

UTV fits R based on the given M,N,R or M,N,Q. The

user feature matrix U is a K × N matrix where the column

Uu is user u’s feature vector. V is a K ×M matrix where

the column Vi is item i’s feature vector. Generally, the latent

feature size K is much smaller than N and M .

For rating-oriented methods, the objective is to find U and

V to best fit R so as to correctly predict r̂ui, the rating user u
would assign to item i. Whereas in ranking-oriented methods,

the target is to correctly output a ranking π of the items in

decreasing order of preference for an active user.

A. Probabilistic Matrix Factorization

Probabilistic Matrix Factorization (PMF) adopts a proba-

bilistic linear model with Gaussian observation noise [11].

Maximizing the posterior probability of p(U, V |R, σ2, σ2
U , σ

2
V )

is equivalent to minimizing a squared loss with regularization

defined as:

L =
1

2

N
∑

i=1

M
∑

j=1

Iij(rij − gij)
2 +

λU

2
‖U‖2F +

λV

2
‖V ‖2F , (1)
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where g is the logistic function used to map the value into the

range of [0, 1] as is in [11]:

g(x) = 1/(1 + exp(−x)). (2)

λU and λV are L2-regularization strength parameter to avoid

over-fitting and Iij is an indicator function which equals 1 if

user i have rated item j and 0 otherwise.

Gradient descent algorithm can be adopted to reach a local

minimum of the objective given in Eq. (1). Thus, the feature

matrices on users and items can be updated iteratively by

Ui ← Ui − η
∂L

∂Ui

, Vj ← Vj − η
∂L

∂Vj

, (3)

where η is the learning rate. In practice, it takes dozens of

iterations for PMF to converge. Once trained, the predicted

rating that user u would assign to item i can be computed

as the expected value of the Gaussian distribution r̂ui = gui.
Note that this value may need to be converted back to the

original rating range.

B. Ranking Matrix Factorization

Top-one probability based ranking matrix factorization

(RMF) [17] also factorizes the user-item matrix R into U and

V . Different from PMF, it minimizes the cross entropy of two

top-one probability distributions defined on actual rating rij
and predicted rating gij . Top-one probability is the probability

of an item being ranked top in an active user’s ranking list.

Using actual ratings R, the top-one probability associated with

an item i in a ranking π for user u is defined as:

pR(rui) =
exp(rui)

∑M

k=1 Iuk exp(ruk)
. (4)

Using predicted rating, the top-one probability of the learned

model is defined as:

pUV (gui) =
exp(gui)

∑M

k=1 Iuk exp(guk)
. (5)

RMF minimizes the cross entropy between pR and

pUV [17]. Cross entropy of two distributions p and q is defined

as:

H(p, q) = Ep[−log q] = −
∑

x

p(x) log q(x). (6)

This quantity measures the divergence between two distri-

butions and is minimized when p = q. Hence, to find the

optimal U and V , RMF is to minimize the following objective

function:

L =
N
∑

i=1

{

−
M
∑

j=1

Iij
exp(rij)

M
∑

k=1

Iik exp(rik)

log

{

exp(gij)
M
∑

k=1

Iik exp(gik)

}}

+
λU

2
‖U‖2F +

λV

2
‖V ‖2F . (7)

Similarly, RMF is not a convex optimization problem and

the local minima can be sought using the gradient descent

method. The gradients of L with respect to U and V can

be calculated in closed form. We can adopt Eq. (3) to up-

date U and V until they converge. Once trained, the model

recommends the items in decreasing order of their top-one

probability to an active user.

IV. ONLINE MATRIX FACTORIZATION

Both batch-trained PMF and RMF assume that all the

ratings are available before the training, which make them

unsuitable for many practical application scenarios. To capture

the information embedded in a newly received rating, the

model has to be retrained using all available data. To adapt

PMF or RMF to such scenarios, it is better to train the model

in an online manner, which incrementally adapts the model to

the newly observed ratings. In the following, we present our

online algorithms for both PMF and RMF to demonstrate such

merits.

A. Online PMF

We present two algorithms of online PMF, the stochastic

gradient descent PMF (SGD-PMF) and dual averaging PMF

(DA-PMF).

1) Stochastic Gradient Descent for PMF: Please note that

in Eq. (3), at each iteration, the low-rank matrices move

toward the average gradient descent, ∂L/∂Uu and ∂L/∂Vi,

by a small step controlled by η. If the collected ratings are

coming sequentially, we could adjust the model stochastically

by taking into account that rating only. This corresponds to

the scheme of stochastic gradient descent.

Suppose the new coming rating is (u, i, r) ∈ Q, in Eq. (1),

the terms related to this perticular rating are:

L(u,i,r) = (rui − gui)
2 +

λU

2
‖Uu‖

2
2 +

λV

2
‖Vi‖

2
2. (8)

The first term in Eq. (8) is the squared error between the

observation and predicted value, and the following two terms

are the corresponding regularizations. Notice that here the

trade-off constants, λU and λV , are on different scale from

those in Eq. (1).

Similarly, by adopting the gradient descent method, we

obtain the following update equations:

Uu ← Uu − η((gui − r)g′uiVi + λUUu), (9)

Vi ← Vi − η((gui − r)g′uiUu + λV Vi), (10)

where η is the step size controlling how much change to make

at each step. This naturally gives an online algorithm, where

at each iteration, we make a small change for user u’s feature

vector Uu and item i’s feature vector Vi when a rating (u, i, r)
is revealed. We call this method stochastic gradient descent

PMF (SGD-PMF).

SGD-PMF is stochastic in the sense that every time we

adjust the parameter, we accommodate it to that particular

rating seen at that instance. We do not provide the convergence

of stochastic gradient descent for PMF here, as its detailed

proof can be referred to [24].
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2) Dual-Averaging Method for PMF: Recently, dual-

averaging method [25] ignited the development of online op-

timization algorithms. By imposing different regularizations,

variants of online learning algorithms have been developed

and they achieve good result in the corresponding applica-

tions [26], [19]. Due to the success and efficiency of dual-

averaging method, we decide to adopt it to solve the online

PMF problem.

Dual-average method for PMF absorbs previous rating in-

formation in an approximate average gradient of the loss. Then

it updates the parameters by solving an analytically tractable

optimization problem. Hence, in DA-PMF, we keep track of

the average gradient, Y , of the square loss with respect to U
and V . Given a newly observed triplet (u, i, r), we can update

the average gradient with respect to Uu by the following rule:

YUu
←

tu − 1

tu
YUu

+
1

tu
(gui − r)g′uiVi, (11)

where tu denotes the number of items u has rated. Note

that YUu
in Eq. (11) is an approximation of {

∑

i∈Iu
(gui −

r)g′uiVi}/tu which is the average gradient of the squared loss

with respect to Uu. Iu denotes all the items that u has rated.

Similarly, we can obtain YVi
, the average gradient of L with

respect to Vi, as follows:

YVi
←

tv − 1

tv
YVi

+
1

tv
(gui − r)g′uiUu, (12)

where tv denotes the number of users who have rated item v.

Once we get the average gradient, we update Uu and Vi by

solving the following minimization problems:

Uu = arg minw{Y
T
Uu

w + λU‖w‖
2
2}, (13)

Vi = arg minw{Y
T
Vi
w + λV ‖w‖

2
2}. (14)

To get an intuition of why choosing such optimization objec-

tives defined in Eq. (13) and Eq. (14), we should note that

Y T
Uu

w, the dot product of YUu
and w, is minimized when w

is on the opposite direction as YUu
. We have shown that YUu

is the average gradient, whose direction will lead to a larger

L. By taking an opposite direction of YUu
, we expect L to be

decreased. Regularization term λV ‖w‖
2
2 is used to limit the

value that w can assume. Thus using such an optimization

objective, we can get Uu and Vi that lead to a decreased

L. Convergence of such formulation is referred to [26]. The

solution to Eq. (13) and Eq. (14) can be found analytically by

taking the derivative to 0, which is summarized in Algorithm 1.

3) Time Complexity and Memory Cost: Both SGD-PMF

and DA-PMF are efficient in terms of time complexity and

memory cost. For SGD-PMF, only user feature matrix and item

feature matrix have to be stored in memory, so the memory

cost is O((N+M)K). K is generally on the scale of tens even

for a very big dataset. For each observation (u, i, r) ∈ Q, only

O(K) steps are needed to update the model. Since K is quite

small, it can be taken as constant time. So SGD-PMF scales

linearly with the number of observed ratings. For DA-PMF,

beside user feature matrix and item feature matrix, average

gradient matrix YU , YV and index vector TU , TV are also

Algorithm 1 Dual-Averaging Method for PMF (DA-PMF)

Parameters: N,M,K, λU , λV

Input: Observation triplet (u, i, r) ∈ Q
Initialize U ∈ R

K×N and V ∈ R
K×M randomly

Initialize average gradient matrix to 0

YU ∈ R
K×N ← 0; YV ∈ R

K×M ← 0

Initialize index vector TU ∈ Z
N ← 0 and TV ∈ Z

M ← 0

for all (u, i, r) ∈ Q do

Increase index TUu
← TUu

+ 1 and TVi
← TVi

+ 1
tu ← TUu

, tv ← TVi

Update average gradient YU and YV

YUu
←

tu − 1

tu
YUu

+
1

tu
(gui − r)g′uiVi

YVi
←

tv − 1

tv
YVi

+
1

tv
(gui − r)g′uiUu

Update latent user and item feature Uu and Vi

Uu ← −
1

2λU

YUu
, Vi ← −

1

2λU

YVi
(15)

end for

stored. Total memory cost is still O((N +M)K). Similar to

SGD-PMF, DA-PMF needs O(K) steps for each observation

and thus it scales linearly with the number of observed ratings.

So both SGD-PMF and DA-PMF can be effective to large-

scale datasets.

B. Online RMF

We consider both the stochastic gradient descent method

(SGD-RMF) and the dual-averaging method (DA-RMF) for

RMF in this section.

1) Stochastic Gradient Descent for RMF: The loss L of

RMF is defined in Eq. (7). Let H = L− λU

2 ‖U‖
2
F + λV

2 ‖V ‖
2
F

be the loss without the regularization, i.e., it only captures the

cross entropy between pR and pU,V .

Unlike the squared loss used in PMF, which can be easily

dissected when a new rating is observed, cross entropy is

adopted as the loss in RMF. It measures the divergence be-

tween the top-one probability distribution defined using actual

rating and that defined using predicted rating. The top-one

probability indicates the probability of an item being ranked in

the top position. It is essentially a categorical distribution and

normalization is engaged to ensure it is a proper probability

measure. When a newly observed rating (u, i, r) is revealed,

this probability mass function will include one more term

indicating the probability of the new item being ranked in

the top position. Due to normalization, the top-one probability

corresponds to other items are further decayed. H, the cross

entropy of these two distributions, also changes accordingly.

Note that these changes are coupled together and are thus very

difficult to dissect.

We resort to algorithms that approximate the gradient de-

scent of H with respect to Uu and Vi given in Eq. (16) and

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 04:45:37 UTC from IEEE Xplore.  Restrictions apply. 



Eq. (17):

∂H

∂Ui

=
M
∑

j=1

Iij

{

exp(gij)
M
∑

k=1

Iik exp(gik)

−
exp(rij)

M
∑

k=1

Iik exp(rik)

}

g′ijVj ,

(16)

∂H

∂Vj

=
N
∑

i=1

Iij

{

exp(gij)
M
∑

k=1

Iik exp(gik)

−
exp(rij)

M
∑

k=1

Iik exp(rik)

}

g′ijUi.

(17)

Now, we consider the update of the gradients as the ob-

served rating appears one by one. Denote Y tu
Uu

as the gradient

of H with respect to Uu when the tu-th rating is assigned

by user u to item i. Denote Y tv
Vi

as the gradient of H with

respect to Vi when item i receives its tv-th rating. To simplify

the expression, we let Ituu denote the set of items rated by

user u when the tu-th rating is observed, i.e., |Ituu | = tu. We

update the corresponding gradients by the following rules:

Y tu+1
Uu

←

∑

k∈I
tu
u

exp(ruk)
∑

k∈I
tu+1
u

exp(ruk)
Y tu
Uu

+

{

exp(gui)
∑

k∈I
tu+1
u

exp(guk)
−

exp(rui)
∑

k∈I
tu+1
u

exp(ruk)

}

g′uiVi, (18)

Y tv+1
Vi

← (1− αc×tv )Y tv
Vi

+
{

exp(gui)
∑

k∈I
tu+1
u

exp(guk)
−

exp(rui)
∑

k∈I
tu+1
u

exp(ruk)

}

g′uiUu.

(19)

It should be noted that we initialize Y 0
U = 0, Y 0

V = 0 for all

users and items. Index vector TU , whose u-th entry is tu, and

TV , whose i-th entry is tv , are on a per-user and per-item basis

respectively.

Here, we argue that Eq. (18) and Eq. (19) approximate

the ideal gradients in Eq. (16) and Eq. (17), respectively. It

is obvious that Eq. (18) recovers Eq. (16) provided that gui
approximates rui well at each iteration. To see that Eq. (19)

indeed approximates Eq. (17), consider what might happen

between two ratings item i receives. Note that the summation

in Eq. (17) is over all the users who have rated item i. Since

top-one probability is on a per-user basis, we cannot find a

single value that properly describes the decay of previously

rated item as is the case in Eq. (18). Consider the event

that might happen between the observations of (u1, i, r1) and

(u2, i, r2). Let the set of users who have rated i be Ui. The

change of the top-one probability happens when a u ∈ Ui rate

another movie i′ and thus causing the top-one probability with

respect to i to decay due to the normalization. However, as

more and more ratings are revealed, the change will be smaller

and smaller. So we need to decay previous gradient to reflect

this change. Therefore, α ∈ (0, 1) in Eq. (19) controls the

initial decay rate and c controls how this rate drops.

The update rule for SGDPMF is

Uu ← Uu−η(YUu
+λUUu); Vi ← Vi−η(YVi

+λV Vi). (20)

Algorithm 2 SGD-RMF/DA-RMF

Parameter: N , M , K, η, λU , λV , α, c
Input: Observation triplet (u, i, r) ∈ Q
Initialize U ∈ R

K×N and V ∈ R
K×M randomly

Initialize average gradient matrix to 0

YU ∈ R
K×N ← 0; YV ∈ R

K×M ← 0

Initialize index vector TV ∈ Z
M ← 0

Initialize sum vector SR ∈ R
N ← 0 and SUV ∈ R

N ← 0

for all (u, i, r) ∈ Q do

tv ← TV (v)
sr ← SR(u)
suv ← SUV (u)
s′r ← sr + exp(r)
s′uv ← suv + exp(gui)

YUu
← sr

s′
r

YUu
+ { exp(gui)

s′
uv

− exp(r)
s′
r

}g′uiVi

YVi
← (1− αctv )YVi

+ { exp(gui)
s′
uv

− exp(r)
s′
r

}g′uiUu

For SGD-RMF, update using Eq. (20)

For DA-RMF, update using Eq. (21)

SR(u)← s′r
SUV (u)← s′uv
TV (v)← tv + 1

end for

2) Dual-Averaging Method for RMF: The gradient we

calculated as in Eq. (18) and Eq. (19) is average gradient. By

solving the same optimization objective as defined in Eq. (13)

and Eq. (14) at each iteration, we obtain the Dual-Averaging

RMF (DA-RMF) algorithm. The update rule for DAPMF is

Uu ← −
1

2λU

YUu
; Vi ← −

1

2λV

YVi
(21)

Both SGDPMF and DAPMF are summarized in Algorithm 2.

3) Time Complexity and Memory Cost: The memory cost

for both SGD-RMF and DA-RMF includes the user and item

feature matrix U, V , approximate average gradient YU , YV ,

index vector TV , and sum vector SR, SUV . The total memory

cost is still O((N + M)K), which is independent of the

number of observed ratings. In terms of time complexity, the

steps needed for each observed triplet (u, i, r) is still O(K).
Namely, both SGD-RMF and DA-RMF scale linearly with the

number of observed ratings.

V. EXPERIMENTS

In this section, we conduct experiments to compare the

performance of our online algorithms with batch-trained al-

gorithms. The questions we want to address include:

1) How is the stochastic gradient descend and dual-

averaging algorithms compared with the batch mode

algorithms?

2) How do the online algorithms perform under different

settings?

3) How well do stochastic gradient descend and dual-

averaging methods scale to large datasets?

4) In which way do model parameters, i.e., λ, η, affect the

algorithms’ performance?
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TABLE I
STATISTICS OF DATASETS

MovieLens Yahoo!Music

No. ratings 1,000,209 252,800,275

No. users 6,040 1,000,990

No. items 3,952 624,961

Rating range [1, 5] [0, 100]

A. Data Sets

We choose MovieLens1 and Yahoo!Music2 to study empiri-

cal performance of our algorithms. Table I shows the basic

statistics of each dataset. Experiments studying the effect

of parameters are performed on MovieLens. Comparisons of

online algorithms versus their batch-trained algorithms are also

conducted on MovieLens. We select Yahoo!Music to evaluate

how the online algorithms scale to large datasets. Yahoo!Music

is a very large dataset containing more than 250 million

ratings. Yet this data set is extremely sparse, where only 0.4%

entries are known. However, RMF experiments do not utilize

Yahoo!Music because we found most users apply only a few

values to indicate their fondness. The problem with many

items sharing the same rating value is that the user’s actual

preferences over these items are implicit and thus rendering

the NDCG metric insensitive to different ranking.

B. Evaluation Metrics

We adopt Root Mean Square Error(RMSE)3 to evaluate

rating-oriented algorithms. RMSE evaluates the root of av-

erage square error between true rating and predicted rating.

Denote the test set by T , the definition of RMSE is given by

RMSE =
√

∑

(u,i,r)∈T

(r̂u,i − r)2/|T |.

To evaluate the ranking accuracy, we adopt Normalized

Discounted Cumulative Gain (NDCG)4 [27] as the metric. Let

π(i) be the item ranked on the ith position in ranking π and

the actual rating assigned to i is rπ(i). Then NDCG at n is

defined as:

NDCG@n =
n
∑

i=1

2rπ̂(i) − 1

log(1 + i)

/ n
∑

i=1

2rπ∗(i) − 1

log(1 + i)
, (22)

where π∗ is the optimal ranking. An appealing property of

NDCG is that it gives more weight on the items ranked

higher than the item ranked lower. This is consistent with

our experience that user seldom looks past the first few

recommended items.

C. Evaluation Protocol

To better understand the behavior of our online algorithms

under different settings, we conduct experiments with the

following three settings:

1) T1: Randomly choose 10% of all (u, i, r) triplets for

training, and use remaining 90% for evaluation.

2) T5: Randomly choose 50% of all (u, i, r) triplets for

training, and use remaining 50% for evaluation.

1http://www.cs.umn.edu/Research/GroupLens
2http://kddcup.yahoo.com
3The lower the RMSE, the better the performance.
4The higher the NDCG, the better the performance.

3) T9: Randomly choose 90% of all (u, i, r) triplets for

training, and use remaining 10% for evaluation.

D. Comparisons

In this section, we compare our online algorithms with

full-fledged batch-trained PMF and RMF and investigate how

they scale to large datasets. The batch-trained algorithms have

been tuned to achieve the best performance on the test set,

which is consistent with the results in [1], [17]. The online

algorithms are also tuned on the test set, which can be referred

to Sec. V-E.

1) Online versus Batch: The top row of Figure 1 shows

that DA-PMF and SGD-PMF perform comparable as batch-

trained PMF in MovieLens. Under T1, online algorithms even

outperforms batched-trained algorithms a little bit. This may

be due to the fact that under the scenario of few training

samples, online learning algorithms are less likely to be

trapped in a local optima. Overall, our online PMF algorithms

perform as well as batch-trained algorithm.

The second row of Figure 1 shows the comparison of

various RMF algorithms under different settings. Compared

to batch-trained RMF, our online algorithms’ performance is

off by about 1% in all settings evaluated by NDCG@5. The

performance gap is probably due to the approximation when

computing the gradient with respect to V .

2) Scaling to Large Dataset: Figure 2 shows the compari-

son of online and batch PMF in Yahoo!Music. Note that we

evaluate the performance on the evaluation set which contains

4 million ratings. Due to the huge size of Yahoo!Music

dataset, we were unable to perform batch-trained PMF using

T9 setting. Under T5, batch-trained PMF takes more than

8 hours to finish 120 iterations (to converge) using a C++

implementation in a Linux workstation with Xeon Dual Core

2.4GHz processor and 32GB memory. The online algorithms

take only about 10 minutes to finish processing all 180 million

ratings to reach a similar performance. The time saving is

phenomenal.
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Fig. 2. Comparison of PMF in Yahoo!Music

Please note that, in the experiment, we have cycled through

the ratings and fed them randomly into the algorithms. The

results are reported in Table II and III.

E. Impact of Parameters

We analyze the impact of parameters in this section. We

employ latent feature dimension K = 10 consistently for

all algorithms, which is a suitable value according to our
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Fig. 1. Comparison of various PMF and RMF algorithms in MovieLens
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Fig. 3. Effect of λ and η in various online algorithm

TABLE II
ONLINE AND BATCH PMF RESULTS(RMSE)

MovieLens Yahoo!Music

T1 T5 T9 T1 T5

PMF 1.005 0.910 0.873 29.16 24.00

DA-PMF 0.996 0.909 0.900 28.59 23.92

SGD-PMF 0.991 0.904 0.874 29.38 24.02

empirical results. Since all algorithms we consider are matrix

factorization based, employing the same latent feature size is

fair for comparison. The results reported in Fig. 3 are obtained

on MovieLens.

1) Impact of λ: The parameter λ controls the trade-off

between the regularization and the model loss. We set λU =

TABLE III
ONLINE AND BATCH RMF RESULTS(NDCG@5)

MovieLens

T1 T5 T9

RMF 0.667 0.748 0.840

DA-RMF 0.659 0.740 0.827

SGD-RMF 0.655 0.727 0.824

λV = λ for simplicity [11], [17]. Figure 3 shows the impact

of λ in four online algorithms under different settings. The

range of λ is selected by trail-and-error as shown in Figure 3,

where the range of λ gives reasonable performance. As we

can see, there is a clear trend that the more data we have,

the smaller λ we need. Since the model complexity is fixed
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(i.e., we choose dimension = 10 for all experiments), we need a

larger λ to avoid over-fitting when there is only limited data. In

[1], the author reported that stochastic gradient descent without

regularization performs quite well compared to batch-trained

algorithm. This is true only when we have access to abundant

data. A proper regularization is vital for a model with limited

data.

Figure 3(c) and 3(d) show that both ranking-oriented online

algorithms are quite stale in the setting T1. This is due to the

insufficiency of training data in T1. Only 10% of training data

to train the model would not make it well-fitted. This causes

the insensitivity of the effect of λ.
2) Impact of η: The parameter η denotes the learning

rate, which is only applied in SGD-PMF and SGD-RMF. It

will impact the convergence rate and the performance of the

algorithms. Figure 3 shows the performance of SGD-PMF and

SGD-RMF under T1, T5 and T9 with respect to various η
values. When performing the experiments, we employ the best

λ we learnt in previous sections. We see that η = 1.0 is optimal

for SGD-PMF and η = 8.0 is optimal for SGD-RMF.

There is a subtle difference between online algorithms and

batch-trained algorithms. The optimal learning rate η depends

on the size of the training set in batch-trained algorithms.

On the contrary, it is independent for online algorithms. The

reason is that we update U and V with respect to only one

rating in online algorithms each time.
3) Impact of other parameters: In the two online RMF

algorithms, there are two extra parameters α and c which con-

trol the decay and drop-rate of decay respectively. In practice,

they do not affect the model performance as significant as λ.

Hence, we do not present their sensitivity analysis here. In the

experiment, we set α = 0.8, c = 0.2 since they deliver good

performance empirically.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have thoroughly investigated the on-

line learning algorithms for rating-oriented CF model, PMF,

and ranking-oriented CF model, RMF. More specifically, we

developed Stochastic Gradient Descent and Dual-Averaging

methods for both models. Our proposed algorithms scale lin-

early with the number of observed ratings. Furthermore, they

obviate the need to hold all data in memory and thus can be

applied to large-scale applications. Experimental results show

that our online algorithms achieve comparable performance

as their batch-trained algorithms while dramatically boosting

efficiency.

There are several directions worthy of considering for

future study: 1) to well study the convergence of the online

learning algorithms from theoretical perspective; 2) to explore

the online optimization framework with different types of

regularizations to achieve solutions with different properties;

and 3) to propose a systematical way to tune the algorithms’

parameters;
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