
 
 

 

Abstract— In a wireless sensor network, multiple nodes would 
send sensor readings to a base station for further processing. It is 
well-known that such a many-to-one communication is highly 
vulnerable to the sinkhole attack, where an intruder attracts 
surrounding nodes with unfaithful routing information, and then 
performs selective forwarding or alters the data passing through 
it. A sinkhole attack forms a serious threat to sensor networks, 
particularly considering that such networks are often deployed in 
open areas and of weak computation and battery power.  

In this paper, we present a novel algorithm for detecting the 
intruder in a sinkhole attack. The algorithm first finds a list of 
suspected nodes, and then effectively identifies the intruder in the 
list through a network flow graph.  The algorithm is also robust to 
deal with cooperative malicious nodes that attempt to hide the real 
intruder. We have evaluated the performance of the proposed 
algorithm through both numerical analysis and simulations, 
which confirmed the effectiveness and accuracy of the algorithm. 
Our results also suggest that its communication and computation 
overheads are reasonably low for wireless sensor networks.1 
 

I. INTRODUCTION 

Wireless sensor networks become increasingly popular to 
solve such challenging real-world problems as industrial 
sensing and environmental monitoring. A sensor network 
generally consists of a set of sensor nodes, which continuously 
monitor their surroundings and forward the sensing data to a 
sink node, or base station. It is well-known that such a 
many-to-one communication is highly vulnerable to the 
sinkhole attack, where an intruder attracts surrounding nodes 
with unfaithful routing information, and then alters the data 
passing through it or performs selective forwarding.  

A sinkhole attack prevents the base station from obtaining 
complete and correct sensing data, and thus forms a serious 
threat to higher-layer applications. It is particularly severe for 
wireless sensor networks given the vulnerability of wireless 
links, and that the sensors are often deployed in open areas and 
of weak computation and battery power. Although some secure 
or geographic based routing protocols resist to the sinkhole 
attacks in certain level [1], many current routing protocols in 
sensor networks are susceptible to the sinkhole attack [2].  
 
The work described in this paper was substantially supported by grant from the 
Research Grants Council of the Hong Kong Special Administrative Region, 
China (Project No. CUHK4205/04E). 
J. Liu’s work was supported in part by a Canadian NSERC Discovery Grant 
288325, an NSERC Research Tools and Instruments Grant, a Canada 
Foundation for Innovation (CFI) New Opportunities Grant, and an SFU 
President’s Research Grant. 

 

In this paper, we propose a novel light-weighted algorithm 
for detecting sinkhole attacks and identifying the intruder in an 
attack. We focus on a general many-to-one communication 
model, where the routes are established based on the reception 
of route advertisements. Our solution explores the asymmetric 
property between the sensor nodes and the base station, and 
makes effective use of the relatively-high computation and 
communication power in the base station [2, 3, 4].  It consists of 
two steps: First, a secure and low-overhead algorithm for the 
base station to collect the network flow information with a 
distributed fashion in the attack area; and second, an efficient 
identification algorithm that analyzes the collected network 
flow information and locate the intruder. We also consider the 
scenario that a set of colluding nodes cheat the base station 
about the location of the intruder. Specifically, we examine 
multiple suspicious nodes and conclude the intruder based on 
majority votes. We show that such a conclusion is correct if less 
than half of the collected information comes from malicious 
nodes. 

The performance of the proposed algorithm is evaluated 
through both numerical analysis and simulations, which 
confirmed the effectiveness and accuracy of the algorithm. Our 
results also suggest that its communication and computation 
overheads are reasonably low for wireless sensor networks. 

The remainder of this paper is organized as follows. Section 
II presents the related work. In Section III, we formally 
describe the sinkhole attack in wireless sensor networks, and 
state the problem to be solved. In Section IV, we present our 
2-step detection algorithm, i.e., collecting network flow 
information and identifying the intruder. In Section V, we 
provide the enhancements to the algorithm for handling 
multiple malicious nodes and give the numerical analysis. The 
performance of the proposed algorithm is evaluated in Sections 
VI through simulations. Finally, Section VII concludes this 
paper and offers some future research directions. 

 

II. RELATED WORK 
Intrusion detection has been an active research topic for the 

Internet extensively [5]. Recently, many detection algorithms 
have been proposed for wireless ad hoc networks as well. Most 
of them assume uniform nodes and symmetric communications 
[6].  On the contrary, the sensor network we are considering has 
an asymmetric many-to-one communication pattern, and the 
power of the sensor nodes is rather weak.  
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For sensor networks, some existing secure or geographical 
routing protocols are resistant to sinkhole attack in certain 
level. An example is a geographic protocol [1], which performs 
routing by the localized information and interactions only, 
without an initiation from the base station. However, many of 
the existing routing protocols, in particular, those based on 
route advertisement, are vulnerable to sinkhole attacks. To the 
best of our knowledge, we are not aware of any algorithm that 
is specifically designed for sinkhole detection among them.   

Our work is also motivated by the following studies, though 
they have focused on different applications. Specifically, Wood 
et al. [7] proposes a mechanism for detecting and mapping 
jammed regions. They describe a mapping protocol for nodes 
that surround a jammer which allows network applications to 
reason about the region as an entity, rather than as a collection 
of broken links and congested nodes. Ding et al. [8] propose an 
algorithm for the identification of faulty sensors and detection 
of the reach of events in sensor networks with faulty sensors. 
Staddon et al. [9] demonstrate that the topology of the network 
can be efficiently conveyed to the base station allowing for the 
quick tracing of the identities of the failed nodes with moderate 
communication overhead. Ye et al. [10] present a Statistical 
En-route Filtering (SEF) mechanism that can detect and drop 
such false reports; SEF applies multiple keyed message 
authentication codes, probabilistic verification, and data 
filtering to determine the truthfulness of each report. Perrig et 
al. [11] propose a packet leash mechanism for detecting and 
thus defending against wormhole attacks. A leash can be some 
temporal or geographical information that is added to a packet 
to restrict the packet's maximum allowed transmission distance. 

III. PROBLEM STATEMENT 
We consider a sensor network that consists of a base station 

(BS) and a collection of geographically distributed sensor 
nodes, each denoted by a unique identifier IDv. The sensor 
nodes continuously collect and send the sensed application data 
to the base station by forwarding packets hop-by-hop.  

As mentioned earlier, this commonly used many-to-one 
communication pattern is vulnerable to sinkhole attacks. In a 
sinkhole attack, an intruder usually attracts network traffic by 
advertising itself as having the shortest path to the base station. 
For example, as shown in Figure 1a, an intruder using a 
wireless-enabled laptop will have much higher computation 
and communication power than a normal sensor node, and it 
could have a high-quality single-hop link to the base station 
(BS). It can then advertise imitated routing messages about the 
high quality route, thus spoofing the surrounding nodes to 
create a sinkhole (SH). A sinkhole can also be performed using 
a wormhole [12], which creates a metaphorical sinkhole with 
the intruder being at the center. An example is shown in Figure 
1b, where an intruder creates a sinkhole by tunneling messages 
received in one part of the network and replays them in a 
different part using a wormhole.  

We assume the sensor nodes are either good or malicious. 
The center of a sinkhole attack is a malicious node 
compromised by the intruder. Note that, even if there is only 
one compromised node providing a high quality route to the 
base station, it can affect many surrounding sensors. 
Furthermore, this intruder may also cooperate with some other 

malicious nodes in the network to interfere detection 
algorithms. In an extreme case, all the malicious nodes are 
colluding with the intruder. They may collaboratively cheat the 
base station by claiming a good node as the intruder (the victim, 
SH’), and thus hide the real one.  

 

 
 
 
 
 
 

 
 
 
 
 
Fig. 1. Two examples of sinkhole attack in wireless sensor networks. (a) Using 

an artificial high quality route; (b) Using a wormhole. 
 
The focus of our work is to effectively identify the real 

intruder (SH) in the sinkhole attack in presence of colluding 
nodes. We assume that the base station is physically protected 
or has tamper-robust hardware [3]; hence, it acts as a central 
trusted authority in our algorithm design. The base station also 
has a rough understanding on the location of nodes, which 
could be available after the node deployment stage or can be 
obtained by various localization mechanisms [13]. 

For ease of exposition, in Table I, we list the major notations 
used throughout this paper.  

 
 

TABLE I 
LIST OF NOTATION 

BS Base station 
SH Real intruder in the sinkhole attack 
SH’ False intruder (victim) in the sinkhole attack 
IDv Identity of sensor node v 
p Probability of malicious in sensor nodes 
d Packet drop rate 
k No. neighbors which a message will be forwarded to 

hmax Hops from the farthest node to BS 
hrc Hops from BS where root correction takes place 
l Levels from BS in the tree of network flow  
tl No. of nodes at level l 
N Total number of nodes in the attack area 
M No. of malicious nodes in the attack area 
r No. of correct network flow information collected 
m No. of incorrect network flow information collected 
s No. of missing network flow information 
n Total no. of network flow information collected 

IV. SINKHOLE ATTACK DETECTION 
In this section, we describe how to detect a sinkhole attack, 

and then efficiently identify the intruder. We first focus on one 
malicious node (the intruder); an enhancement dealing with 
multiple malicious nodes will be presented in the next section.  

(a)
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A. Estimating the Attacked Area 
  In many sensor network applications, sensor nodes are 
responsible for collecting local data and sending them to the BS. 
The most common kind of violations in a sinkhole attack is 
selective forwarding. By observing consistent data missing 
from an area, the BS may suspect there is an attack with 
selective forwarding. For illustration, consider a monitoring 
application in which sensor nodes submit sensing data to the BS 
periodically. The BS can detect the data inconsistency using the 
following statistical method. Let X1, ..., Xn be the sensing data 
collected in a sliding window, and X be their mean. Define f(Xj) 
as 

2( - )
( ) 

j
j

X X
f X

X
=  

Then a simple measure for identifying a suspected node is if 
f(Xj) is greater than a certain threshold, because the data from 
this node is inconsistent with others in the same area. More 
advanced techniques can be found in [14, 15]. 

After identifying a list of the suspected nodes, the BS can 
estimate where the sinkhole locates. Specifically, it can circle a 
potential attacked area, which contains all the suspected nodes. 
The radius of the circle can be selected for just covering all the 
suspected nodes. An example is shown in Figure 2, where the 
shaded nodes are found to have missing or inconsistent data. 
Note that all the nodes in the circle could be attracted by the 
sinkhole, and hence, they are referred to as affected nodes.  

 
 
 
 
 
 
 
 
  
 
 
 
 

B. Identifying the Intruder 
Since the attacked area may contain many nodes, and the 

sinkhole is not necessarily the center of the area, it is better to 
further locate the exact intruder and isolate it from the network. 
This can be achieved through analyzing the routing pattern in 
the affected area.  

We first demonstrate how to collect the network flow 
information. The BS sends a request message to the network. 
The request message contains the IDs of all the affected nodes, 
and is flooded hop by hop. To prevent affected nodes to exploit 
replay attacks on network flow information request messages, 
the BS can include a timestamp TS and sign the message with its 
private key KBS. The format of the request message is <TS, 
ID1, …, IDn>KBS. For each node v receiving the first request, if 
its ID is there, it should reply the BS a message <IDv, IDnext-hop, 
cost>, which includes its own ID, the ID of the next-hop node, 
and the cost, e.g., hop-count, data rate, etc. The ID of the 
next-hop node and the cost are stored by individual nodes 

according to their routing protocol. Note that the next-hop and 
the cost could already be affected by the attack; hence, the reply 
message should be sent along the reverse path in the flooding, 
which corresponds to the original route with no intruder.  

At the BS, each piece of network flow information can be 

represented by a directed edge, i.e. cta b→ , where a 
denotes an affected node, b denotes the next hop of a, and ct 
denotes the cost from a to the BS. The next hop information is 
important for observing the routing pattern. The BS can realize 
the routing pattern by constructing a tree using the next hop 
information collected. An area invaded by a sinkhole attack 
processes special routing pattern where all network traffic 
flows toward the same destination, which is compromised by 
the intruder SH. It is also the root in the tree of network flow 
information as shown in Figure 3. Apart from the essential next 
hop information, additional routing information such as hop 
count can facilitate the intruder detection by checking any 
erroneous or inconsistent flow information. It is especially 
helpful when the attacked area is in presence of multiple 
malicious nodes, as will be discussed in the next section.  

Due to the missing information, some branches of the 
network flow information tree constructed may be broken. The 
BS may obtain more than one tree of network flow information. 
Algorithm 1 shows the construction of the trees in the attacked 
area. We can then calculate the number of nodes in different 
trees by a depth-first search, and the intruder should be the root 
of the biggest tree, which attracts most network traffic. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

V. ENHANCEMENTS AGAINST MULTIPLE MALICIOUS NODES 

A. Enhancements on Network Flow Information Collection 
As mentioned before, there could be multiple malicious 

nodes that prevent the BS from obtaining correct and complete 
flow information for intruder detection. They may cooperate 
with the intruder to perform the following misbehaviors: 

1. Modify the packets passing through 
2. Forward the packets selectively 
3. Provide wrong network flow information of itself 

We now show effective enhancements that address these 
issues through encryption and path redundancy.  

BS

SH
Nodes with missing 
or inconsistent data

 
Fig. 2. Estimate the attacked area Fig. 3. Network flow in the  

attacked area 

BS

SH

Algorithm 1 Identify multiple roots 
R = φ                   /* R: set of roots */ 
for each v∈S     /* S: set of nodes in the attacked area */ 
  if v has no incoming edge 
   R = R ∪  findR(v) 
end for 
 
findR(node u) 
  R’ = φ 
  if u is not yet visited 
   mark u is visited 
  else 
   return φ 
  if u has no outgoing edge 
   return {u} 
  for each e(u,v) 
   R’ = R’ ∪  findR(v) 
  end for  
          return R’ 
end findR 
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1) Key Establishment 

Applying encryption can avoid tampering of the packets 
during transmission. We assume every node v has an individual 
key Kv that is shared with the BS only. This key is loaded to the 
node through a pre-distribution protocol [16]. In order to save 
storage space at the BS, the pairwise key Kv is derived by a 
master key KBS, using a pseudo-random function F and the 
unique node IDv: Kv = FKv (IDv).  

Given its key, a sensor node encrypts its packet when it 
replies network flow information to the BS. Existing studies 
have shown that a symmetric encryption can be efficiently 
implemented in various small sensing devices [17, 18]. The 
node can also use one-way hash chains to provide 
authentication [18]. For example, a sender selects a random 
value Kq as the last key in the key chain and repeatedly 
performs a pseudo random function F to computer all other 
keys: Kq = F(Kq+1), where Kq is the secret key assigned to the 
q-th time interval. 

 
2) Path Redundancy 
 Since malicious nodes may drop the reply messages, sensors 
can forward network flow information to the BS through 
multiple redundant paths. Specifically, they can forward reply 
messages to k neighbors, where k ≥ 1.  

Let  k be the number of neighbors to which a message is 
forwarded towards the BS, p be the probability of malicious in 
a sensor node, hmax be the number of hops from the farthest 
node to the BS, and level l has tl nodes, where max1 l h≤ ≤ . 
We have  

Pr[a response message from a node at level l can reach BS] 
1(1 )(1 )k lp p −= − −  

And the number of responses reaching the BS is thus 

 
maxh

1

1
(1 )(1 )k l l

l
n p p t−

=
= − −∑  

As an example, for p=0.1, k=2, hmax=3, t=4, we have n= 
73.31 out of 84*(1-0.1)=75.6 responses being sent out by the 
honest nodes, which is reasonably good. 

B. Dealing with Multiple Malicious Nodes 
Multiple malicious nodes may refuse to send reply message 

or drop some of the reply packets (Figure 4a). Besides, they 
may provide incorrect flow information, like next hop or hop 
count, cooperatively to manipulate intruder detection (Figure 
4b). Their objective is to hide the real intruder SH and blame on 
a victim node SH’. An example is shown in Figure 4b, where 
two colluding nodes A and C provide an outgoing edge to a 
victim node SH’. To deal with this problem, the BS detects the 
inconsistency among the hop count information. For instance, 
nodes D, E, and F have same number of hop counts in their 
incoming and outgoing edges, which is suspicious. Moreover, 
the incoming edges of SH’ have different number of hop counts. 
In our algorithm, we calculate the difference between the hop 
count provided by a node and the number of edges from the 
node to the current root. By spotting the inconsistency of the 
hop counts, we could identify SH and other suspicious nodes.  
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Fig. 4. Attack area with colluding nodes (a) Missing information; 

(b) Misleading network flow 
 

To this end, we maintain an array Count[], where entry 
Count[i] stores the total number of nodes having hop count 
difference i. Note that index i can be negative, which indicates 
that the hop count provided by a node is smaller than its actual 
distance from the current root. Intuitively, if Count[0] is not the 
dominated one in the array, it means the current root is unlikely 
the real intruder. By analyzing the array Count, we may 
estimate the hop counts from SH’ to SH. For example, if most 
non-zero entries of Count fall in the index range [-2, 2], we may 
suspect SH is two hops away from SH’ (the current root). Based 
on this, the BS can make root correction and re-calculate the 
array Count among the nodes within two hops from SH’ 
(Algorithm 2). Finally, it concludes the intruder based on the 
most consistent result. Figure 5 shows an example of the root 
correction algorithm. Node SH’ is the original root of the 
network flow tree (Figure 5a). Its array Count is as follow: 

i -2 -1 0 1 2 
Count[i] 0 14 8 6 0 

It shows that only 8 nodes agree that SH’ is the intruder. 
However, 14 nodes do not agree with that. Instead, they believe 
SH should be one hop closer to BS than node SH’. Since they 
are the majority, our correction algorithm has to run again and 
look for a new root. Eventually, node SH becomes the new root 
after the correction algorithm (Figure 5b), and the 
corresponding new array Count is as follow: 

i -2 -1 0 1 2 
Count[i] 0 1 21 6 0 

It shows that 21 nodes provide consistent information about 
the current root SH. Since the value of Count[0] is the majority, 
SH is concluded as the intruder.  

(a) 

(b) 
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Fig. 5. Example of intruder identification with multiple malicious nodes  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    Our approach supports the detection of multiple sinkholes in 
the network. Intruder identification algorithm can be applied to 
each attack area separately. Our approach also works for highly 
clustered or more hierarchical sensor networks, provided that 
the network flow information of the attack area can reach the 
base station. 

 It can be seen that the time complexity for calculating the 
array count is ( )O N , and that for correcting the roots is 

1
(  )rc rc

h l h
l
t N O t N

=
⋅ = ⋅∑ , where hrc is the average number of 

hops where a root correction will take place. The total time is 
thus ( ) ( ) (  )= (  )rc rch hO N O N O t N O t N+ + ⋅ ⋅ , which is 
relatively low in terms of energy consumption, as will be 
examined in the next section.  

C. Analysis 
We now give a simple analysis about the effectiveness of the 

above algorithm. We assume that N is the number of nodes in 
the attacked area, N = n + s = (m + r) + s. 

Property: For any m, our sinkhole detection algorithm 
works if there are more than 2m sensors provide network flow 
information successfully to BS and at most m are malicious 
among them. 

Proof: Since there are more than 2m sensors successfully 
providing their network flow information, we have n > 2m, and 
consequently r > m.  

In this case, there are more honest sensors than malicious 
sensors successfully providing their network flow information 
to the BS. In the worst case, all the m malicious sensors are 
colluding and suggesting SH’ as the intruder. Yet, the r good 
sensors will suggest SH, the real intruder, and hence our 
algorithm is still able to make a correct conclusion, even in this 
worst case.  

 Our algorithm might not work if 2n m≤  and more than m 
malicious nodes are colluding.  Nevertheless, in most sensor 
networks, a majority of sensors should be in normal condition 
and such situation thus will seldom happen.  

TABLE II 
ENVIRONMENT SETTING OF THE EXPERIMENTS  

No. of nodes in network 400 
Size of network 200m x 200m 
Transmission range 10m 
Location of BS (100,100) 
Location of  sinkhole (50, 50) 
Percentage of colluding codes (m) 0 – 50% 
Message drop rate (d) 0 – 80% 
No. of neighbors which a message is forwarded to (k) 1 – 2 
Packet size 100bytes 
Max. number of reply messages per  packet 5 

VI. PERFORMANCE EVALUATION 
We further evaluate the performance of our sinkhole 

detection algorithm through simulations. We are interested in 
its accuracy on intruder identification, communication 
overhead, and energy consumption. We implement our own 
experiments with static sensors uniformly placed in the 
network area. Table II shows the environment settings of our 
implementation [10, 7]. The sinkhole attack is simulated by an 
intruder SH that attracts network traffic from its surrounding 
nodes. There are 50 nodes being affected by the sinkhole and m 
of them is colluding with the intruder. Messages may be 
randomly dropped at rate d during network flow information 
collection. To mitigate this loss, a sensor node forwards its 
reply message to k neighbors. It stores up to five messages 
before packing them into one packet and forwarding to the next 
hop. 

Algorithm 2 Find the real intruder with root corrections 
for each root r 
 initialize a new Array count 
 initialize a new Path correctPath 
 checkRootByCount(r, count, 1) 
 S = {x>0 | forall y>0, count[x]+count[-x]>count[y]+count[-y]} 
 x = min (S) 

correctRoot(r, r, x, 0, correctPath , count[0]) 
apply correctPath on Network G 

end for  
 
checkRootByCount (Node r, Array count, int depth) 
 depth = depth +1 
 for each precedent Node c of r 
  increase count[hop_count(c) – depth] by 1 
  checkRootByCount (c, count, depth) 
  end for 
end checkRootByCount 
 
correctRoot(Node r, Path p, int totalLevel, int currentLevel, Path   
correctPath, int bestCount) 
 if (currentLevel >= totalLevel) 
  return 
 end if 
 currentLevel= currentLevel+1 
 for each precedent node c of r 
  initialize a new Array count 
  reverse edge (c,r) 

checkRootByCount (c, count, 1) 
if (count[0]> bestCount) 

correctPath = p->c 
     bestCount = count[0] 
   end if 

correctRoot(c, p->c, totalLevel, currentLevel, correctPath , 
bestCount) 
reverse edge(c,r) 

end for 
end correctRoot 
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A. Accuracy of Intruder Identification 
This experiment investigates the accuracy on intruder 

identification for the sinkhole attacks. The success rate 
represents the percentage that our algorithm can correctly 
identify the SH, the false-positive rate represents the percentage 
that our algorithm identifies SH’ falsely, and the false-negative 
rate represents the percentage that our algorithm is not able to 
identify any sinkhole but it exists.  
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Fig. 6. Success rate in intruder identification 

Figure 6 shows the success rate of intruder identification. 
The experiment result shows that our identification algorithm 
works well when m is less than 50%. All intruders can be 
identified accurately when d=0. However, the success rate 
drops when the dropping rate increases. It is because some 
network flow information is missing, so the intruder may be 
falsely identified. The success rate also decreases when the 
malicious rate increases. This is due to the increased amount of 
misleading network flow information from the colluding nodes.  
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Fig. 7. False-positive rate in intruder identification 

Figure 7 and Figure 8 show the false-positive rate and 
false-negative rate in intruder identification respectively. The 
simulation results indicate that the error rates are quite low. 
There is no false-positive and false-negative errors when d = 0. 
The error rates increase slightly with increasing the dropping 
rate and the malicious rate. When the number of colluding 
nodes increases, there is more incorrect network flow 
information provided to the BS. If many correct messages are 
dropped, the remaining wrong information can mislead the BS. 
The BS may incorrectly conclude an intruder and lead to a 

false-positive error. Similarly, the BS may receive inadequate 
number of messages to identify the intruder and bring a 
false-negative error. 
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Fig. 8. False-negative rate in intruder identification 

B. Communication Cost 
In this experiment, we evaluated the communication 

overhead of algorithm, in which the overhead for collecting 
network flow information is dominating. Figure 9 shows the 
number of packets send or receive by nodes with various hops 
to the BS. Nodes closer to the BS are shown to have more 
overheads. The variable k represents the number of neighbors 
to which a message will be forwarded. As an example, when k 
is 2, for a node in the attacked area, the packets sent are around 
a double of the packets received. Note that the numbers of 
packets sent and received are the same for hop count less than 
4. This is because most malicious nodes are located in the 
attacked area, and the nodes out of the area only forward 
packets to one neighbor to relieve the bottleneck around the BS. 
The larger the value of k is, the less the network flow 
information will be lost for intruder identification by means of 
the redundant paths. Thus, there is a tradeoff between the 
communication overhead and the accuracy on intruder 
identification. Our experience shows that, when k=2, the 
overhead is reasonably low while a high security level can be 
expected.  
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Fig. 9. Communication cost for collecting network flow information 
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C. Energy Consumption 
Finally, we study the energy consumption in a sensor node 

for intruder identification. It is related to both the 
communication overhead for message passing and the 
computation overhead for encrypting and signing messages. 
Table III shows typical energy consumptions for a sensor node, 
which are adapted from [19, 4]. We used these parameters to 
calculate the energy consumption of individual sensors for 
receiving, sending, and encryption the messages related to 
intruder identification. Note that computation overhead of 
encrypting and signing the messages is less than 5% of the total 
energy consumption, which is consistent with the observation 
in [4].  

TABLE III 
PARAMETERS OF ENERGY CONSUMPTION 

Communication circuit power 5 x 10-8 J/bit 
Communication antenna power 1 x 10-10 J/bit/m2 
Encryption and MAC computation 3 x 10-9 J/bit 

Figure 10 shows the average energy consumption for our 
algorithm at each single node as a function of its hop counts to 
the BS. It can be seen that the nodes located closer to the BS 
experience higher energy consumption. This is because they 
become the bottleneck between the BS and the attack area. They 
consume more energy for sending and receiving a greater 
amount of messages than other nodes. The number of messages 
also increases with k, because a node may forward its packets to 
more than one neighbor. Applying redundant paths require 
more energy consumption, but it provides higher accuracy of 
intruder identification by diminishing the impact of message 
dropping. Nonetheless, the energy consumption for our intruder 
detection algorithm is quite lightweighted. For example, 
consider a sensor node with two 3V off-the-shelf, 1.2 
Amp-Hour batteries [20, 21]. The total energy available at this 
node is Et = 2 * 3 * 1.2 = 7.2 in V·A·Hour. Clearly, it needs to 
spend only a very small portion of the available energy for 
intruder identification throughout its lifetime. 

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8

E
ne

rg
y 

co
ns

um
pt

io
n 

pe
r n

od
e 

(u
J)

Hops to base station

Energy consumption for intruder identification

k=1
k=2

 
Fig. 10. Energy consumption for intruder identification 

 

VII. CONCLUSION AND FUTURE WORK 
In this paper, we have presented an effective method for 

identifying sinkhole attack in a wireless sensor network. The 
algorithm consists of two steps. It first locates a list of 

suspected nodes by checking data consistency, and then 
identifies the intruder in the list through analyzing the network 
flow information. We have also presented a series 
enhancements to deal with cooperative malicious nodes that 
attempt to hide the real intruder.  

The performance of the proposed algorithm has been 
examined through both numerical analysis and simulations. 
The results have demonstrated the effectiveness and accuracy 
of the algorithm. They also suggest that its communication and 
computation overheads are reasonably low for wireless sensor 
networks. There could be many future directions toward 
enhancing this work. In particular, we are interested in more 
effective statistical algorithms for identifying data 
inconsistency, and thus correctly locating suspected nodes in 
sinkhole attacks.  
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