

Abstract— In a wireless sensor network, multiple nodes would
send sensor readings to a base station for further processing. It is
well-known that such a many-to-one communication is highly
vulnerable to the sinkhole attack, where an intruder attracts
surrounding nodes with unfaithful routing information, and then
performs selective forwarding or alters the data passing through
it. A sinkhole attack forms a serious threat to sensor networks,
particularly considering that such networks are often deployed in
open areas and of weak computation and battery power.

In this paper, we present a novel algorithm for detecting the
intruder in a sinkhole attack. The algorithm first finds a list of
suspected nodes, and then effectively identifies the intruder in the
list through a network flow graph. The algorithm is also robust to
deal with cooperative malicious nodes that attempt to hide the real
intruder. We have evaluated the performance of the proposed
algorithm through both numerical analysis and simulations,
which confirmed the effectiveness and accuracy of the algorithm.
Our results also suggest that its communication and computation
overheads are reasonably low for wireless sensor networks.1

I. INTRODUCTION

Wireless sensor networks become increasingly popular to
solve such challenging real-world problems as industrial
sensing and environmental monitoring. A sensor network
generally consists of a set of sensor nodes, which continuously
monitor their surroundings and forward the sensing data to a
sink node, or base station. It is well-known that such a
many-to-one communication is highly vulnerable to the
sinkhole attack, where an intruder attracts surrounding nodes
with unfaithful routing information, and then alters the data
passing through it or performs selective forwarding.

A sinkhole attack prevents the base station from obtaining
complete and correct sensing data, and thus forms a serious
threat to higher-layer applications. It is particularly severe for
wireless sensor networks given the vulnerability of wireless
links, and that the sensors are often deployed in open areas and
of weak computation and battery power. Although some secure
or geographic based routing protocols resist to the sinkhole
attacks in certain level [1], many current routing protocols in
sensor networks are susceptible to the sinkhole attack [2].

The work described in this paper was substantially supported by grant from the
Research Grants Council of the Hong Kong Special Administrative Region,
China (Project No. CUHK4205/04E).
J. Liu’s work was supported in part by a Canadian NSERC Discovery Grant
288325, an NSERC Research Tools and Instruments Grant, a Canada
Foundation for Innovation (CFI) New Opportunities Grant, and an SFU
President’s Research Grant.

In this paper, we propose a novel light-weighted algorithm
for detecting sinkhole attacks and identifying the intruder in an
attack. We focus on a general many-to-one communication
model, where the routes are established based on the reception
of route advertisements. Our solution explores the asymmetric
property between the sensor nodes and the base station, and
makes effective use of the relatively-high computation and
communication power in the base station [2, 3, 4]. It consists of
two steps: First, a secure and low-overhead algorithm for the
base station to collect the network flow information with a
distributed fashion in the attack area; and second, an efficient
identification algorithm that analyzes the collected network
flow information and locate the intruder. We also consider the
scenario that a set of colluding nodes cheat the base station
about the location of the intruder. Specifically, we examine
multiple suspicious nodes and conclude the intruder based on
majority votes. We show that such a conclusion is correct if less
than half of the collected information comes from malicious
nodes.

The performance of the proposed algorithm is evaluated
through both numerical analysis and simulations, which
confirmed the effectiveness and accuracy of the algorithm. Our
results also suggest that its communication and computation
overheads are reasonably low for wireless sensor networks.

The remainder of this paper is organized as follows. Section
II presents the related work. In Section III, we formally
describe the sinkhole attack in wireless sensor networks, and
state the problem to be solved. In Section IV, we present our
2-step detection algorithm, i.e., collecting network flow
information and identifying the intruder. In Section V, we
provide the enhancements to the algorithm for handling
multiple malicious nodes and give the numerical analysis. The
performance of the proposed algorithm is evaluated in Sections
VI through simulations. Finally, Section VII concludes this
paper and offers some future research directions.

II. RELATED WORK
Intrusion detection has been an active research topic for the

Internet extensively [5]. Recently, many detection algorithms
have been proposed for wireless ad hoc networks as well. Most
of them assume uniform nodes and symmetric communications
[6]. On the contrary, the sensor network we are considering has
an asymmetric many-to-one communication pattern, and the
power of the sensor nodes is rather weak.

On the Intruder Detection for Sinkhole Attack in
Wireless Sensor Networks
Edith C. H. Ngai,1 Jiangchuan Liu,2 and Michael R. Lyu1

1Department of Computer Science and Engineering, The Chinese University of Hong Kong

2School of Computer Science, Simon Fraser University, British Columbia, Canada

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

1-4244-0355-3/06/$20.00 (c) 2006 IEEE

3383

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 11,2021 at 08:07:47 UTC from IEEE Xplore. Restrictions apply.

For sensor networks, some existing secure or geographical
routing protocols are resistant to sinkhole attack in certain
level. An example is a geographic protocol [1], which performs
routing by the localized information and interactions only,
without an initiation from the base station. However, many of
the existing routing protocols, in particular, those based on
route advertisement, are vulnerable to sinkhole attacks. To the
best of our knowledge, we are not aware of any algorithm that
is specifically designed for sinkhole detection among them.

Our work is also motivated by the following studies, though
they have focused on different applications. Specifically, Wood
et al. [7] proposes a mechanism for detecting and mapping
jammed regions. They describe a mapping protocol for nodes
that surround a jammer which allows network applications to
reason about the region as an entity, rather than as a collection
of broken links and congested nodes. Ding et al. [8] propose an
algorithm for the identification of faulty sensors and detection
of the reach of events in sensor networks with faulty sensors.
Staddon et al. [9] demonstrate that the topology of the network
can be efficiently conveyed to the base station allowing for the
quick tracing of the identities of the failed nodes with moderate
communication overhead. Ye et al. [10] present a Statistical
En-route Filtering (SEF) mechanism that can detect and drop
such false reports; SEF applies multiple keyed message
authentication codes, probabilistic verification, and data
filtering to determine the truthfulness of each report. Perrig et
al. [11] propose a packet leash mechanism for detecting and
thus defending against wormhole attacks. A leash can be some
temporal or geographical information that is added to a packet
to restrict the packet's maximum allowed transmission distance.

III. PROBLEM STATEMENT
We consider a sensor network that consists of a base station

(BS) and a collection of geographically distributed sensor
nodes, each denoted by a unique identifier IDv. The sensor
nodes continuously collect and send the sensed application data
to the base station by forwarding packets hop-by-hop.

As mentioned earlier, this commonly used many-to-one
communication pattern is vulnerable to sinkhole attacks. In a
sinkhole attack, an intruder usually attracts network traffic by
advertising itself as having the shortest path to the base station.
For example, as shown in Figure 1a, an intruder using a
wireless-enabled laptop will have much higher computation
and communication power than a normal sensor node, and it
could have a high-quality single-hop link to the base station
(BS). It can then advertise imitated routing messages about the
high quality route, thus spoofing the surrounding nodes to
create a sinkhole (SH). A sinkhole can also be performed using
a wormhole [12], which creates a metaphorical sinkhole with
the intruder being at the center. An example is shown in Figure
1b, where an intruder creates a sinkhole by tunneling messages
received in one part of the network and replays them in a
different part using a wormhole.

We assume the sensor nodes are either good or malicious.
The center of a sinkhole attack is a malicious node
compromised by the intruder. Note that, even if there is only
one compromised node providing a high quality route to the
base station, it can affect many surrounding sensors.
Furthermore, this intruder may also cooperate with some other

malicious nodes in the network to interfere detection
algorithms. In an extreme case, all the malicious nodes are
colluding with the intruder. They may collaboratively cheat the
base station by claiming a good node as the intruder (the victim,
SH’), and thus hide the real one.

Fig. 1. Two examples of sinkhole attack in wireless sensor networks. (a) Using

an artificial high quality route; (b) Using a wormhole.

The focus of our work is to effectively identify the real

intruder (SH) in the sinkhole attack in presence of colluding
nodes. We assume that the base station is physically protected
or has tamper-robust hardware [3]; hence, it acts as a central
trusted authority in our algorithm design. The base station also
has a rough understanding on the location of nodes, which
could be available after the node deployment stage or can be
obtained by various localization mechanisms [13].

For ease of exposition, in Table I, we list the major notations
used throughout this paper.

TABLE I
LIST OF NOTATION

BS Base station
SH Real intruder in the sinkhole attack
SH’ False intruder (victim) in the sinkhole attack
IDv Identity of sensor node v
p Probability of malicious in sensor nodes
d Packet drop rate
k No. neighbors which a message will be forwarded to

hmax Hops from the farthest node to BS
hrc Hops from BS where root correction takes place
l Levels from BS in the tree of network flow
tl No. of nodes at level l
N Total number of nodes in the attack area
M No. of malicious nodes in the attack area
r No. of correct network flow information collected
m No. of incorrect network flow information collected
s No. of missing network flow information
n Total no. of network flow information collected

IV. SINKHOLE ATTACK DETECTION
In this section, we describe how to detect a sinkhole attack,

and then efficiently identify the intruder. We first focus on one
malicious node (the intruder); an enhancement dealing with
multiple malicious nodes will be presented in the next section.

(a)

(b) BS

SH

Affected
node

High quality
route

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

3384

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 11,2021 at 08:07:47 UTC from IEEE Xplore. Restrictions apply.

A. Estimating the Attacked Area
 In many sensor network applications, sensor nodes are
responsible for collecting local data and sending them to the BS.
The most common kind of violations in a sinkhole attack is
selective forwarding. By observing consistent data missing
from an area, the BS may suspect there is an attack with
selective forwarding. For illustration, consider a monitoring
application in which sensor nodes submit sensing data to the BS
periodically. The BS can detect the data inconsistency using the
following statistical method. Let X1, ..., Xn be the sensing data
collected in a sliding window, and X be their mean. Define f(Xj)
as

2(-)
()

j
j

X X
f X

X
=

Then a simple measure for identifying a suspected node is if
f(Xj) is greater than a certain threshold, because the data from
this node is inconsistent with others in the same area. More
advanced techniques can be found in [14, 15].

After identifying a list of the suspected nodes, the BS can
estimate where the sinkhole locates. Specifically, it can circle a
potential attacked area, which contains all the suspected nodes.
The radius of the circle can be selected for just covering all the
suspected nodes. An example is shown in Figure 2, where the
shaded nodes are found to have missing or inconsistent data.
Note that all the nodes in the circle could be attracted by the
sinkhole, and hence, they are referred to as affected nodes.

B. Identifying the Intruder
Since the attacked area may contain many nodes, and the

sinkhole is not necessarily the center of the area, it is better to
further locate the exact intruder and isolate it from the network.
This can be achieved through analyzing the routing pattern in
the affected area.

We first demonstrate how to collect the network flow
information. The BS sends a request message to the network.
The request message contains the IDs of all the affected nodes,
and is flooded hop by hop. To prevent affected nodes to exploit
replay attacks on network flow information request messages,
the BS can include a timestamp TS and sign the message with its
private key KBS. The format of the request message is <TS,
ID1, …, IDn>KBS. For each node v receiving the first request, if
its ID is there, it should reply the BS a message <IDv, IDnext-hop,
cost>, which includes its own ID, the ID of the next-hop node,
and the cost, e.g., hop-count, data rate, etc. The ID of the
next-hop node and the cost are stored by individual nodes

according to their routing protocol. Note that the next-hop and
the cost could already be affected by the attack; hence, the reply
message should be sent along the reverse path in the flooding,
which corresponds to the original route with no intruder.

At the BS, each piece of network flow information can be

represented by a directed edge, i.e. cta b→ , where a
denotes an affected node, b denotes the next hop of a, and ct
denotes the cost from a to the BS. The next hop information is
important for observing the routing pattern. The BS can realize
the routing pattern by constructing a tree using the next hop
information collected. An area invaded by a sinkhole attack
processes special routing pattern where all network traffic
flows toward the same destination, which is compromised by
the intruder SH. It is also the root in the tree of network flow
information as shown in Figure 3. Apart from the essential next
hop information, additional routing information such as hop
count can facilitate the intruder detection by checking any
erroneous or inconsistent flow information. It is especially
helpful when the attacked area is in presence of multiple
malicious nodes, as will be discussed in the next section.

Due to the missing information, some branches of the
network flow information tree constructed may be broken. The
BS may obtain more than one tree of network flow information.
Algorithm 1 shows the construction of the trees in the attacked
area. We can then calculate the number of nodes in different
trees by a depth-first search, and the intruder should be the root
of the biggest tree, which attracts most network traffic.

V. ENHANCEMENTS AGAINST MULTIPLE MALICIOUS NODES

A. Enhancements on Network Flow Information Collection
As mentioned before, there could be multiple malicious

nodes that prevent the BS from obtaining correct and complete
flow information for intruder detection. They may cooperate
with the intruder to perform the following misbehaviors:

1. Modify the packets passing through
2. Forward the packets selectively
3. Provide wrong network flow information of itself

We now show effective enhancements that address these
issues through encryption and path redundancy.

BS

SH
Nodes with missing
or inconsistent data

Fig. 2. Estimate the attacked area Fig. 3. Network flow in the

attacked area

BS

SH

Algorithm 1 Identify multiple roots
R = φ /* R: set of roots */
for each v∈S /* S: set of nodes in the attacked area */
 if v has no incoming edge
 R = R ∪ findR(v)
end for

findR(node u)
 R’ = φ
 if u is not yet visited
 mark u is visited
 else
 return φ
 if u has no outgoing edge
 return {u}
 for each e(u,v)
 R’ = R’ ∪ findR(v)
 end for
 return R’
end findR

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

3385

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 11,2021 at 08:07:47 UTC from IEEE Xplore. Restrictions apply.

1) Key Establishment

Applying encryption can avoid tampering of the packets
during transmission. We assume every node v has an individual
key Kv that is shared with the BS only. This key is loaded to the
node through a pre-distribution protocol [16]. In order to save
storage space at the BS, the pairwise key Kv is derived by a
master key KBS, using a pseudo-random function F and the
unique node IDv: Kv = FKv (IDv).

Given its key, a sensor node encrypts its packet when it
replies network flow information to the BS. Existing studies
have shown that a symmetric encryption can be efficiently
implemented in various small sensing devices [17, 18]. The
node can also use one-way hash chains to provide
authentication [18]. For example, a sender selects a random
value Kq as the last key in the key chain and repeatedly
performs a pseudo random function F to computer all other
keys: Kq = F(Kq+1), where Kq is the secret key assigned to the
q-th time interval.

2) Path Redundancy
 Since malicious nodes may drop the reply messages, sensors
can forward network flow information to the BS through
multiple redundant paths. Specifically, they can forward reply
messages to k neighbors, where k ≥ 1.

Let k be the number of neighbors to which a message is
forwarded towards the BS, p be the probability of malicious in
a sensor node, hmax be the number of hops from the farthest
node to the BS, and level l has tl nodes, where max1 l h≤ ≤ .
We have

Pr[a response message from a node at level l can reach BS]
1(1)(1)k lp p −= − −

And the number of responses reaching the BS is thus

maxh

1

1
(1)(1)k l l

l
n p p t−

=
= − −∑

As an example, for p=0.1, k=2, hmax=3, t=4, we have n=
73.31 out of 84*(1-0.1)=75.6 responses being sent out by the
honest nodes, which is reasonably good.

B. Dealing with Multiple Malicious Nodes
Multiple malicious nodes may refuse to send reply message

or drop some of the reply packets (Figure 4a). Besides, they
may provide incorrect flow information, like next hop or hop
count, cooperatively to manipulate intruder detection (Figure
4b). Their objective is to hide the real intruder SH and blame on
a victim node SH’. An example is shown in Figure 4b, where
two colluding nodes A and C provide an outgoing edge to a
victim node SH’. To deal with this problem, the BS detects the
inconsistency among the hop count information. For instance,
nodes D, E, and F have same number of hop counts in their
incoming and outgoing edges, which is suspicious. Moreover,
the incoming edges of SH’ have different number of hop counts.
In our algorithm, we calculate the difference between the hop
count provided by a node and the number of edges from the
node to the current root. By spotting the inconsistency of the
hop counts, we could identify SH and other suspicious nodes.

BS
SH
Colluding nodes
SH'

3

3

3

3

3

3

3

2

33

3

2

2
1A

SH'

SH
C

D

E

F

G H

Fig. 4. Attack area with colluding nodes (a) Missing information;

(b) Misleading network flow

To this end, we maintain an array Count[], where entry
Count[i] stores the total number of nodes having hop count
difference i. Note that index i can be negative, which indicates
that the hop count provided by a node is smaller than its actual
distance from the current root. Intuitively, if Count[0] is not the
dominated one in the array, it means the current root is unlikely
the real intruder. By analyzing the array Count, we may
estimate the hop counts from SH’ to SH. For example, if most
non-zero entries of Count fall in the index range [-2, 2], we may
suspect SH is two hops away from SH’ (the current root). Based
on this, the BS can make root correction and re-calculate the
array Count among the nodes within two hops from SH’
(Algorithm 2). Finally, it concludes the intruder based on the
most consistent result. Figure 5 shows an example of the root
correction algorithm. Node SH’ is the original root of the
network flow tree (Figure 5a). Its array Count is as follow:

i -2 -1 0 1 2
Count[i] 0 14 8 6 0

It shows that only 8 nodes agree that SH’ is the intruder.
However, 14 nodes do not agree with that. Instead, they believe
SH should be one hop closer to BS than node SH’. Since they
are the majority, our correction algorithm has to run again and
look for a new root. Eventually, node SH becomes the new root
after the correction algorithm (Figure 5b), and the
corresponding new array Count is as follow:

i -2 -1 0 1 2
Count[i] 0 1 21 6 0

It shows that 21 nodes provide consistent information about
the current root SH. Since the value of Count[0] is the majority,
SH is concluded as the intruder.

(a)

(b)

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

3386

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 11,2021 at 08:07:47 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. Example of intruder identification with multiple malicious nodes

 Our approach supports the detection of multiple sinkholes in
the network. Intruder identification algorithm can be applied to
each attack area separately. Our approach also works for highly
clustered or more hierarchical sensor networks, provided that
the network flow information of the attack area can reach the
base station.

 It can be seen that the time complexity for calculating the
array count is ()O N , and that for correcting the roots is

1
()rc rc

h l h
l
t N O t N

=
⋅ = ⋅∑ , where hrc is the average number of

hops where a root correction will take place. The total time is
thus () () ()= ()rc rch hO N O N O t N O t N+ + ⋅ ⋅ , which is
relatively low in terms of energy consumption, as will be
examined in the next section.

C. Analysis
We now give a simple analysis about the effectiveness of the

above algorithm. We assume that N is the number of nodes in
the attacked area, N = n + s = (m + r) + s.

Property: For any m, our sinkhole detection algorithm
works if there are more than 2m sensors provide network flow
information successfully to BS and at most m are malicious
among them.

Proof: Since there are more than 2m sensors successfully
providing their network flow information, we have n > 2m, and
consequently r > m.

In this case, there are more honest sensors than malicious
sensors successfully providing their network flow information
to the BS. In the worst case, all the m malicious sensors are
colluding and suggesting SH’ as the intruder. Yet, the r good
sensors will suggest SH, the real intruder, and hence our
algorithm is still able to make a correct conclusion, even in this
worst case.

 Our algorithm might not work if 2n m≤ and more than m
malicious nodes are colluding. Nevertheless, in most sensor
networks, a majority of sensors should be in normal condition
and such situation thus will seldom happen.

TABLE II
ENVIRONMENT SETTING OF THE EXPERIMENTS

No. of nodes in network 400
Size of network 200m x 200m
Transmission range 10m
Location of BS (100,100)
Location of sinkhole (50, 50)
Percentage of colluding codes (m) 0 – 50%
Message drop rate (d) 0 – 80%
No. of neighbors which a message is forwarded to (k) 1 – 2
Packet size 100bytes
Max. number of reply messages per packet 5

VI. PERFORMANCE EVALUATION
We further evaluate the performance of our sinkhole

detection algorithm through simulations. We are interested in
its accuracy on intruder identification, communication
overhead, and energy consumption. We implement our own
experiments with static sensors uniformly placed in the
network area. Table II shows the environment settings of our
implementation [10, 7]. The sinkhole attack is simulated by an
intruder SH that attracts network traffic from its surrounding
nodes. There are 50 nodes being affected by the sinkhole and m
of them is colluding with the intruder. Messages may be
randomly dropped at rate d during network flow information
collection. To mitigate this loss, a sensor node forwards its
reply message to k neighbors. It stores up to five messages
before packing them into one packet and forwarding to the next
hop.

Algorithm 2 Find the real intruder with root corrections
for each root r
 initialize a new Array count
 initialize a new Path correctPath
 checkRootByCount(r, count, 1)
 S = {x>0 | forall y>0, count[x]+count[-x]>count[y]+count[-y]}
 x = min (S)

correctRoot(r, r, x, 0, correctPath , count[0])
apply correctPath on Network G

end for

checkRootByCount (Node r, Array count, int depth)
 depth = depth +1
 for each precedent Node c of r
 increase count[hop_count(c) – depth] by 1
 checkRootByCount (c, count, depth)
 end for
end checkRootByCount

correctRoot(Node r, Path p, int totalLevel, int currentLevel, Path
correctPath, int bestCount)
 if (currentLevel >= totalLevel)
 return
 end if
 currentLevel= currentLevel+1
 for each precedent node c of r
 initialize a new Array count
 reverse edge (c,r)

checkRootByCount (c, count, 1)
if (count[0]> bestCount)

correctPath = p->c
 bestCount = count[0]
 end if

correctRoot(c, p->c, totalLevel, currentLevel, correctPath ,
bestCount)
reverse edge(c,r)

end for
end correctRoot

(b)

2

3

2

3

3

34

4

4 4

4

4

3
4

2 3

3

4

4

3
44

3

4

4

3

2
2

1A
SH'

SH

Correct information
Missing information
Wrong information
Root correction

2

3

2

3

3

34

4

4 4

4

4

3
4

2 3

3

4

4

3
44

3

4

4

3

2

2
1A

SH'

SH

(a)

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

3387

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 11,2021 at 08:07:47 UTC from IEEE Xplore. Restrictions apply.

A. Accuracy of Intruder Identification
This experiment investigates the accuracy on intruder

identification for the sinkhole attacks. The success rate
represents the percentage that our algorithm can correctly
identify the SH, the false-positive rate represents the percentage
that our algorithm identifies SH’ falsely, and the false-negative
rate represents the percentage that our algorithm is not able to
identify any sinkhole but it exists.

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

S
uc

ce
ss

 ra
te

 (%
)

Ratio of malicious nodes (%)

Success rate in intruder identification

d=0
d=0.2
d=0.4
d=0.6
d=0.8

Fig. 6. Success rate in intruder identification

Figure 6 shows the success rate of intruder identification.
The experiment result shows that our identification algorithm
works well when m is less than 50%. All intruders can be
identified accurately when d=0. However, the success rate
drops when the dropping rate increases. It is because some
network flow information is missing, so the intruder may be
falsely identified. The success rate also decreases when the
malicious rate increases. This is due to the increased amount of
misleading network flow information from the colluding nodes.

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

Fa
ls

e-
po

si
tiv

e
ra

te
 (%

)

Ratio of malicious nodes (%)

False-positive rate in intruder identification

d=0
d=0.2
d=0.4
d=0.6
d=0.8

Fig. 7. False-positive rate in intruder identification

Figure 7 and Figure 8 show the false-positive rate and
false-negative rate in intruder identification respectively. The
simulation results indicate that the error rates are quite low.
There is no false-positive and false-negative errors when d = 0.
The error rates increase slightly with increasing the dropping
rate and the malicious rate. When the number of colluding
nodes increases, there is more incorrect network flow
information provided to the BS. If many correct messages are
dropped, the remaining wrong information can mislead the BS.
The BS may incorrectly conclude an intruder and lead to a

false-positive error. Similarly, the BS may receive inadequate
number of messages to identify the intruder and bring a
false-negative error.

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

Fa
ls

e-
ne

ga
tiv

e
ra

te
 (%

)

Ratio of malicious nodes (%)

False-negative rate in intruder identification

d=0
d=0.2
d=0.4
d=0.6
d=0.8

Fig. 8. False-negative rate in intruder identification

B. Communication Cost
In this experiment, we evaluated the communication

overhead of algorithm, in which the overhead for collecting
network flow information is dominating. Figure 9 shows the
number of packets send or receive by nodes with various hops
to the BS. Nodes closer to the BS are shown to have more
overheads. The variable k represents the number of neighbors
to which a message will be forwarded. As an example, when k
is 2, for a node in the attacked area, the packets sent are around
a double of the packets received. Note that the numbers of
packets sent and received are the same for hop count less than
4. This is because most malicious nodes are located in the
attacked area, and the nodes out of the area only forward
packets to one neighbor to relieve the bottleneck around the BS.
The larger the value of k is, the less the network flow
information will be lost for intruder identification by means of
the redundant paths. Thus, there is a tradeoff between the
communication overhead and the accuracy on intruder
identification. Our experience shows that, when k=2, the
overhead is reasonably low while a high security level can be
expected.

0

20

40

60

80

0 1 2 3 4 5 6 7 8

P
ac

ke
ts

 p
er

 n
od

e

Hops to base station

Communication cost for collecting network flow information

packet receive (k=1)
packet receive (k=2)

packet send (k=1)
packet send (k=2)

Fig. 9. Communication cost for collecting network flow information

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

3388

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 11,2021 at 08:07:47 UTC from IEEE Xplore. Restrictions apply.

C. Energy Consumption
Finally, we study the energy consumption in a sensor node

for intruder identification. It is related to both the
communication overhead for message passing and the
computation overhead for encrypting and signing messages.
Table III shows typical energy consumptions for a sensor node,
which are adapted from [19, 4]. We used these parameters to
calculate the energy consumption of individual sensors for
receiving, sending, and encryption the messages related to
intruder identification. Note that computation overhead of
encrypting and signing the messages is less than 5% of the total
energy consumption, which is consistent with the observation
in [4].

TABLE III
PARAMETERS OF ENERGY CONSUMPTION

Communication circuit power 5 x 10-8 J/bit
Communication antenna power 1 x 10-10 J/bit/m2
Encryption and MAC computation 3 x 10-9 J/bit

Figure 10 shows the average energy consumption for our
algorithm at each single node as a function of its hop counts to
the BS. It can be seen that the nodes located closer to the BS
experience higher energy consumption. This is because they
become the bottleneck between the BS and the attack area. They
consume more energy for sending and receiving a greater
amount of messages than other nodes. The number of messages
also increases with k, because a node may forward its packets to
more than one neighbor. Applying redundant paths require
more energy consumption, but it provides higher accuracy of
intruder identification by diminishing the impact of message
dropping. Nonetheless, the energy consumption for our intruder
detection algorithm is quite lightweighted. For example,
consider a sensor node with two 3V off-the-shelf, 1.2
Amp-Hour batteries [20, 21]. The total energy available at this
node is Et = 2 * 3 * 1.2 = 7.2 in V·A·Hour. Clearly, it needs to
spend only a very small portion of the available energy for
intruder identification throughout its lifetime.

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8

E
ne

rg
y

co
ns

um
pt

io
n

pe
r n

od
e

(u
J)

Hops to base station

Energy consumption for intruder identification

k=1
k=2

Fig. 10. Energy consumption for intruder identification

VII. CONCLUSION AND FUTURE WORK
In this paper, we have presented an effective method for

identifying sinkhole attack in a wireless sensor network. The
algorithm consists of two steps. It first locates a list of

suspected nodes by checking data consistency, and then
identifies the intruder in the list through analyzing the network
flow information. We have also presented a series
enhancements to deal with cooperative malicious nodes that
attempt to hide the real intruder.

The performance of the proposed algorithm has been
examined through both numerical analysis and simulations.
The results have demonstrated the effectiveness and accuracy
of the algorithm. They also suggest that its communication and
computation overheads are reasonably low for wireless sensor
networks. There could be many future directions toward
enhancing this work. In particular, we are interested in more
effective statistical algorithms for identifying data
inconsistency, and thus correctly locating suspected nodes in
sinkhole attacks.

REFERENCES
[1] Brad Karp and H. T. Kung, “GPSR: Greedy Perimeter Stateless Routing for

Wireless Networks,” in Proc. of the 6th ACM MobiCom, Aug 2000, pp.
243-254.

[2] Karlof and D. Wagner, “Secure Routing in Sensor Networks: Attacks and
Countermeasures,” in Proc. of the 1st IEEE Workshop on Sensor Network Protocols
and Applications, May 2003, pp.1-15.

[3] E. Shi and A. Perrig, “Designing Secure Sensor Networks,” IEEE Wireless
Communications, vol. 11, no. 6, Dec 2004, pp. 38-43.

[4] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D. Tygar, “SPINS: Security
Protocols for Sensor Networks,” in Proc. of the 7th ACM MobiCom, Jul 2001, pp.
189-199.

[5] Dorothy E. Denning, “An Intrusion Detection Model,” in Proc. of the IEEE
Symposium on Security and Privacy, 1986, pp. 118-131.

[6] Y. Zhang and W. Lee, “Intrusion Detection in Wireless Ad-Hoc Networks,” in Proc.
of the 6th ACM MobiCom, Aug 2000, pp. 275-283.

[7] A. D. Wood, J. A. Standovic, and S. H. Son, “JAM: A Jammed-Area Mapping
Service for Sensor Networks,” in Proc. of the 24th IEEE Real-Time Systems
Symposium (RTSS), Dec 2003, pp. 286-297.

[8] M. Ding, D. Chen, K. Xing, and X. Cheng, “Localized Fault-Tolerant Event
Boundary Detection in Sensor Networks,” in Proc. of 24th IEEE INFOCOM, Mar
2005, pp. 902-913.

[9] J. Staddon, D. Balfanz, and G. Durfee, “Efficient Tracing of Failed Nodes in Sensor
Networks,” in Proc. of 1st ACM International Workshop on Wireless Sensor
Networks and Application (WSNA), Sep 2002, pp. 122-130.

[10] F. Ye, H. Luo, S. Lu, and L. Zhang, “Statistical En-Route Filtering of Injected False
Data in Sensor Networks,” in Proc. of the 23rd IEEE INFOCOM, Mar 2004, pp.
2446-2457.

[11] Y.-C. Hu, A. Perrig, and D. B. Johnson, “Packet Leashes: A Defense against
Wormhole Attacks in Wireless Ad Hoc Networks,” in Proc. of the 22th IEEE
INFOCOM 2003, April 2003, pp. 1976-1986.

[12] L. Lazos, R. Poovendran, C. Meadows, P. Syverson, and L.W. Chang, “Preventing
Wormhole Attacks on Wireless Ad Hoc Networks: A Graph Theoretic Approach,”
in IEEE Wireless and Communications and Networking Conference (WCNC), Mar
2005, pp.1193-1199.

[13] L. Hu and D. Evans, “Localization for Mobile Sensor Networks,” in Proc. of the 10th
ACM MobiCom, Sep 2004, pp. 45-57.

[14] D. Wagner, “Resilient Aggregation in Sensor Networks,” in ACM Workshop on
Security of Ad Hoc and Sensor Networks (SASN), Oct 2004, pp. 78-87.

[15] N. Ye and Q. Chen, “An Anomaly Detection Technique Based on a Chi-square
Statistic for Detecting Intrusions into Information Systems,” Quality and Reliability
Engineering International, vol. 17, no. 2, 2001, pp. 105-112.

[16] D. Liu and P. Ning, “Establishing Pairwise Keys in Distributed Sensor Networks,”
in Proc. of the 10th ACM Conference on Computer and Communications Security
(CCS), Oct 2003, pp. 52-61.

[17] P. Ganesan, R. Venugopalan, P. Peddabachagari, A. Dean, F. Mueller, M. Sichitiu,
“Analyzing and Modeling Encryption Overhead for Sensor Network Nodes,” in
Proc. of the 2nd ACM International Conference on Wireless Sensor Networks and
Applications (WSNA), Sep 2003, pp. 151-159.

[18] S. Zhu, S. Setia, S. Jajodia, “LEAP: Efficient Security Mechanisms for Large-Scale
Distributed Sensor Networks,” in Proc. of the 10th ACM Conference on Computer
and Communications Security (CCS), Oct 2003, pp. 62-72.

[19] W. B. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “An
Application-Specific Protocol Architecture for Wireless Microsensor Networks,”
IEEE Transactions on Wireless Communications, vol. 1, no. 4, Oct 2002, pp.
660-670.

[20] “MPR/MID User's Manual,” Document 7430-0021-06, Rev. B, Crossbow
Technology, Inc., April 2005.

[21] R. Jurdak, C. V. Lopes, P. Baldi, “Battery Lifetime Estimation and Optimization for
Underwater Sensor Networks,” IEEE Sensor Operations, 2004.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

3389

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 11,2021 at 08:07:47 UTC from IEEE Xplore. Restrictions apply.

