
Software Reliability Engineering Study of a Large-scale
Telecommunications Software System

D. W. Carman

444 Hoes Lane

A. A. Dolinsky

6 Corporate Place
Piscataway, NJ 08854

Bellcore Bellcore

Piscataway, NJ 08854
dwc @soac.bellcore.com dohad@ cc.bellcore.com

Abstract

S o p a r e reliability is a crucial factor of
pe~ormance of telecommunications network elements
and operational systems. This paper describes the state-
ofpractice sofrware reliability engineering (SRE)
methods that we selected and organized into an SRE
framework for use at Bellcore. This framework comprises
several SRE methods: determination of a reliability
objective for a product, development and use of
operational profiles, reliability modeling and estimation
(prediction) to manage system testing, estimation of the
product's reliability in the field, and subsequent
validation of this estimate using actual field data.
Reliability modeling involves assessment of several
models according to their predictive accuracy and the
use of the most accurate model for reliability estimation.
We have successfully tested this framework on several
pilot projects. As part of these projects, we tested rhe
usefulness of three different reliability modeling tools
(ESlM, CASRE, and SRMP), as well as several different
system test time metrics. This paper describes one of
these pilot projects, involving a large operational system
for networks.

1 Introduction

Software reliability is a crucial factor of performance
of telecommunications network elements and operational
systems. Its importance is recognized within Bellcore, the
regional Bell telephone companies and the supplier
community. It bas also been recognized that good
software reliability engineering (SRE) practices can
substantially enhance network and system reliability.
Although they have generally been applying SRE
methods, developers of telecommunications software are

* Formerly at Bellcore
** Currently a visiting researcher at Bellcore

M. R. Lyu*
AT&T Bell Labs

600 Mountain Avenue Computer Applications
Murray Hill, NJ 07974
lyu@research.att.com jyu@ bellcore.com

J. S. Yu**
Chengdu Institute of

Chengdu, China

interested in finding out whether their methods are
adequate and state-of-the-practice and how they can be
enhanced.

As software reliability engineers, we have been
assisting various software development organizations at
Bellcore by assessing their current SRE methods,
providing recommendations and suport for their
enhancements, and helping the organizations to analyze
the reliability of their products. As part of our efforts, we
selected state-of-the-art SRE methods [l, 21 that would
be most effective as well as practical at Bellcore and
organized them into an SRE framework. This framework
was tested on several pilot projects at Bellcore. This
paper describes this SRE framework and its application
to one of these pilot projects.

2 Software reliability engineering frame-
work

Figure 1 shows the SRE! framework that we proposed
for Bellcore's use and applied to the pilot project
reported in this paper. The elements of this framework
are as follows.

1) Determ ination of a re liahilitv ob jective. A
reliability objective specifies the minimum value of a
product's reliability, expressed in terms of an appropriate
reliability metric (such as failure rate, mean time to
failure [A477F'J, or reliability function), that is considered
to be "acceptable" to the customer. It is to be used as a
benchmark against which the reliability of each product
release is to be assessed.

2) Development of the 0peuLh.d profile . A
product's operational profile quantifies the usage of the
product during field operation: it identifies the operations
performed by the product in the field and their relative
frequencies (probabilities) of occurrence. It is to be used
for guiding system testing: test cases should be developed
and selected with the guidance of the operational profile.
System testing will then resemble the use of the produce

350
1071-9458/95 $4.00 01995 IEEE

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 14:46:41 UTC from IEEE Xplore. Restrictions apply.

mailto:soac.bellcore.com
http://cc.bellcore.com
mailto:lyu@research.att.com
http://bellcore.com

in the field, which should result in faster reliability
improvement and more realistic estimates of field
reliability .

Apply Software

Select Appropriate Software
Reliability Models

Use Software Reliability Models
to Calculate Current Reliability

Figure 1: Software reliability engineering
process overview

3) . . Reliability modeling is to be
used for measuring and estimating (predicting) the
reliability of a software release during testing as well as
in the field. Modeling uses an appropriate statistical
model, which requires appropriate test (or field) failure
data (failure counts or the times of their occurrence).
Several models should be considered and assessed for
their predictive accuracy, in order to select the most
accurate model for reliability estimation. This assessment
should be performed for each product release, since a
different release could have a different “most accurate”
model. Assessment of predictive accuracy should use
state-of-the-practice measures [3], and should consider
factors such as bias, unreal trends, noise, and relative
accuracies of models due to all factors combined. An
appropriate automated modeling tool should be used.

Reliability measurement and estimation should be
performed at intermediate points and at the end of system
test. At intermediate points, reliability calculations will
provide a measure of the product’s reliability growth and
a prediction of the length of additional time required until
the product can be released to customers. At the end of

testing, reliability calculations will enable one to validate
the accuracy of this prediction and will also show the
difference, if any, between the product’s reliability and
the reliability objective.

4) field rehablltv est imation. The product’s
reliability measurement at the end of system test can be
used to estimate its reliability in the field. To do this, one
must know the value of the product’s testing compression
factor (TCF), which provides a connection between the
product’s test and operational phases, as explained in
Section 4.3.

5)field rellilllllw v- . . This involves
comparison of the predicted field reliability of the
product with the actual reliability measured from field
failure data. This validation not only establishes
benchmarks and accuracies for the reliability estimates,
but also provides feedback to the SRE process improve-
ment and better parameter tuning. For example, it can
help us establish model validity, determine reliability
growth, refine the testing compression factor (if
required), etc.

. . .

. . .

3 Project characteristics

The SRE methods were tested on several pilot
projects. The pilot project for which we are reporting the
results in this paper is a key telecommunication software
system ffor daily telephone operations. This system has
been in existence for over 10 years and has gone through
a number of releases. It is deployed by the regional Bell
telephone companfes, usually at multiple sites, with
multiple machines running the software per site. It must
interact, through a series of complex, automatic
interactions, with several other large-scale telecommuni-
cations systems. It has human users as well: service order
representatives and system administrators. The whole
system includes about one million lines of C source code,
but the main application is composed of 700K lines of
code.

During field operation, system failures are classified
by the customer according to severity into one of four
severity classes (critical, high, medium and low) and
reported to the Bellcore development organization.
There, the failure data is entered into a database. The
failures are then investigated and the software defects
responsible for them identified and repaired. The
Bellcore development orgaraimtion also keeps track of
the number of machines operating the system in the field
(there are a number of sites and one or more machines
per site11 and when the machines came on line with each
system release. From this data it is possible to determine
for each release the cumulative calendar time of field

35 I

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 14:46:41 UTC from IEEE Xplore. Restrictions apply.

operation over all machines (cumulative machine
months).

The test process for this system is mature and stable
across releases. Although it can vary somewhat between
releases, typically system testing involves 15 testers over
a period of about a dozen weeks. Much of the testing
environment, including regression testing, is automated.
A number of test metrics are collected automatically.
Test failure and related software fault data is collected in
an intemal problem tracking system. Test failures are
classified by severity.

We initiated the pilot study just before one of the
latest releases of this system (containing about 250K of
new and changed lines of code) was scheduled to start
system testing. We were therefore able to introduce test
data collection enhancements, measure this release’s
reliability during system testing, and track its
improvement. After this release was deployed in the
field, we were able to obtain data about its field failures.
We also had test and field failure data for two prior
releases that were already deployed in the field. All this
information was used to investigate the feasibility and
practicality of the SRE methods in the SFS framework
we had proposed.

Methods, models, tools and data collection

We used the following reliability methods, models,
tools and methods of data collection.

4.1 Operational profile development

An operational profile describes how users employ a
product (or system): it identifies all the tasks (i.e., the
smallest units of work performed by the sytem) that can
be initiated by external intervention (by a human user or
operator or by another system), together with the
probability of occurrence of each task in the system’s
operational environment. Such tasks correspond to
computer or software runs. In an operational profile, runs
are generally grouped into operations, which are
groupings of runs that correspond to similar “work”
performed by the system and that utilize similar software.
An example of an operation in the case of a local
telephone switching system would be a local two-party
telephone call. A run belonging to this operation would
be a specific local two-party call.

We adopted the method for developing operational
profiles described by Musa [2, 41 (although other
methods exist, we did not test them). This method has
shown itself so far to be flexible and adaptable to a
variety of software projects we have worked with. We

have been able to apply it to projects where software
operations are statistically independent as well as to
projects where operations are arranged in highly
correlated sequences that must be represented by
operational scenarios [2]. When developing an
operational profile, we utilize a variety of intemal experts
who have knowledge relevant to the operational profile.
We have found it particularly useful to utilize Bellcore
engineers who had worked at one time in a telephone
company and are familiar with the environment and
application of the product in the field. For some projects
it has also been possible to collect data from the users in
the field by means of a questionnaire or interviews of the
users.

4.2 Reliability modeling tools

We did not invent new reliability models or software
tools but adapted and tested, for Bellcore applications,
models and tools that are published in the technical
literature or are available on the market. About half a
dozen computerized tools are currently available. We
tested three of these computerized tools: the Economic
Stop Test Model (ESTM), Computer-Aided Software
Reliability Estimation (CASRE), and Software Reliability
Modelling Programs (SRMP).

The ESTM tool [5] is primarily an economic model
to help managers decide when to stop testing a software
product and release it to customers [6]. This model is
based on a trade-off between competing sets of costs
experienced by a development organization. On the one
hand, there is the cost of performing system test and
repairing the software faults detected as failures during
testing. This cost is proportional to the testing effort
(number of testers involved and the length of testing) and
to the number of software faults repaired. On the other
hand, there is the cost of diagnosing the software failures
encountered in the field and repairing the software
defects responsible for those failures. This cost is
proportional to the number of expected field failures,
which in turn is proportional to the expected number of
software faults not removed during system testing. ESTM
calculates the cumulative net benefit (net cost savings
accrued) as a function of test time (e.g., tester-hours),
from which the most economical test time can be
determined. To perfonn its calculations, ESTM needs to
estimate the expected number of software faults as a
function of test time. ESTM uses the Goel-Okumoto
Model (GO) for this purpose [7].

The CASRE tool [8, 91 calculates a product’s
reliability and represents it in terms of several measures
(reliability function, expected number of failures, failure
intensity, etc.) as functions of time. They can be used the

52

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 14:46:41 UTC from IEEE Xplore. Restrictions apply.

to study reliability improvement during a product’s
testing or opeiational phase. CAS= permits an analyst
to estimate a product’s reliability using a number of
reliability models and, furthermore, to determine which
reliability model possesses the best predictive accuracy
for the available test (or operational) data. CASRE
calculates four statistical measures for analyzing the
predictive accuracy of models: relative accuracy, bias,
bias trend and noise [lo]. The first three of these are
measured using prequential likelihood, u-plot, and y-plot,
respectively, iirst introduced into SRE by Littlewood
[ll]. We found these measures useful, for they enable us
not only to select the relatively best reliability model, but
also to determine whether or not this model was
sufficiently accurate for the failure data being analyzed
and to assess the type and seriousness of the inaccuracies
present.

CASRE incorporates a library of twelve reliability
models. These models, listed in Table 1, have been
adopted from the SMEWS (Statistical Modeling and
Estimation of Reliability Functions for Software) tool
[12, 131 and axe categorized into two classes based on
their input data: Time-Between-Failures (TBF) models
that take the sequence of time between failures as input
data, and Failure-Count (FC) models that take number of
failures per time interval as input data. CASRE also
incorporates methods for converting TBF input data into
FC data (by clata grouping) and FC data into TBF data
(by randomly distributing failures, using a uniform
probability distxibution, across the time interval to which
they belong, or by uniformly distributing the failures
across the time interval). As a result, either class of
models can be iused to analyze failure data. According to
[14], conversion of FC data into TBF data by randomly
distributing failures should result in small errors. We
verified this on, some of our test failure data: we found
the differences in the calculated reliability measures to be
less than five percent.

The SRMlP tool [l l , 151 is based on the same
philosophy as CASRlE and uses the same four statistical
measures of predictive accuracy, which are referred to in
SRMP as prequential likelihood [16], u-plot, y-plot and
sum of deviance. SRMP differs from CAS= mainly in
its user interface, inputs, measures of reliability, and
many model implementations in its model library. For
example, it cm only take TBF input data [U]; FC data
must therefore be converted into TBF data. SRMP’s
model library contains the nine reliability models listed
in Table 1.

4.3 Testing compression factor

Testing compression factor (TCF) is defined as “the
ratio of execution time required in the Operational phase
to execution time required in the test phase to cover the
input space of the program” [14]. It provides a
connection between the reliability of the product during
system testing and during field operation, for according
to [14]: “...the failure times obtained in test can be used
to estimate test phase failure intensities.. .These failure
intensities should then be divided by the testing
compression factor C to obtain the corresponding failure
intensities to be expected in operation.” This connection
can be used to predict a product release’s reliability in
the field from its reliability measured during system
testing. This approach is expected to provide realistic
predictions from the vantage point of the customer only if
system testing is performed according to the release’s
operational profile.

To use this approach, the value of TCF must be
known. This value can be calculated from the release’s
operational profile, together with information on the run
times of all the types of runs that can be initiated from
the product release’s input space [14]. This information is
frequently unavailable or difficult to obtain, however,
and the calculation of TCF difficult, even when this
information is available. Another, and often simpler,
method of calculating TCF is to take the ratio of the
failure rate (intensity) at the end of system test to the
failure rate at the start of field operation, and this is the
method we have been using on our projects.

To use this second method, however, the values of
the failure rate at the end of system test and at the start of
field operation must be available. The TCF calculation
can therefore be performed only for a product release that
has already been deployed in the field, for which the
reliability in the field can be measured. If one wishes to
predict the field reliability of a new product release that
has just completed system testing, one may have to use
the TCF value calculated for previous releases of the
same product, assuming that the TCF value remains
approximately constant across the releases, including the
new release. This should be the case if the changes in the
operational profile between releases, as well as the run
times of the software run types, are such that they do not
have a significant effect on the value of TCF. We
investigated this issue for each project that involved the
calculation of TCF. As a verification of the constancy of
TCF across releases, we calculated a value of TCF for
severad earlier releases and compared their values. These
values were considered to be approximately constant if
they did not differ by more than 20 percent from each
other,

353

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 14:46:41 UTC from IEEE Xplore. Restrictions apply.

4.4 Reliability objective

For the pilot project reported here, the customers had
not specified a quantified reliability objective for the
product. The software development organization had,
therefore, to determine one. It was decided to express this
objective as a failure rate, as this was the reliability
metric that had the most intuitive appeal to the testing
organization. To make any business sense, the reliability
objective had to be such that all the customers would
consider it acceptable.

CASRE Models

D F Models:
Geometric Model (GEO)
Jelinski-Moranda Model (JM)
Littlewood-Venal1 Model (LV)
Musa Basic Model (MB)
Musa-Ohmoto Model (MO)
Nonhomogeneous Poisson
Process Model for TBF

(NHPP-TBF)

FC Models:
Brooks and Motley Binomial

Brooks and Motley Poisson

Generalized Poisson Model (GP)
Nonhomogeneous Poisson Process

Model for FC (NHPP-FC)
Schneidewind Model (SM)
Yamada S-shaped Model (YM)

Model @MB)

Model (BMF’)

‘able 1: List of the relii

SRMP Models

JM Model (same as that in

Bayesian Jelinski-Moranda
Model (BJM)

Goel-Okumoto Model (GO)
(same as that in ESTM)

MO Model
(same as that in CASRE)

CASRE)

Duane Model @U)
Littlewood Model (LM)
Littlewood Non-Homogeneous

Poisson Process Model

(L”
LV Model (same as that in

Keiller-Littlewood Model (KL)
C A S E)

dity models contained
in the CASRE, SRMP, and ESTM model libraries

Since the product has been deployed in the field for a
number of years, has gone through a number of releases,
and was being supported by the development
organization when deployed in the field, there was
considerable amount of information on the product’s
performance in the field: field failures reported by the
customers, as well as opinions expressed by the
customers to the development organization as to which
releases they regarded as “good” and which as “bad.” In
addition, the product development personnel had
information about their own perception of the quality of
the different releases: they were able to identify which
releases had required a large amount of maintenance
effort after deployment in the field and which releases

did not. We used this information to develop a reliability
objective for the pilot project.

We selected one of the releases of the product and
used its failure rate in the field as the reliability objective
for the product in the pilot study reported here. This
release was required to have the following characteris-
tics. It had been deployed in the field for a sufficiently
long period of time and at many sites and was, therefore,
able to provide a good measurement of its field failure
rate. The customers, as well as developers, considered
this release to be of good quality. This release was a
“major” one: it incorporated new product features and
new lines of code, in addition to correcting problems
detected in the field in earlier releases. Test data was
available that allowed us to calculate the failure rate
during system testing and the TCF value for this release.
This TCF value was approximately equal to the value to
be used for predicting the field failure of a new release.

4.5 Failure data collection

To measure the reliability in the field for the pilot
project, we used the field data stored in Bellcore’s
databases. Because of the limitations of this data, it was
only possible to calculate an “average” failure rate of
each product release in the field. A decrease of the field
failure rate with operating time could not be measured
even though the product was maintained during field
operations and included repair of serious defects.
Furthermore, the only time metric available for these
calculations was cumulative calendar time over all the
machines running the software in the field (machine-
months). We explored the possibility of enhancing the
field data collection procedure to allow the collection of
more precise software usage time data, but found it to be
not feasible at the present time: a new data collection
procedure would interfere with the customers’ operations
and would require a costly development effort.

To measure the reliability during system testing, we
needed a more accurate approximation to the actual
software usage time (CPU or execution time) than was
provided by calendar time, which was already being
collected automatically on the pilot project. For calendar
time had shown itself an inaccurate software usage time
metric during system testing of other projects we had
investigated. Calendar time had included not only the
time testers spent on product testing but also the time
testers spent on activities unrelated to testing (such as
staff meetings and sick leave). As a result, the SRE
modeling methods could be unable to detect any
reliability growth during testing, even though other
evidence indicated its presence. To amend this situation,
we enhanced the data collection for the pilot project by

354

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 14:46:41 UTC from IEEE Xplore. Restrictions apply.

developing a simple manual data sheet to collect both
failure counts and staff time (hours spent testing) for each
tester on a daily basis.

Staff time did not account for all the software usage
time, however, because regression time was automated.
We accounted for this additional software usage time by
multiplying the staff time by a constant (greater than 1).
It was necessary to do this because the additional
software usage time was not being captured, with
sufficient accuracy for reliability modeling purposes, by
the automated data collection system. An analysis of the
available data showed, nevertheless, that this additional
software usage time was proportional to the staff time, to
a good approximation, and this proportionality factor
could be estimated. The total software usage time,
combining staff time and automated test time, was called
staff-execution Eime.

Even though the manual data sheet for collecting
staff time data was simple, the testers considered it
burdensome and preferred a totally automated software
usage time collection system. We investigated therefore
other possible metrics for usage time as well, to see if
they could measure reliability growth during testing as
well as staff-execution time could. These additional test
time metrics were number of messages received (which
measured the number of transactions), number of all
tests, number of unique tests, number of tests run for the
first time during testing, and calendar time.

All these test time data, as well as test failure data,
were collected on a daily basis and were, as a result, in a
failures-per-time-interval format. To analyze them with
the TBF reliability models of the CASRE tool or with the
SRMP tool, we used random numbers to prepare time-
between-failures input data for these tools.

5 Pilot project results

The pilot project reported here (as well as other pilot
projects) was supposed to answer a number of questions
about practical feasibility of the SRE methods for
reliability management of actual projects.

5.1 System testing and operational profile

We reviewed the system testing procedures for the
pilot project. Though developed before a formally
documented operational profile became available, these
procedures did emulate the use of the product in the field
and were comlstent with the operational profile. This was
due to the fact that they had been developed under the
guidance and supervision of the product’s lead tester who
was very experienced and had good understandmg of
how the product was used by the customers.

Statistical sampling procedures were not formally
used for selecting tests and test sequences. Rather, tests
were executed so that system features and operations
were selected “deterministically,” proportional to the
frequency of their occurrence in the field. Occasionally, a
test was performed earlier than it should have been
according to the operational profile, however, in order to
minimize frequent changes in test setup, so that tests with
the same or similar test setup could be run together.
Individual runs within operations were selected more or
less randomly. Repetitions of tests were restricted
limited repetitions were primarily used for regression
testing, and to verify and diagnose a test failure. There
was very little code chum during testing, as system
testers usually had all the code at the statt of testing.

5.2 Reliability growth during system test

We knew that there must be a tendency for reliability
growth because test failures were being repaired during
testing and the testers and developers on this project were
experienced and efficient. The issue was whether the
SRE methods would be capable of detecting and
measuring it, and if so, which automatically collected test
time metrics were able to do this as well as the staff-
execution time metric.

We were able to detect reliability growth with the
SRE methods. Figure 2 shows a plot of the failure rate
(intensity) as a function of test time for the pilot project,
calculated by CASRE using three reliability models. (The
purpose of this plot was just to exhibit reliability growth
with test time, and not to analyze fluctuations in real-
world data or calculate variance.) Expressing this result
in another and more compact and convenient way, we
defined a Reliability Growth Factor (RGF) as the ratio of
the initial failure rate to the final failure rate, at the start
and end of test, respectively (or as the ratio of the final
MTTlF to the initial MTTF). The larger the value of the
RGF, the greater the reliability growth measured by a test
time metric (and vice versa). Table 2 shows the RGF
values for the different test time metrics for the pilot
project. These values were calculated using the reliability
model that was identified as the most accurate
individually for each time metric.

Table 2 shows high RGF values for all test time
metrics except the number of tests run for the first time
metric. Apparently the number of tests run for the first
time imetric was not a good test time metric for tracking
reliability growth for this pilot project (it could, however,
be different for some other project with reliability
growth, where the number of tests run fop. the first time
metric could conceivably show a high RGF value). All
the other time metrics show approximately comparable

355

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 14:46:41 UTC from IEEE Xplore. Restrictions apply.

RGF values, similar to the RGF value for the staff-
execution time metric. All the test time metrics, with the
exception of number of tests run for the first time, can
therefore be used to track reliability growth for the pilot
project.

Somewhat surprising to us was the performance of
the calendar time metric for the pilot project, as it was
able to track significant reliability growth, especially
since the calendar time metric did not perform well on
other software development projects we had investigated.
It appears that in the case of the pilot project we are
dealing with a mature and stable test process containing a
significant amount of automation. Also, the testing effort
was expended on a fairly uniform basis throughout the
entire test period, as indicated by an analysis of the test
data collected. This very likely accounted for the good
performance of the calendar time metric on the pilot
project.

of the pilot project and was therefore the metric preferred
by the test group.

Test Tlw&b&k Em
calendar time 6.522
staff-execution time 4.665
number of messages 5.453

received
number of all tests 4.348
number of unique tests 5.805
number of tests run for 1.573

the f i s t time
Table 2: RGF values for different
test time metrics

5.3 Reliability model selection and estimation

+ +

+ +

Figure 2: Failure rate as a function of test time
for the pilot project, calculated by CASRE

Most (though not all) of our subsequent effort was
concentrated on the use of staff-execution time and
messages received as test time metrics. Staff-execution
time had shown itself to be a good test time metric on all
other projects, whereas the other metrics either were not
applicable to other projects or did not track reliability
growth well. Messages received was collected
automatically and relatively easily during system testing

We found the ESTM tool capable of providing
guidelines on when-to-stop-testing, as well as of
exhibiting reliability growth of the product during
testing. Figure 3 illustrates the net benefits of testing
(explained in section 4.2) as a function of test time
measured in terms of the messages received metric.. The
graph can be used to determine the range of test time
when the net benefits are positive, as well as the length of
test time when the benefits reach their maximum value.
Figure 4 shows cumulative number of faults found as a
function of test time, calculated from the reliability
model used by ESTM. The model tracks the actual fault
data reasonably well. It also has a continuously
decreasing slope, which corresponds to a decreasing
failure rate during testing.

0 let05 2e+05 3e45 4et05
Messages Received

Figure 3: Net benefit of testing as a function of
test time (measured in terms of messages
received), calculated by ESTM

356

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 14:46:41 UTC from IEEE Xplore. Restrictions apply.

J;r , , , (1
0 ' -

1 et05 2e+05 3045 4 ~ 0 5 0
Messages Received

Figure 4: Cumulative number of software faults
discovered during testing as a function of test
time (measured in terms of messages received),
calculated by ESTM

U-plot Kolmogorov

Bias at significance level:

Trends at significance

* The SR model's rank order for this measure

GO MO

360.563 359.932
(6) (5)

0.1162 0.1160
(5) (4)

No No
No No
No No
No No

0.1244 0.1275
(4) (5)

No No
No No
No No * 46.273

0.01867 0.02185 I-

For the other two tools, CASRE and SRMP, the
questions posed were: Can either or both tools be readily
used to identify the most accurate reliability model for a
product release undergoing system testing and calculate
the release's reliability? Can this be performed
repeatedly at various stages of system testing when
enough1 test data is available to perform the calculations?
And cm this be performed for various test time metrics?
We found this to be the case for both CASRE and SRMP.
Although we discuss this here for the pilot project, we
found CASRE and SRMP to be equally applicable to
other projects as well. For example, Table 3 presents the
results for the pilot project, calculated by the SRMP tool
at the end of system test, using the staff-execution time
metric.

--
358.660

0.1044
L

(2)

No
No
No
No

0.1424
(8)

No
No
Yes
Yes

NIA
--

26.110

0.02658
-~

No
No
Yes
Yes

0.1309
(6)

No
No
No * 55.836 46.768 53.410

-t-l- 38.702 24.110 21.678

0.01791 0.03243 0.03839 T I
** Not Applicable (not mathematically defined for this SR model)

Table 3: Summary test reliability results at the end of test for the pilot project, obtained from SRMP
computer runs using staff-execution time metric

351

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 14:46:41 UTC from IEEE Xplore. Restrictions apply.

Table 3 shows the reliability models analyzed (JM,
BJM, etc.) in the first row. It then shows, for each model,
three statistical measures to be used for assessing the
model’s predictive accuracy - prequential likelihood
(presented as the negative of its natural logarithm) and u-
plot and y-plot Kolmogorov-Smirnov statistics. This is
followed by three measures of estimated product
reliability at the end of system test.

We used all the statistical measures when assessing a
model’s predictive accuracy. In Table 3, for example, the
smaller a model’s absolute value of the logarithm of the
prequential likelihood the better the model’s predictive
accuracy. Accordingly, the LV and KL models should be
the most accurate (although the KL model’s prequential
likelihood value is slightly higher, this small difference
could be due to data noise and numerical rounding in the
calculations and should not be considered significant).

The prequential likelihood values are not the whole
story, however. They only indicate which among the
models are the relatively “best.” They do not show us
whether any of the models, even the best one, is
sufficiently accurate and what types of inaccuracies it
contains, for prequential likelihood measures a model’s
inaccuracy due to all causes combined. This has to be
assessed by considering the other measures of predictive
accuracy - the u-plot and y-plot Kolmogorov-Smirnov
statistics (goodness-of-fit meaures) in Table 3, which test
the presence or absence of bias and unreal trends in each
model. It is up to the analyst to decide what statistical
risk, measured by the significance level in Table 3, to
assume when using the SRMP results for the u-plot and
y-plot. The significance level indicates the probability of
making the wrong decision: the data indicate a poor fit
between the model and the data, suggesting the presence
of bias or bias trends, when in reality this is not the case.
In Table 3 we use several values for the significance
level (0.01, 0.05, 0.10 and 0.20) and indicate the
presence of bias or bias trends by a “Yes.”

In Table 3, the LV and KL models, which were
previously shown to be the relatively best by the
prequential likelihood, are now shown as well to have
neither bias nor bias trends at the significance levels
selected. Considering the measures of predictive
accuracy shown in Table 3, the LV and KL models
appear to be sufficiently accurate for the reliability
calculations on the pilot project. None of the other six
models appear to be as accurate: they either show some
evidence of bias or bias trends.

Similar results were obtained with SRMP for other
test time metrics. For example, using the number of
messages received time metric, the LV and KL models
were the most accurate: they had the best relative

I Product Release

Release 1
Release 2 I Average value

accuracies as measured by the prequential likelihood and
showed no statistical evidence of bias or bias trends.

Also, the SRMP results were generally consistent
with the CAS= results, even though CASRE and SRMP
use a number of reliability models that are different
between the two tools. For example, Table 4 shows the
rank order of the six TBF models used by CASRE for the
different test time metrics. The LV model is the “best”
overall model. As a result, this model was used for
calculating reliability estimates for the pilot project.

Value of TCF Difference from
average value (%’

30.140 -2.3
31.534 +2.3
30.837 _ _ _ _ _ _

N H p p I GEO JM LV MB I
calendar time
staff-exec. time
all tests
unique tests
first-time tests
messages rec.
Sum of Rank
Total Rank

Table 4: Overall comparison of CASRE’s TBF
models

Table 5: Testing compression factor (TCF)
values for the pilot project

5.4 Testing compression factor and prediction of
field reliability

Only two previous releases of the product were used
for the calculation of the testing compression factor
Table 5 shows the calculated TCF values. These values
are almost identical. There was no evidence from the
operational profile that these values should be different
or that they are inapplicable to a new release of the
product. These TCF values were used to predict an
average value of the failure rate of the new Release 3 in
the field, and this prediction was later compared with the
measured value of the field failure rate when field failure
data for Release 3 became available. Table 6 shows the
results. We see excellent agreement between the
predicted and actual values.

35 8

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 14:46:41 UTC from IEEE Xplore. Restrictions apply.

(failures per
machine-month)

Release 3 is
calculated

on TCF value for
Release 1

on TCF value for
Release 2

Actual value of 0.0710
Field Failure Rate !

Difference
between
prediction and -l actual value (%)

t3.0

able 6: Comparison between predicted and
actual field failure values for the pilot project

We were at first surprised that the TCF values in
Table 5 are so large, which indicates that there are, on
average, many more repetitions of the same transaction
types during the running of the product in the field than
during system test. This is attributable to the highly non-
uniform nature of the operational profile for this product.
For example, we found substantially lower values of TCF
(e.g., in the range 6 to 8) for other products with more
uniform operational profiles.

6 Conclusions

The SRE methods discussed in this paper were found
to be successful on all the projects to which we applied
them. We found through experience that they have to be
adapted, to different degrees, to each project and used
judiciously. For example, test time and field operation
time metrics have to be selected carefully. On the one
hand, one would like to use metrics that approximate
software execution time as closely as possible in order to
be able to measure reliability growth during testing as
well as during field operation (if the product is
maintained in the field and at least some of the faults are
repaired). On the other hand, one has to be realistic and
not unduly burden the software testers and especially the
customers with additional time-consuming data
collection effort, substantially beyond the data collection
effort they normally expend when testing and operating
the product. By a judicious balance between the two
requirements, which has to be performed individually on
every project, we have found that it is possible to obtain
useful reliability measurements and estimates and to use
them for rdiabillity management on a project.

References

[l] IEEE, Charter and Organization of the IEEEflCSE
Software Reliability Engineering Committee (SREC), 1995.
[2] M. R. Lyu (ed.), Handbook of Software Reliability

Engineering, McGraw-Hill Book Company and IEEE
Computer Society Press, New York, New York, 1995.

[3] American National Standard, Recommended Practice for
Sojbvare Reliability, ANSUAIAA R-013-1992.

[4] J. D. Musa, "Operational Profiles in Software
Reliability Engineering," IEEE Software, vol.10, no. 2,

[5] S. R. Dalal and C. L. Mallows, "Some Graphical Aids for
Deciding When to Stop Testing Software," IEEE Journal
on Selected Areas in Communications, vol. 8, no. 2, pp,
169-175, February 1990.

[6] S. R. Dalal and C. L. Mallows, "When Should One Stop
Testing Software?", Journal American Statistical
Association, vol. 83, pp. 872-879, 1988.

171 A. L. Goel and K. Okumoto, "Time-Dependent Error-
Detection Rate Model for Software Reliability and Other
Performance Measures," IEEE Transactions on
Reliability, vol. R-28, pp.206-211, 1979.

[8] M. R. Lyu and A. Nikora, "CASRE - A
Aided Software Reliability Estimation Tool, " CASE 92
Proceedings, pp. 264-275, Montreal, Canada, July 1992.

[9] M. R. Lyu, A. Nikora, and W. Farr, "A Systematic and
Comprehensive Tool for Software Reliability Modeling
and Measurement," Proceedings FTCS-23, pp. 648-653,
Toulouse, France, June 1993.

[101 M. R. Lyu and A. Nikora, "Applying Reliability Models
More Effectively," IEEE Software, pp. 43-52, July 1992.

[ll] A. A. Abdel-Ghaly, P. Y. Chan, and B. Littlewood,
"Evaluation of Competing Software Reliability
Predictions," IEEE Transactions on Software Engineering,
Vol. SE-12, No. 9, September 1986, pp. 950-967.

[12] W. H. Farr and 0. D. Smith, "Statistical Modeling and
Estimation of Reliability Functions for Software
(SMERFS) Users Guide," NAVSWC TR 84-373,
Revision 2, December 1991.

[13] W. H. Farr, "A Survey of Software Reliability Modeling
and Estimation," NSWC TR 82-171, September 1983.

[14] J. D. Musa, A. Iannino, K. Okumoto, Software Reliability
- Measurement, Prediction, Application, McGraw-Hill
Book Company, New York, New York, 1987.

[15] User's Manual for the Software Reliability Modelling
Program (SIPMP), developed by Reliability and
Statistical Consultants, Ltd., 5 Jocelyn Road, Richmond,
Surrey l W 9 2TJ, United Kingdom.

Approach," J. Royal Statistics Soc. A, Vol. 147, pp. 278-
292.

pp.14-32, March 1993.

Computer

[16] A. P. Dawid, "Statistical Theory: The Prequential

359

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 14:46:41 UTC from IEEE Xplore. Restrictions apply.

