
ar
X

iv
:2

50
5.

15
17

9v
1

 [
cs

.S
E

]
 2

1
M

ay
 2

02
5

RAG or Fine-tuning? A Comparative Study on LCMs-based Code
Completion in Industry

Chaozheng Wang
Chinese University of Hong Kong

Hong Kong, China
adf111178@gmail.com

Zezhou Yang
Tencent

Guangzhou, China
zezhouyang@tencent.com

Shuzheng Gao
Chinese University of Hong Kong

Hong Kong, China
szgao23@cse.cuhk.edu.hk

Cuiyun Gao∗
Chinese University of Hong Kong

Hong Kong, China
cuiyungao@outlook.com

Ting Peng
Tencent

Guangzhou, China
sakurapeng@tencent.com

Hailiang Huang
Tencent

Guangzhou, China
eraserhuang@tencent.com

Yuetang Deng
Tencent

Guangzhou, China
yuetangdeng@tencent.com

Michael Lyu
Chinese University of Hong Kong

Hong Kong, China
lyu@cse.cuhk.edu.hk

Abstract
Code completion, a crucial practice in industrial settings, helps de-
velopers improve programming efficiency by automatically suggest-
ing code snippets during development.With the emergence of Large
Code Models (LCMs), this field has witnessed significant advance-
ments. Due to the natural differences between open-source and
industrial codebases, such as coding patterns and unique internal
dependencies, it is a common practice for developers to conduct do-
main adaptation when adopting LCMs in industry. There exist mul-
tiple adaptation approaches, amongwhich retrieval-augmented gen-
eration (RAG) and fine-tuning are the two most popular paradigms.
However, no prior research has explored the trade-off of the two
approaches in industrial scenarios.

Tomitigate the gap, we comprehensively compare the two paradigms
including Retrieval-Augmented Generation (RAG) and Fine-tuning
(FT), for industrial code completion in this paper. In collaboration
with Tencent’s WXG department, we collect over 160,000 inter-
nal C++ files as our codebase. We then compare the two types of
adaptation approaches from three dimensions that are concerned
by industrial practitioners, including effectiveness, efficiency, and
parameter sensitivity, using six LCMs. Our findings reveal that
RAG, when implemented with appropriate embedding models that
map code snippets into dense vector representations, can achieve
higher accuracy than fine-tuning alone. Specifically, BM25 presents
superior retrieval effectiveness and efficiency among studied RAG
methods. Moreover, RAG and fine-tuning are orthogonal and their
combination leads to further improvement. We also observe that

∗Cuiyun Gao is the corresponding author.

This work is licensed under a Creative Commons Attribution 4.0 International License.
FSE Companion ’25, June 23–28, 2025, Trondheim, Norway
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1276-0/2025/06
https://doi.org/10.1145/3696630.3728535

RAG demonstrates better scalability than FT, showing more sus-
tained performance gains with larger scales of codebase. Our find-
ings provide actionable guidance for choosing and implementing
appropriate methods to adopt LCMs based on specific industrial
scenarios and requirements.

CCS Concepts
• Software and its engineering→ Software development tech-
niques;

Keywords
Large Code Models, Retrieval Augmented Generation, Fine-Tuning

ACM Reference Format:
Chaozheng Wang, Zezhou Yang, Shuzheng Gao, Cuiyun Gao, Ting Peng,
Hailiang Huang, Yuetang Deng, andMichael Lyu. 2025. RAG or Fine-tuning?
A Comparative Study on LCMs-based Code Completion in Industry. In 33rd
ACM International Conference on the Foundations of Software Engineering
(FSE Companion ’25), June 23–28, 2025, Trondheim, Norway. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3696630.3728535

1 Introduction
Code completion stands as a fundamental and critical task in code
intelligence, aiming to predict subsequent code tokens or state-
ments that developers intend to write. By anticipating developers’
coding intentions, code completion remarkably enhances program-
ming productivity and has become an indispensable feature in
modern Integrated Development Environments (IDEs) [5]. The
advent of Large Language Models (LLMs) [2] has led to the emer-
gence of Large Code Models (LCMs) [16, 18], which bring sub-
stantial improvements to code completion performance [18]. This
advancement has catalyzed the development of multiple commer-
cial tools [5, 6], offering personalized code completion services.

Despite LCMs’ impressive performance in general development
scenarios such as utility scripts and application development, their
effectiveness substantially deteriorates when applied to industrial
proprietary codebases [1]. This performance gap arises from the

https://orcid.org/0000-0002-3935-7328
https://orcid.org/0009-0008-9092-3381
https://orcid.org/0000-0002-8102-480X
https://orcid.org/0000-0001-8513-6836
https://orcid.org/0009-0003-6970-0857
https://orcid.org/0009-0004-0655-9398
https://orcid.org/0009-0003-7060-4109
https://orcid.org/0000-0002-3666-5798
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3696630.3728535
https://doi.org/10.1145/3696630.3728535
https://arxiv.org/abs/2505.15179v1

FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Wang et al.

inherent complexity and massive scale of industrial code, which
often undergoes extensive business-specific implementation. For
instance, our industrial partner Tencent WXG operates WeChat,
China’s largest instant messaging platform with over one billion
monthly active users. Beyond basic communication services, the
platform supports a rich ecosystem of features including social
networking (Moments) and short-form videos. To accommodate
this massive user base and diverse functionality demands, WXG has
developed an extensive and sophisticated backend infrastructure
with unique architectural patterns and optimizations. These spe-
cialized implementations significantly deviate from conventional
open-source solutions, creating a substantial distributional shift
between industrial code patterns and the open-source training data
used by LCMs. Moreover, the sensitive nature of proprietary code
and associated privacy concerns preclude the direct utilization of
commercial code completion solutions, even those with superior
capabilities, necessitating alternative approaches for industrial code
completion.

Given the distribution gap between industrial and open-source
codebase, two predominant approaches have emerged to adapt
LCMs to new domains: Retrieval-Augmented Generation (RAG) [38,
64] and fine-tuning (FT) [27, 62]. Specifically, given a novel source
code repository previously unseen by the model, RAG enhances
generation by retrieving relative code snippets from the repository
as prior knowledge. This retrieval-based augmentation manifests
in two forms: (1) prompt-based augmentation [71], where retrieved
similar code segments are prepended to the input query, providing
contextual examples; and (2) logits-based augmentation [24, 55],
where the distribution of similar usage patterns and outputs serves
as a prior to calibrate the model’s prediction distribution. In con-
trast, FT directly optimizes the model’s parameters on the target
codebase, aiming at aligning the model’s internal distribution with
the domain-specific patterns present in industrial repositories.

While both RAG and FT approaches have demonstrated effec-
tiveness across diverse domains, such as document QA and code
intelligence [27, 38, 63, 64], these studies predominantly focus
on public datasets containing general knowledge. Industrial code-
bases present unique challenges with their complex dependencies,
company-specific patterns, and proprietary frameworks, making
the direct application of existing findings uncertain. The efficacy
of these approaches in such specialized, real-world environments
remains largely unexplored. Existing RAG-based code completion
research [35, 65] has primarily focused on Python and Java code-
bases, where implementations tend to be more concise and less
intricate than C++ systems which are widely used in Tencent WXG
[48, 69]. Moreover, these studies have been conducted on relatively
small-scale open-source repositories, making their findings poten-
tially less applicable to industrial environments. The massive scale
of industrial codebases significantly increases retrieval complexity,
as the search space expands exponentially and the identification
of relevant code snippets becomes more challenging. For instance,
logits-based retrieval methods [55, 73] provide feasible and effective
solutions for small codebases. However, they become prohibitively
expensive when scaling to industrial repositories with hundreds of
thousands of files, as they require storing and searching through
massive logit matrices for each code segment. These distinctive

characteristics of industrial codebases necessitate a thorough inves-
tigation of existing adaptation approaches tailored to these specific
challenges.

In this paper, we conduct a comprehensive empirical study com-
paring RAG and FT approaches for adapting LLMs to industrial
code completion tasks. We use the backend codebase with more
than 160,000 files of Tencent WXG as our experimental testbed,
which contains various business functionalities and represents the
complexity typical of industrial software systems. To systemati-
cally investigate adaptation approaches, we construct a subset of
120,000 C++ files as both the retrieval corpus for RAG and the train-
ing data for FT experiments. For the RAG approaches, we explore
two main categories: (1) similarity-based retrieval [73], which iden-
tifies syntactically or semantically similar code snippets, and (2)
dependency-based retrieval [36], which leverages project-specific
dependency relationships and usage patterns. Our evaluation com-
prehensively compares these RAG variants against FT approaches
across multiple dimensions, including effectiveness, efficiency, and
parameter sensitivity.

Through extensive experiments, our study reveals several key
findings in enhancing LCM-based industrial code completion. RAG
and FT substantially improve LCMs’ performance, with RAG achiev-
ing a higher performance ceiling. Notably, among the evaluated
RAG approaches, BM25 demonstrates superior effectiveness while
maintaining computational efficiency comparing with neural em-
bedding models. The combination of RAG and FT yields further
performance gains, suggesting their complementary nature. Regard-
ing computational costs, FT primarily requires resources during the
preparation stage for model training, while RAG’s overhead mainly
occurs during inference as it needs to retrieve and process rele-
vant code snippets in runtime. Furthermore, we observe that RAG
demonstrates better scalability than FT, showing more sustained
performance gains with larger scales of codebase.

Our key contributions are summarized as follows:
• We present the first comprehensive study of LCM adaptation
approaches on a large-scale proprietary industrial codebase.
Our evaluation reveals the performance limitations of cur-
rent state-of-the-art LCMs when directly applied to indus-
trial code completion tasks, highlighting the necessity for
more effective domain adaptation.

• We conduct extensive experiments comparing RAG and FT
approaches across multiple dimensions, including effective-
ness, efficiency, and data scaling. This systematic evaluation
provides a detailed understanding of the trade-offs between
different adaptation approaches in industrial settings.

• We derive practical insights and guidelines for developers
seeking to adapt LCMs for code completion in proprietary
codebases, offering empirically validated recommendations
for implementing appropriate adaptation approaches.

2 Research Methodology
2.1 Data Preparation
2.1.1 Data Collection and Filtering. We collect a comprehensive
snapshot of our backend C++ codebase from our department’s
repository. To ensure data quality and minimize potential training
artifacts, we apply the following filtering criteria:

RAG or Fine-tuning? A Comparative Study on LCMs-based Code Completion in Industry FSE Companion ’25, June 23–28, 2025, Trondheim, Norway

Table 1: Statistics of our dataset, where the number of tokens are calculated by the tokenizer of DeepSee-Coder.

Split # Files # Tokens # LOC # Instances Avg. Input Token Avg. Target Token

Train 120,000 401M 25.5M - - -
Validation 23,746 69M 3.8M - - -

Test 20,000 63M 3.5M 50,000 246.75 17.01

• Remove duplicate files and auto-generated framework code
(i.e., compilation files) to prevent over-fitting of templated
patterns

• Filter out files containing extensive Chinese comments to
maintain consistency in the training corpus

• Eliminate files with unusually long C++ definitions (# define),
as these rare patterns could potentially lead to catastrophic
repetition in model outputs.

After applying these filtering rules, we obtained a final dataset of
163,746 valid C++ source files.We further processed these files using
ClangD [4] to standardize code formatting, including consistent
indentation and line break rules.

2.1.2 Dataset Splitting. To create a robust evaluation benchmark,
we select 20,000 C++ files from our filtered dataset for generating
input-output pairs. We employ a sliding window approach, where
each input consists of 20 consecutive lines of code, and the target
is the subsequent line. To ensure meaningful evaluation metrics,
we apply additional filtering criteria to the target lines: (1) exclude
instances where the target line contains only a single symbol, and
(2) remove cases where the target line consists solely of comments.

After this process, we randomly sample 50,000 high-quality test
instances, which form our evaluation benchmark for assessing
model performance. The resulting test set covers various code com-
pletion scenarios while maintaining practical relevance to real-
world development tasks.

For the remaining 143,746 source code files, we randomly select
120,000 for building retrieval database and fine-tuning LCMs, and
23,746 for validation. The statistics are shown in Table 1.

2.2 Retrieval Augmented Generation
2.2.1 Retrieval Database Construction. Direct utilization of our
120,000 C++ files for retrieval presents significant challenges. First,
using entire C++ files as retrieval units is impractical due to their
substantial length, with our codebase averaging over 3,300 tokens
per file. Second, files often contain extraneous information that
could potentially interfere with the model’s inference process.

To address these limitations, we decompose the files into fine-
grained retrieval units. Specifically, we employ the Tree-Sitter [57]
to decompose each file into more granular units, specifically ex-
tracting individual functions and classes. We treat C++ files that
either lack function definitions or contain only function declara-
tions as single retrieval units. This decomposition strategy results
in a final retrieval database of 914,667 items, providing a more fo-
cused and manageable collection of code segments. Specifically, we
explore two kinds of RAG methods for code completion including
similarity-based and dependency-based retrieval.

2.2.2 Similarity-Based Retrieval. Given our retrieval database 𝐷
containing 914,667 items, we implement a similarity-based retrieval

mechanism. Let M denote the embedding model. For each item
𝑑𝑖 ∈ 𝐷 , we compute its embedding vector v𝑖 = M(𝑑𝑖). These
embeddings form our vector database 𝑉 = v1, v2, ..., v𝑛 . During
inference, for a given query𝑞, we compute its embedding q = M(𝑞).

The similarity score between the query and each item in the
database is calculated using cosine similarity: sim(𝑞, 𝑑𝑖) = q·v𝑖

|q | |v𝑖 | .
We select the top-𝐾 items with highest similarity scores: 𝑑 (1) ,

𝑑 (2) , ..., 𝑑 (𝐾) , where (𝑖) denotes the index of the 𝑖-th most similar
item. Following the work [12], these 𝐾 items are concatenated
in ascending order of similarity and prepended to the query as
examples. The augmented prompt is then fed to the model for
generation:

prompt = 𝑑 (𝐾) ⊕ 𝑑 (𝐾−1) ⊕ ... ⊕ 𝑑 (1) ⊕ 𝑞 (1)
where ⊕ denotes concatenation.

2.2.3 Dependency-Based Retrieval. Besides similarity-based retrieval,
we also explore a dependency-based retrieval method that lever-
ages function call relationships to provide relevant context for code
completion. Given a code completion query 𝑞, we first extract a
sequence of function calls 𝐶 = [𝑐1, 𝑐2, ..., 𝑐𝑚] using Tree-sitter [57],
a robust parsing framework. For each function call 𝑐𝑖 , we locate
its corresponding function definition 𝑑𝑖 in the retrieval codebase,
resulting in a sequence of function definitions 𝐷 = [𝑑1, 𝑑2, ..., 𝑑𝑚].

The retrieved function definitions are then concatenated and
prepended to the original query 𝑞 to form the augmented prompt:

prompt = 𝑑𝑚 ⊕ 𝑑𝑚−1 ⊕ ... ⊕ 𝑑1 ⊕ 𝑞 (2)
This approach ensures that themodel has access to the implemen-

tation details of the functions being called in the query, providing
context for more accurate code completion. By explicitly including
function definitions, the model can better understand the expected
behavior and usage patterns of the called functions.

2.3 Fine-Tuning
For the fine-tuning approach, we conduct training at the file level
using source code. Following previous work [10, 62, 68], we first
tokenize and concatenate the code text into a continuous sequence
of tokens 𝑡1, 𝑡2, ..., 𝑡𝑛 . Given a context length 𝐿, we segment the
token sequence into non-overlapping blocks:

(𝑡1, ..., 𝑡𝐿), (𝑡𝐿+1, ..., 𝑡2𝐿), ..., (𝑡𝑛−𝐿+1, ..., 𝑡𝑛) (3)
The model is then trained in an autoregressive manner to predict

the next token given all previous tokens in the sequence:

L = −
𝐿−1∑︁
𝑗=1

log 𝑃 (𝑡 𝑗+1 |𝑡1, ..., 𝑡 𝑗) (4)

where L denotes the loss function and 𝑗 means the token index.

FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Wang et al.

3 Experimental Setup
3.1 Selected LCMs
In this paper, we select two kinds of popular and state-of-the-art
LCMs with their versions in different sizes. In specific, our selected
LCMs are:

• DeepSeek-Coder (DSC) [16] is trained from 2T tokens from
scratch, achieving state-of-the-art performance in a variety
of code intelligence tasks. Specifically, we choose DeepSeek-
Coder Base in sizes of 1.3B and 6.7B in this paper.

• Qwen2.5-Coder (QC) [18] is a family of LCMs based on
models of the Qwen2.5 series [72]. Qwen2.5 undergoes four-
stage training with a total number of 5.5T tokens, presenting
state-of-the-art performance in both code generation and
reasoning. We choose 0.5B, 1.5B, 3B, and 7B versions of
Qwen2.5-Coder.

3.2 Evaluation Metrics
Following previous work [40, 44, 58], we select accuracy, edit sim-
ilarity, and BLEU score to evaluate the effectiveness of different
methods.

3.2.1 Exact Match. Exact match (EM) measures the percentage
of predictions that exactly match the ground truth. For code com-
pletion, this is a strict metric that requires the model to generate
exactly the same code line as the target.

3.2.2 Edit Similarity. Edit similarity (ES) measures how close the
predicted code is to the ground truth based on the Levenshtein
distance. It provides a more nuanced evaluation than accuracy by
considering partial matches.

3.2.3 BLEU Score. BLEU (Bilingual EvaluationUnderstudy) score [45]
evaluates the quality of the generated code by comparing the n-
gram overlap between the prediction and the ground truth.

3.3 Embedding Models
Following previous work [12], we utilize the following retrieval
methods for similarity-based RAG:

(1) Random: For each code completion query, we randomly
select 𝐾 items from the retrieval database.

(2) BM25 [52]: A classical information retrieval algorithm that
ranks documents based on term frequency and inverse doc-
ument frequency, treating code snippets as text documents,
and computing relevance scores using keywords. BM25 has
been widely used for code intelligence tasks [9, 11, 74].

(3) CodeBERT [8]: A BERT-based pre-trained model specifi-
cally designed for programming language understanding,
which we use to compute semantic embeddings of code snip-
pets for similarity-based retrieval.

(4) UniXcoder [15]: A unified cross-modal pre-trained model
for programming language, which supports both natural
language and programming language understanding tasks,
serving as our embedding generator for code retrieval.

(5) CodeT5 [66]: An encoder-decoder model pre-trained on
programming languages, which we utilize its encoder to
generate embeddings for measuring code similarity in our
retrieval system.

Table 2: Hyper-parameter settings.

Hyperparameter Value Hyperparameter Value

Optimizer AdamW[19] Warm-up steps 100
Learning rate 5e-6 Training batch size 32
LR scheduler Cosine Scheduler [37] Validation batch size 32
Sequence Len. 4,096 Adam epsilon 1e-8

Max. gradient norm 1.0 Precision BF16

Max Gen. Tokens 512 Top-P 0.95

(6) CoCoSoDa [54]: A contrastive learning-based code search
approach that employs a soft data augmentation and momen-
tum mechanism. It dynamically masks or replaces tokens
with their types for input sequences and uses multimodal
contrastive learning to align code-query pairs.

3.4 Research Questions
In this paper, we aim to answer four research questions.

RQ1: How effective are RAG and fine-tuning approaches
in industrial code completion? We evaluate the performance of
directly applying LCMs to our code completion scenario and assess
the improvements achieved through both RAG and fine-tuning
approaches independently.

RQ2: Can fine-tuning be effectively combined with RAG?
We investigate whether combining fine-tuning with RAG can yield
better performance than either approach alone, and analyze how
fine-tuned models interact with the retrieval mechanism compared
to base models.

RQ3:How efficient are RAG andfine-tuning?We analyze the
computational efficiency of each approach, measuring training and
inference times, memory usage, and other resource requirements
to understand their practical implications in industrial settings.

RQ4: How do key parameters affect the performance of
RAG and fine-tuning approaches? We conduct parameter sensi-
tivity analysis from two aspects: (1) the impact of retrieved context
size (Top-k) in RAG methods on model performance, and (2) the
relationship between codebase scale and model effectiveness.

3.5 Implementation Details
In the RAG framework, we implement two distinct retrieval strate-
gies. For similarity-based retrieval, we leverage the BM25S library
to construct and maintain a lexical-based retrieval database, while
utilizing the Qdrant [49] service to establish a vector-based re-
trieval system. For dependency-based retrieval, we first employ
Tantivy [56] to construct a mapping mechanism that links function
names to their corresponding definitions. Subsequently, we utilize
Tree-sitter [57] to analyze the code structure and extract function
call dependencies, enabling us to retrieve the relevant function
definitions based on the identified function names.

All the experiments are run on a server with Intel 8374C CPU and
8*A100 GPUs with 80GB of graphic memory. The hyper-parameter
setting of the tuning procedure is listed in Table 2 following previ-
ous work. We enable the gradient checkpointing technique [3] for
LCMs to reduce the GPU memory consumption.

For fast inference, we utilize vLLM [26] based on PagedAtten-
tion to improve efficiency. To eliminate the influence of random
sampling, we utilize greedy decoding strategy during inference. In

RAG or Fine-tuning? A Comparative Study on LCMs-based Code Completion in Industry FSE Companion ’25, June 23–28, 2025, Trondheim, Norway

addition, we employ the Flash-Attention technique [7] for long-
context optimization.

4 Experiment Results
4.1 RQ1: Effectiveness of RAG and Fine-Tuning
In this section, we present the performance of LCMs in our indus-
trial code completion task in Table 3. From the results, we can reach
the following observations.

LCMs demonstrate suboptimal performance on our in-
dustrial code completion task. Among the six evaluated models,
even the best-performing Qwen2.5-Coder 7B achieves only approxi-
mately 28% EM and 44% BLEU score. These relatively lowmetrics in-
dicate that these models struggle with our complex, domain-specific
codebase that differs substantially from their training distribution.
Furthermore, we observe a clear correlation betweenmodel size and
completion performance. As the parameter count increases, models
demonstrate better capability in capturing code patterns, leading to
better task performance. This suggests that while the domain gap
poses a notable challenge, larger models’ enhanced capacity allows
them better to generalize their learned programming patterns to
unfamiliar domains.

Both RAG and fine-tuning demonstrate effectiveness in en-
hancing model performance on industrial code completion
tasks. For RAG methods, our experiments show that similarity-
based retrieval (RAG𝑠𝑖𝑚) yields substantial improvements in com-
pletion accuracy. Specifically, when using different embedding
methods for retrieval, the model’s EM increases by 68.0%, 70.8%,
and 98.3% for UniXcoder, CodeT5, and CoCoSoDa, respectively. Sur-
prisingly, the simple BM25 method achieves the best performance
among all RAG approaches, outperforming the second-best method
CoCoSoDa by 9.3% in EM. The results suggest that in C++ code
retrieval, lexical matching might be more effective than semantic
matching through neural embeddings. This could be attributed to
C++’s strict syntax and the prevalence of domain-specific identi-
fiers, where exact keyword matches might be more indicative of
relevance than contextual similarities captured by neural models.
Moreover, we observe that RAG with CodeBERT embeddings per-
forms poorly, showing similar results with random retrieval and
even leading to slight performance degradation. This finding under-
scores the critical dependence of similarity-based RAG on retrieval
accuracy - when the embedding model fails to effectively capture
code similarities (as in the case of CodeBERT), it may adversely
affect the code completion performance.

For dependency-based retrieval RAG𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦 , we observe
modest improvements of 8.9% in EM compared to the base model.
Such gains are substantially smaller than those achieved by similarity-
based retrieval, suggesting that retrieving similar implementations
is more beneficial than retrieving function dependencies for line-
level code completion tasks.

Fine-tuning also demonstrates notable improvements in model
performance. Specifically, after fine-tuning, the models show aver-
age improvements of 78.3%, 21.3%, and 44.6% in exact match, edit
similarity, and BLEU score respectively. However, we observe that
the overall performance of fine-tuned models, while substantial,
does not match the upper bound achieved by RAG𝑠𝑖𝑚-BM25 and
RAG𝑠𝑖𝑚-CoCoSoDa. Nevertheless, fine-tuning does outperform

RAG𝑠𝑖𝑚 variants using other embedding models, positioning it as
a competitive adaptation strategy. This comparison suggests that
while fine-tuning offers consistent improvements, the quality of
retrieved examples in RAG approaches can potentially lead to supe-
rior performance when optimal embedding models are employed.

Finding 1:Our evaluation of LCMs on industrial code completion
reveals that LCMs demonstrate limited effectiveness on industrial
code completion, indicating a substantial domain gap. In addition,
both RAG and fine-tuning substantially improve performance in
all evaluation metrics. RAG approaches achieve a higher perfor-
mance ceiling compared to fine-tuning, with BM25 emerging as
the most effective method compared to neural embedding models.

4.2 RQ2: Combining RAG and Fine-Tuning
To investigate whether fine-tuning can be effectively combinedwith
RAG, we conduct experiments using different retrieval methods on
fine-tuned and base models. The results are shown in Table 4. Note
that the following experiments we focus on RAG𝑠𝑖𝑚 due to their
superior performance.

Our experiments demonstrate that combining fine-tuning with
RAG consistently yields better performance across all retrieval
methods. For instance, using BM25 as the retrieval method, fine-
tunedmodels with RAG achieve improvements of 3.67, 2.48, and 4.21
absolute percentage points in EM, ES, and BLEU scores respectively,
compared to base models with RAG. This performance boost is
even more pronounced with other retrieval methods. Overall, the
average improvements on the three metrics reach 7.79, 5.27, and
7.91, respectively.

These consistent improvements across different retrieval meth-
ods suggest that fine-tuning and RAG complement each other effec-
tively. The domain adaptation achieved through fine-tuning appears
to enhance the model’s ability to better utilize retrieved contexts, re-
sulting in superior performance compared to using either approach
independently.

Finding 2: Combining fine-tuning and RAG creates synergis-
tic effects in improving code completion performance. When
used together, these approaches consistently outperform their
individual applications, with average improvements of 7.79%,
5.27%, and 7.91% in exact match, edit similarity, and BLEU scores
respectively.

4.3 RQ3: Efficiency of RAG and Fine-Tuning
According to previouswork [59], code completion is a time-sensitive
task, leading efficiency to a crucial factor when adopting RAG and
fine-tuning in this task. Therefore, in this section, we quantita-
tively investigate the efficiency impact of RAG and fine-tuning
approaches on code completion. Our analysis focuses on both the
preparation stage and runtime stage to examine their time and
resource consumption.

4.3.1 Preparation Stage. For the preparation stage, the time and
resource consumption are presented in Table 5. Fine-tuning primar-
ily consumes GPU resources, and due to the large volume of training
data and model size, the training process is computationally inten-
sive as shown in Table 5. On our 8×A100 80GB GPU server, training

FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Wang et al.

Table 3: Results of different methods in the code completion task, where QC and DSC denote Qwen2.5-Coder and DeepSeek-
Coder, respectively. The number of retrieved code snippets of RAG𝑠𝑖𝑚 (𝐾) is 5.

Method QC-0.5B QC-1.5B QC-3B QC-7B DSC-1.3B DSC-6.7B Avg Improve

Exact Match

Base 21.09 24.48 25.89 28.04 23.16 26.07 24.79 -
Random 20.40 23.72 25.09 27.31 22.52 25.89 24.16 ↓ 2.5%
RAG𝑆𝑖𝑚-BM25 52.52 55.81 57.13 58.08 48.90 50.13 53.76 ↑ 116.9%
RAG𝑆𝑖𝑚-CodeBERT 20.48 23.79 25.29 27.20 22.36 25.86 24.16 ↓ 2.5%
RAG𝑆𝑖𝑚-UniXcoder 38.39 41.47 43.16 46.99 38.98 40.46 41.64 ↑ 68.0%
RAG𝑆𝑖𝑚-CodeT5 39.05 42.38 43.91 45.42 40.37 42.93 42.34 ↑ 70.8%
RAG𝑆𝑖𝑚-CoCoSoDa 45.95 49.35 50.90 52.28 47.03 49.49 49.17 ↑ 98.3%
RAG𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦 23.00 27.05 28.57 30.11 25.16 28.09 26.99 ↑ 8.9%
Fine-tuning 40.82 44.63 45.89 50.48 39.64 43.75 44.20 ↑ 78.3%

Edit Similarity

Base 58.12 60.78 62.10 63.64 57.98 60.60 60.54 -
Random 57.45 60.06 61.34 62.97 57.57 60.12 59.92 ↓ 1.0%
RAG𝑆𝑖𝑚-BM25 75.44 77.26 78.37 78.94 67.86 68.64 74.42 ↑ 22.9%
RAG𝑆𝑖𝑚-CodeBERT 57.48 60.21 61.63 62.85 57.29 60.14 59.93 ↓ 1.0%
RAG𝑆𝑖𝑚-UniXcoder 67.48 70.08 71.57 74.95 68.02 70.48 70.43 ↑ 16.3%
RAG𝑆𝑖𝑚-CodeT5 68.18 70.49 71.81 72.87 68.49 70.56 70.40 ↑ 16.3%
RAG𝑆𝑖𝑚-CoCoSoDa 72.17 74.56 75.67 76.81 72.49 74.45 74.36 ↑ 22.8%
RAG𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦 59.98 61.62 63.79 65.08 59.24 62.10 61.97 ↑ 2.4%
Fine-tuning 71.52 74.12 74.82 77.28 70.10 72.87 73.45 ↑ 21.3%

BLEU Score

Base 38.15 41.47 43.02 44.73 38.44 41.63 41.24 -
Random 37.82 41.03 42.56 44.37 38.74 41.20 40.95 ↓ 0.7%
RAG𝑆𝑖𝑚-BM25 66.22 68.35 69.64 70.34 58.87 59.99 65.57 ↑ 59.0%
RAG𝑆𝑖𝑚-CodeBERT 37.93 41.05 42.79 44.29 38.33 41.05 40.91 ↓ 0.8%
RAG𝑆𝑖𝑚-UniXcoder 54.55 55.77 57.30 62.22 52.23 55.19 56.21 ↑ 36.3%
RAG𝑆𝑖𝑚-CodeT5 53.78 56.75 58.08 59.41 53.87 56.62 56.42 ↑ 36.8%
RAG𝑆𝑖𝑚-CoCoSoDa 59.71 62.61 63.77 64.99 59.64 62.05 62.13 ↑ 50.7%
RAG𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦 41.27 44.55 46.26 47.86 41.10 44.73 44.29 ↑ 7.4%
Fine-tuning 57.02 60.50 61.69 65.17 54.82 58.51 59.62 ↑ 44.6%

Table 4: Results of combining RAG with fine-tuning, where
the results are the average of six experimented LCMs.

Methods EM ES BLEU

Base+RAG𝑆𝑖𝑚-BM25 53.76 74.42 65.57
FT+RAG𝑆𝑖𝑚-BM25 57.43 76.90 69.78

Base+RAG𝑆𝑖𝑚-UniXcoder 41.64 70.43 56.21
FT+RAG𝑆𝑖𝑚-UniXcoder 52.08 77.05 66.45

Base+RAG𝑆𝑖𝑚-CodeT5 42.34 70.40 56.42
FT+RAG𝑆𝑖𝑚-CodeT5 52.11 77.18 66.05

Base+RAG𝑆𝑖𝑚-CoCoSoDa 49.17 74.36 62.13
FT+RAG𝑆𝑖𝑚-CoCoSoDa 56.45 79.55 69.68

Qwen2.5-Coder requires 3.5 to 23.2 hours, varying by model size
from 0.5B to 7B parameters, with GPU memory usage ranging from
18.3 GB to 74.8 GB. Similarly, training DeepSeek-Coder 1.3B and
6.7B consumes 6.8 and 41.4 hours respectively, utilizing 17.6 GB

and 67.2 GB of GPU memory. These substantial resource require-
ments and A100 hours represent a remarkable bottleneck for the
fine-tuning approach.

For RAG approaches, the preparation stage primarily consists
of two phases: embedding computation and index construction.
As shown in Table 6, the time consumption varies greatly across
different methods. BM25, being a lexical-based method, requires
no embedding computation and completes index construction in
merely 2 minutes. In contrast, neural embedding-based methods
incur substantial computational overhead. The embedding phase,
executed on a single A100 GPU, takes between 34 minutes (CodeT5)
and 74 minutes (UniXcoder). The subsequent indexing phase for
these neural methods requires an additional 19-37 minutes, with
UniXcoder taking the longest at 37 minutes. In total, while BM25
completes preparation in 2 minutes, neural embedding-based ap-
proaches require 62-111 minutes. The variation in computation
time among neural models primarily stems from their architectural
differences and embedding dimensions.

RAG or Fine-tuning? A Comparative Study on LCMs-based Code Completion in Industry FSE Companion ’25, June 23–28, 2025, Trondheim, Norway

0

1000

2000

3000

4000

5000

0

500

1000

1500

2000

2500

3000

Base Top-1 Top-2 Top-3 Top-4 Top-5

Num Tokens Throughput

N
um

 T
ok

en
s

Throughput

Figure 1: Average exact match and throughput under differ-
ent retrieved code snippets across six LCMs.

4.3.2 Runtime Stage. For the runtime stage, the efficiency impact
of RAG can be attributed to two main factors: (1) the embedding
and retrieval phase of code completion queries (using embedding
models), and (2) the increased query length due to the concatenation
of Top-k retrieved code snippets, which subsequently affects model
inference speed.

For the first factor, we measure the time consumption of both em-
bedding and retrieval phases across our five similarity-based RAG
methods, with results shown in Table 6. We find that during run-
time, BM25 demonstrates superior efficiency with only 10.8ms for
retrieval operations, obviously less than neural embedding-based
methods. Among neural approaches, CodeBERT and UniXcoder
show moderate latency (49.2ms and 46.8ms), while CodeT5 and
CoCoSoDa require substantially more time (116ms and 114ms).

For the second factor, we conduct an in-depth analysis using
BM25 as a representative case to investigate how RAG affects query
length and model inference efficiency. As shown in Figure 1, we
compare the average input length and model throughput across
various scenarios: from base queries to queries augmented with
top-1 through top-5 similar code snippets. The base queries have
an average length of 246 tokens, but this length increases linearly
with each additional retrieved code snippet, reaching approximately
2,500 tokens when incorporating top-5 similar codes. This increase
in input length significantly impacts the model’s throughput. Tak-
ing BM25 as an example, the average processing speed drops sub-
stantially from 4,031 tokens/second for base queries to around 874
tokens/second when including top-5 retrieved snippets.

In contrast, fine-tuning introduces no additional efficiency over-
head during the runtime stage. After the resource-intensive fine-
tuning process, where model parameters are adapted to our domain-
specific dataset, the model can achieve substantial performance im-
provements using only base queries during inference. This makes
fine-tuning more efficient at runtime compared to RAG, despite its
higher upfront computational costs during the preparation stage.

Finding 3: RAG and fine-tuning exhibit distinct efficiency trade-
offs in code completion. Fine-tuning requires substantial compu-
tational resources (e.g., 41.4 hours and 67.2 GB GPU memory for
DeepSeek-Coder 6.7B) but introduces no runtime overhead. In
contrast, RAG has minimal preparation costs but incurs runtime
overhead through context retrieval and increased input lengths,
reducing model throughput by up to 78% (from 4,031 to 874 to-
kens/second) when using top-5 retrieved snippets.

Table 5: Preparation (training) time and resource consump-
tion of fine-tuning different LCMs.

QC-0.5B QC-1.5B QC-3B QC-7B DSC-1.3B DSC-6.7B

Time 3.5h 4.6h 10.1h 23.2h 6.8h 41.4h
Memory 18.3G 31.5G 44.5G 74.8G 17.6G 67.2G

Table 6: Preparation (embedding and indexing) and retrieval
time consumption of RAG methods.

Stage BM25 CodeBERT UniXcoder CodeT5 CoCoSoDa

Embedding - 53min 74min 34min 64min
Indexing 2min 19min 37min 28min 35min

Runtime Retrieval 10.8ms 49.2ms 46.8ms 116ms 114ms

4.4 RQ4: Parameter Analysis
4.4.1 Impact of Retrieved Context Size. We conduct a detailed anal-
ysis of how base models and fine-tuned models perform when
combined with RAG, specifically examining performance changes
as the number of retrieved contexts (top-k) increases. We exclude
CodeBERT from this analysis due to its poor performance in se-
lecting relevant contexts. As shown in Figure 2, both base models
and fine-tuned models demonstrate performance improvements
as the number of retrieved contexts (K) increases. However, the
improvement patterns differ significantly between them. While
fine-tuned models combined with RAG achieve higher absolute
performance, the marginal benefit (slope of improvement) from
additional retrieved contexts is less pronounced compared to base
models with RAG.

4.4.2 Impact of the Scale of CodeBase. Both RAG and fine-tuning
require a codebase during their adaptation process, i.e., either as a
retrieval database or training dataset. In this research question, we
investigate how sensitive these approaches are to the scale of the
codebase. We randomly sample different sizes of C++ files (30k, 60k,
90k, and 120k) from our codebase to create varying-sized retrieval
databases and training sets. Due to the computational intensity
of training and evaluation, we conduct experiments using Qwen
models of smaller sizes (0.5B, 1.5B, and 3B parameters). For RAG,
we focus on BM25 and CoCoSoDa as retrieval methods, as they
demonstrate superior performance in our previous experiments.
The results of these experiments are presented in Figure 3.

The experimental results reveal that both fine-tuning and RAG
exhibit performance improvements as the codebase size increases,
with the most substantial gains observed when transitioning from
the base model to the 30K files included. Specifically, across the
three model sizes, fine-tuning and RAG-BM25 demonstrate average
relative improvements of 64.6% and 78.3% in EM, respectively. As
the codebase expands further, the performance gains gradually
diminish, but with notably different patterns between fine-tuning
and RAG. When scaling from 90K to 120K files, fine-tuning shows
diminishing returns, with average improvements of merely 0.35%
and 0.16% percentage points in exact match and edit similarity
across the three models. In contrast, RAG methods maintain more
substantial improvements: RAG-BM25 and RAG-CoCoSoDa achieve
average EM gains of 2.26% and 2.13% across all model sizes. This
phenomenon suggests that fine-tuning approaches a performance
plateau in our dataset when the training data exceeds approximately

FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Wang et al.

20

30

40

50

60

Base Top-1 Top-2 Top-3 Top-4 Top-5

Fine-tune+BM25

Base+BM25

20

30

40

50

60

Base Top-1 Top-2 Top-3 Top-4 Top-5

Fine-tune+Unixcoder

Base+Unixcoder

20

30

40

50

60

Base Top-1 Top-2 Top-3 Top-4 Top-5

Fine-tune+CoCoSoDa

Base+CoCoSoDa

20

30

40

50

60

Base Top-1 Top-2 Top-3 Top-4 Top-5

Fine-tune+CodeT5

Base+CodeT5

Figure 2: Exact match of the base and fine-tuned model under different retrieved contexts.

(a) Exact Match of QC-0.5B (b) Exact Match of QC-1.5B (c) Exact Match of QC-3B

(d) Edit sim of QC-0.5B (e) Edit sim of QC-1.5B (f) Edit sim of QC-3B

Figure 3: Exact match and edit similarity of fine-tuning and RAG under different sizes of codebase.

300M tokens (90K files). However, RAG methods continue to derive
meaningful benefits from larger-scale codebases, demonstrating
better scalability in leveraging additional code resources.

Finding 4: Both RAG and fine-tuning demonstrate sensitivity
to codebase scale but with distinct scaling patterns. While both
approaches show substantial initial gains, fine-tuning exhibits
diminishing returns beyond 90K fileswithminimal improvements.
In contrast, RAG methods maintain meaningful performance
gains even at larger scales (90K to 120K files), suggesting superior
scalability in leveraging expanded codebases for code completion.

5 Discussion
5.1 Impact of Fine-tuning on Model’s

Generalization Ability
In this section, we evaluate the catastrophic forgetting effect on
generalization ability induced by fine-tuning, specifically examining
how the model’s performance on other tasks and benchmarks is
affected after fine-tuning on our code repository. We select three
representative tasks: code generation, code reasoning, and code
translation. For code generation, following the work [41, 67], we
evaluate the HumanEval and MBPP datasets using pass@1 as the
evaluation metric. For code reasoning, we employ the CRUX-Eval
dataset [14], where the model is required to infer either the output
given code and input (CRUX-O), or the input given code and output

(CRUX-I), also measured by pass@1. For code translation, we utilize
the CodeXGLUE benchmark [39], measuring performance with the
CodeBLEU metric [50]. The experimental results are presented in
Table 7, which demonstrates the model’s performance on these
general tasks before and after fine-tuning on our domain-specific
dataset.

Based on our experimental results, we observe varying degrees
of performance degradation across different tasks, indicating a
nuanced pattern of catastrophic forgetting [13, 43]. Specifically,
in code generation tasks, we observe average Pass@1 decreases
of 24.1% and 11.7% on HumanEval and MBPP respectively. When
evaluated with stricter test cases (+Plus), this performance gap
widens to 24.0% and 16.7%.

Regarding code reasoning and translation capabilities, we ob-
serve a much milder impact from fine-tuning compared to code
generation tasks. For code reasoning, fine-tuned models show aver-
age decreases of 6.5% and 5.8% on CRUX-O and CRUX-I respectively.
In code translation tasks, the impact is even smaller, with only a
marginal decrease of 0.7% in C#2Java and, notably, a slight improve-
ment of 0.5% in Java2C# after fine-tuning.

This pattern suggests that fine-tuning our dataset has a min-
imal negative impact on the model’s reasoning and translation
capabilities, starkly contrasting to the more substantial degrada-
tion observed in code generation tasks. Particularly encouraging is
the case of Java2C# translation, where fine-tuned models actually
outperform their base counterparts on average. We also observe a

RAG or Fine-tuning? A Comparative Study on LCMs-based Code Completion in Industry FSE Companion ’25, June 23–28, 2025, Trondheim, Norway

Table 7: Comparison of base and fine-tuned models on the code generation, code reasoning, and code translation tasks.

Models HumanEval +Plus MBPP +Plus CRUX-O CRUX-I C#2Java Java2C#
Pass@1 CodeBLEU

QC-0.5B 26.83 22.56 50.88 44.11 23.62 22.25 41.71 32.79
Fine-tuned 18.29 15.24 36.09 29.82 21.25 20.00 40.57 33.83
QC-1.5B 46.34 37.80 65.16 53.13 35.00 25.12 45.95 36.15

Fine-tuned 21.95 17.68 61.65 49.87 30.50 23.12 44.90 34.94
QC-3B 49.39 39.02 67.17 53.88 39.12 30.75 47.61 37.19

Fine-tuned 40.85 32.32 64.66 51.88 36.50 28.38 47.32 36.70
QC-7B 62.20 52.44 70.43 57.89 50.12 36.00 48.00 38.92

Fine-tuned 45.73 40.24 36.09 29.82 45.63 33.38 47.52 38.11
DSC-1.3B 31.10 25.61 55.89 45.86 29.88 24.75 44.80 31.22
Fine-tuned 29.27 23.78 55.39 44.36 28.25 22.62 43.93 34.57
DSC-6.7B 52.44 45.12 64.91 51.63 42.12 33.38 46.24 34.29
Fine-tuned 47.56 39.63 62.16 49.62 43.38 35.38 45.88 35.33

Avg. Base 44.72 37.04 62.41 51.08 36.64 28.71 45.72 35.09
Avg. Fine-tuned 33.95 28.15 55.14 42.56 34.25 27.15 45.02 35.60

positive outlier with DeepSeek-Coder 6.7B, which shows improve-
ments in both reasoning (3.0% and 6.0% on CRUX-O and CRUX-I
respectively) and translation tasks after fine-tuning. These findings
suggest that fine-tuning has varying impacts across different code-
related capabilities. While code generation performance shows
notable degradation, the effects on code reasoning and translation
abilities are much less pronounced.

5.2 Implication of Findings
In this section, we discuss the implications of our work for devel-
opers and researchers.

5.2.1 For Developers. Our main results demonstrate that RAG and
fine-tuning present distinct trade-offs in effectiveness and efficiency
for practical applications. Based on these findings, we offer the
following implications for developers adapting LLMs in industrial
settings:

(1) Exploring fine-grained source code segmentation for
RAG: Our experiments, which used function-level retrieval, showed
that adding a single relevant code snippet during inference increases
input tokens by approximately 500 on average, which remarkably
affects inference speed. Investigating finer-grained RAG approaches
that reduce token length while maintaining retrieval effectiveness
could lead to more efficient solutions. This might include exploring
approaches such as snippet-level or statement-level retrieval.

(2) Selecting RAG or fine-tuning based on available re-
sources: RAG and fine-tuning consume computational resources at
different stages of deployment. While RAG requires more computa-
tional resources during runtime, fine-tuning demands substantial
resources during the preparation stage. Given that training and
inference typically utilize different GPU configurations [23, 51],
developers should select their adaptation approach based on their
available resource distribution. In resource-rich environments, com-
bining both approaches can yield optimal results.

(3) Using RAG for ensuring LCMs’ generalization ability:
When deploying models that need to handle diverse scenarios,
RAG emerges as the preferred choice. Our experiments show that

fine-tuning can compromise a model’s generalization abilities such
as in code generation and reasoning tasks. Therefore, when the
deployment scenario requires maintaining both domain-specific
performance and general-purpose capabilities, RAG presents amore
balanced solution.

(4) SelectingRAG in data-rich scenarios: Our parametric stud-
ies reveal that fine-tuning’s performance improvements plateau
as the codebase scale increases, while RAG continues to show sig-
nificant performance gains. In scenarios with abundant code data,
RAG demonstrates superior scalability and can provide larger per-
formance gains. This suggests that organizations with large pro-
prietary codebases might find RAG particularly advantageous for
their code completion systems.

5.2.2 For Researchers. In Section 4, we demonstrate that both fine-
tuning and RAG are effective approaches for adapting LLMs to
proprietary codebases, substantially improving code completion
performance on private datasets. However, our findings reveal that
each approach has distinct advantages and limitations, suggesting
several promising research directions:

(1) Exploring more advanced code embedding models: Our
experiments show that RAG’s effectiveness is directly correlated
with retrieval performance. Investigating more sophisticated code
embedding models could lead to more relevant code retrieval and,
consequently, better completion accuracy. This includes developing
embedding techniques that better capture semantic relationships
and domain-specific code patterns.

(2)Exploring forgetting-awarefine-tuning techniques:While
fine-tuning effectively improves domain-specific performance, we
observe degradation in general capabilities, particularly in code
generation tasks. Research into more robust fine-tuning techniques
that maintain the model’s general capabilities while enhancing
domain-specific performance represents a crucial direction. This
could involve exploring methods such as elastic weight consolida-
tion [25] or knowledge distillation [17].

(3) Optimizing long-context inference: We observe that in-
ference speed is significantly affected by token length, particularly

FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Wang et al.

Retrieved context by BM25 Base code completion query

Base Model

Fine-tuning

RAG-BM25

class FinderLiveOssInfoClient::FinderLiveOssInfoClient() {
 auto config =
FindrOssInfoClientConfigManager.GetConfigByNum(IDC_I
D);
 if (config) {
 SetConfig(config);
 } else {
 const char *conf = "/XX/finderliveossinfo_cli.conf";
 config_ = FinderLiveOssInfoClientConfig::GetDefault();
 config_->SetFileIfUnset(conf);
 if (0 != config_->LoadIfModified()) {
 LogImpt("ERR: %s Load(%s) fail", __func__, config_-
>GetFile());
 }
class SNSlogicClient : public
SNSlogicBaseClient<SNSlogicClientConfig> {
 public:
 SNSlogicClient();
 virtual ~SNSlogicClient();
 void SetConfig(SNSlogicClientConfig *config);
};

int SNSlogicClientConfig::ReadExtra(Comm::CConfig *config,
bool is_reload)
{
 Comm::ConfigItemInfoEx_t info_array[] =
{CONFIG_ITEM_EX_INT("Foo", "Bar", foobar_, "0"),
CONFIG_ITEM_EX_END};
 Comm::ConfigRead(config, info_array);
 Comm::ConfigDump(info_array);
 return 0;
}
... ...
SNSlogicClient::SNSlogicClient() {
 const char *conf = "/client/SNSlogic_cli.conf";
 config_ = SNSlogicClientConfig::GetDefault();

config_->Read(conf);

config_->SetFileIfUnset(conf);

config_->SetFileIfUnset(conf);

Figure 4: Example that the QC-7B base model fails to predict
the next line of code but fine-tuning and RAG succeed.

in industrial codebases which typically involve long and complex
source code. Research into optimizing long-sequence handling,
such as efficient attention mechanisms or context compression
techniques, is crucial for improving the practical efficiency of code
completion systems in industrial settings.

5.3 Case Study
In this section, we conduct case studies to illustrate how fine-tuning
and RAG influence LLM’s code completion predictions in practice.

Figure 4 demonstrates the varying completion results across
different approaches. For the base code completion query (shown on
the right), the base QC-7B model fails to predict the correct config-
related operation, generating a plausible but incorrect Read(conf)
call. This limitation stems from themodel’s lack of knowledge about
the proprietary codebase’s specific APIs and conventions.

After fine-tuning, the model successfully generates the correct
code snippet, specifically using the SetFileIfUnset method. This
improvement can be attributed to the model’s acquired knowledge
about SNSLogicClientConfig and its associated usage patterns
through training on the proprietary codebase.

Similarly, the RAG-BM25 approach also generates the correct
completion. The success of RAG can be traced to its retrieval mecha-
nism, which identifies a relevant code snippet from another Client
class (highlighted in red in the retrieved context). This retrieved
code example contains similar config operations, providing a valu-
able reference for the current prediction task. This demonstrates
how RAG effectively leverages existing codebase knowledge to
guide accurate code completion.

5.4 Threat to Validity
External Validity: Our study primarily relies on an industrial code-
base from our collaborating company, which may exhibit company-
specific patterns and practices that differ from other software or-
ganizations. To mitigate this limitation, we deliberately collect a
diverse set of code samples across different functional domains and
business units within the company. Our dataset encompasses over
160,000 code files, providing a comprehensive representation of the
department’s development practices and coding patterns.

Internal Validity: The efficiency measurements in our study
are conducted under our available computational configurations.
The relative performance characteristics of RAG and fine-tuning

approaches might vary under different resource constraints. Specif-
ically, the efficiency trade-offs could shift with varying training
resources (GPU configurations), inference resources (deployment
environments), or CPU resources (for retrieval operations). This
suggests that our efficiency results should be interpreted within
the context of our experimental setup.

6 Related Work
6.1 Retrieval-Augmented Generation
Retrieval-augmented generation (RAG) is an approach that im-
proves generation quality by incorporating information from ex-
ternal knowledge sources. This approach enhances the accuracy
and reliability of LLMs’ outputs and is widely used in code-related
tasks [38, 64]. For example, Reacc [38] leverages both lexical copy-
ing and referring to code with similar semantics to improve code
completion. Parvez et al. [46] propose REDCODER which enhances
code generation and summarization by retrieving and leveraging
relevant code snippets and summaries from a reference database.
Similarly, Wang et al. [64] and Peng et al. [47] advanced automatic
program repair by explicitly utilizing fix templates from historical
bug-fix pairs.

6.2 Large Code Models
Recently, Large Code Models have emerged as powerful tools for di-
verse software engineering tasks [21, 22, 33, 34, 42, 60, 61, 67, 70, 73,
75]. Various influential models have demonstrated significant capa-
bilities in code generation and understanding. For example, Meta’s
Code Llama [53] is a foundation model that builds upon the original
LLaMA architecture and extends the context window to 16K tokens
and serves as a versatile foundation model for programming tasks.
DeepSeek-Coder[16] is a series of large code models that have an ar-
chitecture identical to CodeLlama. DeepSeek-Coder is trained from
2T tokens from scratch, achieving state-of-the-art performance
in a variety of code intelligence tasks. Qwen2.5 Coder [18] is a
family of LCMs based on models of the Qwen2.5 series. Qwen2.5
undergoes four-stage training with a total number of 5.5T tokens,
presenting state-of-the-art performance in both code generation
and reasoning.

6.3 Code Completion
Code completion predicts subsequent code tokens or statements to
assist programmers during software development [29–32]. With the
development of deep learning, various DL-based code completion
methods are applied to code completion and achieve state-of-the-art
performance. For instance, Li et al. [28] proposed a point-mixture
network to relieve the out-of-vocabulary problem in sequence-
to-sequence code completion. Izadi et al. [20] proposed CodeFill,
which integrates both type and semantic information to improve the
precision of completion. Recent research has increasingly focused
on leveraging repository-level context. For example, Repocoder [73]
utilizes useful information scattered in different files by iterative
completion and retrieval. Liu et al. [35] proposed RepoBench to
evaluate code completion systems under complex and multi-file
programming scenarios. RLcoder [65] employs RAG and trains the
retriever to learn to retrieve useful content from the repository.

RAG or Fine-tuning? A Comparative Study on LCMs-based Code Completion in Industry FSE Companion ’25, June 23–28, 2025, Trondheim, Norway

7 Conclusion
In this paper, we conduct extensive experiments to evaluate the ef-
fectiveness of RAG and fine-tuning in LCM-based code completion
in the industry. We reveal the effectiveness and efficiency trade-offs
when adopting the two methods: RAG achieves a higher perfor-
mance ceiling while introducing non-trivial runtime completion
overhead. Our findings provide guidance for both researchers and
developers for further research directions and LCM adoption.

Acknowledgment
The work described in this paper was supported by the Research
Grants Council of the Hong Kong Special Administrative Region,
China (No. SRFS2425-4S03 of the Senior Research Fellow Scheme).
This work is also supported by the CCF-Huawei Populus Grove
Fund.

References
[1] Toufique Ahmed, Christian Bird, Premkumar Devanbu, and Saikat Chakraborty.

2024. Studying LLM Performance on Closed-and Open-source Data. arXiv
preprint arXiv:2402.15100 (2024).

[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language Models are Few-Shot Learners. InAdvances in Neural
Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual.

[3] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. 2016. Training deep
nets with sublinear memory cost. arXiv preprint arXiv:1604.06174 (2016).

[4] ClangD. 2025. ClangD. https://clangd.llvm.org/.
[5] copilot. 2025. copilot. https://copilot.microsoft.com/.
[6] cursor. 2025. cursor. https://www.cursor.com/.
[7] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. 2022. Flashat-

tention: Fast and memory-efficient exact attention with io-awareness. Advances
in Neural Information Processing Systems 35 (2022), 16344–16359.

[8] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. CodeBERT: A Pre-
Trained Model for Programming and Natural Languages. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2020. 1536–1547.

[9] Shuzheng Gao, Cuiyun Gao, Wenchao Gu, and Michael Lyu. 2024. Search-based
llms for code optimization. In 2025 IEEE/ACM 47th International Conference on
Software Engineering (ICSE). IEEE Computer Society, 254–266.

[10] Shuzheng Gao, Cuiyun Gao, Yulan He, Jichuan Zeng, Lunyiu Nie, Xin Xia, and
Michael R. Lyu. 2023. Code Structure-Guided Transformer for Source Code
Summarization. ACM Trans. Softw. Eng. Methodol. 32, 1 (2023), 23:1–23:32.

[11] Shuzheng Gao, Wenxin Mao, Cuiyun Gao, Li Li, Xing Hu, Xin Xia, and Michael R.
Lyu. 2024. Learning in the Wild: Towards Leveraging Unlabeled Data for Ef-
fectively Tuning Pre-trained Code Models. In Proceedings of the 46th IEEE/ACM
International Conference on Software Engineering, ICSE 2024, Lisbon, Portugal,
April 14-20, 2024. ACM, 80:1–80:13.

[12] Shuzheng Gao, Xin-Cheng Wen, Cuiyun Gao, Wenxuan Wang, Hongyu Zhang,
and Michael R Lyu. 2023. What makes good in-context demonstrations for code
intelligence tasks with llms?. In 2023 38th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 761–773.

[13] ShuzhengGao, Hongyu Zhang, CuiyunGao, and ChaozhengWang. 2023. Keeping
Pace with Ever-Increasing Data: Towards Continual Learning of Code Intelligence
Models. In 45th IEEE/ACM International Conference on Software Engineering, ICSE
2023, Melbourne, Australia, May 14-20, 2023. IEEE, 30–42.

[14] Alex Gu, Baptiste Rozière, Hugh James Leather, Armando Solar-Lezama, Gabriel
Synnaeve, and Sida Wang. 2024. CRUXEval: A Benchmark for Code Reasoning,
Understanding and Execution. In Forty-first International Conference on Machine
Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net.

[15] Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. 2022.
UniXcoder: Unified Cross-Modal Pre-training for Code Representation. In Pro-
ceedings of the 60th AnnualMeeting of the Association for Computational Linguistics
(Volume 1: Long Papers). 7212–7225.

[16] Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang,
Guanting Chen, Xiao Bi, Y Wu, YK Li, et al. 2024. DeepSeek-Coder: When the
Large Language Model Meets Programming–The Rise of Code Intelligence. arXiv
preprint arXiv:2401.14196 (2024).

[17] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. 2015. Distilling the Knowl-
edge in a Neural Network. CoRR abs/1503.02531 (2015).

[18] Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu
Liu, Jiajun Zhang, Bowen Yu, Keming Lu, et al. 2024. Qwen2. 5-coder technical
report. arXiv preprint arXiv:2409.12186 (2024).

[19] Loshchilov Ilya and Hutter Frank. 2018. Decoupled Weight Decay Regularization.
International Conference on Learning Representations, ICLR (2018).

[20] Maliheh Izadi, Roberta Gismondi, and Georgios Gousios. 2022. CodeFill: Multi-
tokenCode Completion by Jointly learning from Structure andNaming Sequences.
In 44th IEEE/ACM 44th International Conference on Software Engineering, ICSE
2022, Pittsburgh, PA, USA, May 25-27, 2022. ACM, 401–412.

[21] Zhenlan Ji, Pingchuan Ma, Zongjie Li, and Shuai Wang. 2023. Benchmarking
and explaining large language model-based code generation: A causality-centric
approach. arXiv preprint arXiv:2310.06680 (2023).

[22] Zhenlan Ji, Daoyuan Wu, Pingchuan Ma, Zongjie Li, and Shuai Wang. 2024. Test-
ing and Understanding Erroneous Planning in LLM Agents through Synthesized
User Inputs. arXiv preprint arXiv:2404.17833 (2024).

[23] Ziheng Jiang, Tianqi Chen, and Mu Li. 2018. Efficient Deep Learning Inference
on Edge Devices. MLsys (2018).

[24] Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike
Lewis. 2019. Generalization through memorization: Nearest neighbor language
models. arXiv preprint arXiv:1911.00172 (2019).

[25] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume
Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka
Grabska-Barwinska, et al. 2017. Overcoming catastrophic forgetting in neural
networks. Proceedings of the national academy of sciences 114, 13 (2017), 3521–
3526.

[26] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng,
Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model serving with pagedattention. In
Proceedings of the 29th Symposium on Operating Systems Principles. 611–626.

[27] Guochang Li, Chen Zhi, Jialiang Chen, Junxiao Han, and Shuiguang Deng. 2024.
Exploring Parameter-Efficient Fine-Tuning of Large Language Model on Auto-
mated Program Repair. In Proceedings of the 39th IEEE/ACM International Confer-
ence on Automated Software Engineering, ASE 2024, Sacramento, CA, USA, October
27 - November 1, 2024. ACM, 719–731.

[28] Jian Li, Yue Wang, Michael R. Lyu, and Irwin King. 2018. Code Completion with
Neural Attention and Pointer Networks. In Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19,
2018, Stockholm, Sweden. ijcai.org, 4159–4165.

[29] Zongjie Li, Pingchuan Ma, Huaijin Wang, Shuai Wang, Qiyi Tang, Sen Nie, and
Shi Wu. 2022. Unleashing the Power of Compiler Intermediate Representation
to Enhance Neural Program Embeddings. In 44th IEEE/ACM 44th International
Conference on Software Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27,
2022. ACM.

[30] Zongjie Li, Chaozheng Wang, Zhibo Liu, Haoxuan Wang, Dong Chen, Shuai
Wang, and Cuiyun Gao. 2023. CCTEST: Testing and Repairing Code Completion
Systems. In 45th IEEE/ACM International Conference on Software Engineering,
ICSE 2023, Melbourne, Australia, May 14-20, 2023. IEEE, 1238–1250.

[31] Zongjie Li, Chaozheng Wang, Zhibo Liu, Haoxuan Wang, Dong Chen, Shuai
Wang, and Cuiyun Gao. 2023. CCTEST: Testing and Repairing Code Completion
Systems. In 45th IEEE/ACM International Conference on Software Engineering,
ICSE 2023, Melbourne, Australia, May 14-20, 2023. IEEE, 1238–1250.

[32] Zongjie Li, ChaozhengWang, PingchuanMa, Chaowei Liu, ShuaiWang, Daoyuan
Wu, Cuiyun Gao, and Yang Liu. 2024. On Extracting Specialized Code Abilities
from Large Language Models: A Feasibility Study. In Proceedings of the IEEE/ACM
46th International Conference on Software Engineering (Lisbon, Portugal) (ICSE ’24).
Association for Computing Machinery, New York, NY, USA, Article 74, 13 pages.

[33] Zongjie Li, Chaozheng Wang, Shuai Wang, and Gao Cuiyun. 2023. Protecting
Intellectual Property of Large Language Model-Based Code Generation APIs via
Watermarks. In Proceedings of the 2023 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2023, Copenhagen, Denmark, November 26-30,
2023.

[34] Zongjie Li, Daoyuan Wu, Shuai Wang, and Zhendong Su. 2024. API-guided
Dataset Synthesis to Finetune Large Code Models. arXiv preprint arXiv:2408.08343
(2024).

[35] Tianyang Liu, Canwen Xu, and Julian J. McAuley. 2024. RepoBench: Benchmark-
ing Repository-Level Code Auto-Completion Systems. In The Twelfth Interna-
tional Conference on Learning Representations, ICLR 2024, Vienna, Austria, May
7-11, 2024. OpenReview.net.

[36] Wei Liu, Ailun Yu, Daoguang Zan, Bo Shen, Wei Zhang, Haiyan Zhao, Zhi Jin,
and Qianxiang Wang. 2024. GraphCoder: Enhancing Repository-Level Code
Completion via Coarse-to-fine Retrieval Based on Code Context Graph. In Pro-
ceedings of the 39th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2024, Sacramento, CA, USA, October 27 - November 1, 2024. ACM,
570–581.

[37] Ilya Loshchilov and Frank Hutter. 2016. SGDR: Stochastic Gradient Descent with
Warm Restarts. In International Conference on Learning Representations.

[38] Shuai Lu, Nan Duan, Hojae Han, Daya Guo, Seung-won Hwang, and Alexey Svy-
atkovskiy. 2022. ReACC: A Retrieval-Augmented Code Completion Framework.

https://clangd.llvm.org/
https://copilot.microsoft.com/
https://www.cursor.com/

FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Wang et al.

In Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), ACL 2022, Dublin, Ireland, May 22-27, 2022.
Association for Computational Linguistics, 6227–6240.

[39] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambro-
sio Blanco, Colin Clement, Dawn Drain, Daxin Jiang, Duyu Tang, et al. [n. d.].
CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understand-
ing and Generation. In Thirty-fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 1).

[40] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio
Blanco, Colin B. Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong
Zhou, Linjun Shou, Long Zhou, Michele Tufano, Ming Gong, Ming Zhou, Nan
Duan, Neel Sundaresan, Shao Kun Deng, Shengyu Fu, and Shujie Liu. 2021.
CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understanding
and Generation. (2021).

[41] Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu,
Chongyang Tao, Jing Ma, Qingwei Lin, and Daxin Jiang. 2024. WizardCoder:
Empowering Code Large Language Models with Evol-Instruct. In The Twelfth
International Conference on Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024. OpenReview.net.

[42] Pingchuan Ma, Zhaoyu Wang, Zongjie Li, Zhenlan Ji, Ao Sun, Juergen Rahmel,
and Shuai Wang. 2025. Reeq: Testing and Mitigating Ethically Inconsistent
Suggestions of Large Language Models with Reflective Equilibrium. (2025).
https://doi.org/10.1145/3722554

[43] Michael McCloskey and Neal J Cohen. 1989. Catastrophic interference in con-
nectionist networks: The sequential learning problem. In Psychology of learning
and motivation. Vol. 24. Elsevier, 109–165.

[44] Noor Nashid, Taha Shabani, Parsa Alian, and Ali Mesbah. 2024. Contextual API
Completion for Unseen Repositories Using LLMs. arXiv preprint arXiv:2405.04600
(2024).

[45] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a
Method for Automatic Evaluation of Machine Translation. In Proceedings of the
40th Annual Meeting of the Association for Computational Linguistics, July 6-12,
2002, Philadelphia, PA, USA. ACL, 311–318.

[46] Md. Rizwan Parvez, Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and
Kai-Wei Chang. 2021. Retrieval Augmented Code Generation and Summarization.
In Findings of the Association for Computational Linguistics: EMNLP 2021, Virtual
Event / Punta Cana, Dominican Republic, 16-20 November, 2021. Association for
Computational Linguistics, 2719–2734.

[47] Yun Peng, Shuzheng Gao, Cuiyun Gao, Yintong Huo, and Michael R. Lyu. 2024.
Domain Knowledge Matters: Improving Prompts with Fix Templates for Re-
pairing Python Type Errors. In Proceedings of the 46th IEEE/ACM International
Conference on Software Engineering, ICSE 2024, Lisbon, Portugal, April 14-20, 2024.
ACM, 4:1–4:13.

[48] Lutz Prechelt. 2000. An empirical comparison of c, c++, java, perl, python, rexx
and tcl. IEEE Computer 33, 10 (2000), 23–29.

[49] qdrant. 2025. qdrant. https://qdrant.tech//.
[50] Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel Sundare-

san, Ming Zhou, Ambrosio Blanco, and Shuai Ma. 2020. Codebleu: a method for
automatic evaluation of code synthesis. arXiv preprint arXiv:2009.10297 (2020).

[51] Albert Reuther, Peter Michaleas, Michael Jones, Vijay Gadepally, Siddharth Samsi,
and Jeremy Kepner. 2022. AI and ML accelerator survey and trends. In 2022 IEEE
High Performance Extreme Computing Conference (HPEC). IEEE, 1–10.

[52] Stephen Robertson, Hugo Zaragoza, et al. 2009. The probabilistic relevance
framework: BM25 and beyond. Foundations and Trends® in Information Retrieval
3, 4 (2009), 333–389.

[53] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiao-
qing Ellen Tan, Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. 2023.
Code llama: Open foundation models for code. arXiv preprint arXiv:2308.12950
(2023).

[54] Ensheng Shi, Yanlin Wang, Wenchao Gu, Lun Du, Hongyu Zhang, Shi Han,
Dongmei Zhang, andHongbin Sun. 2023. Cocosoda: Effective contrastive learning
for code search. In 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE). IEEE, 2198–2210.

[55] Ze Tang, Jidong Ge, Shangqing Liu, Tingwei Zhu, Tongtong Xu, Liguo Huang,
and Bin Luo. 2023. Domain adaptive code completion via language models and
decoupled domain databases. In 2023 38th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 421–433.

[56] tantivy. 2025. tantivy. https://github.com/quickwit-oss/tantivy.
[57] tree sitter. 2025. tree-sitter. https://tree-sitter.github.io/tree-sitter/.
[58] Chaozheng Wang, Shuzheng Gao, Cuiyun Gao, Wenxuan Wang, Chun Yong

Chong, Shan Gao, and Michael R. Lyu. 2024. A Systematic Evaluation of Large
Code Models in API Suggestion: When, Which, and How. In Proceedings of the
39th IEEE/ACM International Conference on Automated Software Engineering, ASE
2024, Sacramento, CA, USA, October 27 - November 1, 2024. ACM, 281–293.

[59] Chaozheng Wang, Junhao Hu, Cuiyun Gao, Yu Jin, Tao Xie, Hailiang Huang,
Zhenyu Lei, and Yuetang Deng. 2023. How Practitioners Expect Code Com-
pletion?. In Proceedings of the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE

2023, San Francisco, CA, USA, December 3-9, 2023. ACM, 1294–1306.
[60] Chaozheng Wang, Zongjie Li, Cuiyun Gao, Wenxuan Wang, Ting Peng, Hail-

iang Huang, Yuetang Deng, Shuai Wang, and Michael R Lyu. 2024. Exploring
Multi-Lingual Bias of Large Code Models in Code Generation. arXiv preprint
arXiv:2404.19368 (2024).

[61] Chaozheng Wang, Zongjie Li, Yun Peng, Shuzheng Gao, Sirong Chen, Shuai
Wang, Cuiyun Gao, and Michael R. Lyu. 2023. REEF: A Framework for Collecting
Real-World Vulnerabilities and Fixes. In 38th IEEE/ACM International Conference
on Automated Software Engineering, ASE 2023, Luxembourg, September 11-15, 2023.
IEEE, 1952–1962.

[62] Chaozheng Wang, Yuanhang Yang, Cuiyun Gao, Yun Peng, Hongyu Zhang, and
Michael R. Lyu. [n. d.]. No more fine-tuning? an experimental evaluation of
prompt tuning in code intelligence. In Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2022, Singapore, Singapore, November 14-18, 2022. 382–394.

[63] Chaozheng Wang, Yuanhang Yang, Cuiyun Gao, Yun Peng, Hongyu Zhang, and
Michael R. Lyu. 2023. Prompt Tuning in Code Intelligence: An Experimental
Evaluation. IEEE Trans. Software Eng. 49, 11 (2023), 4869–4885.

[64] Weishi Wang, Yue Wang, Shafiq Joty, and Steven C. H. Hoi. 2023. RAP-Gen:
Retrieval-Augmented Patch Generation with CodeT5 for Automatic Program
Repair. In Proceedings of the 31st ACM Joint European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering, ESEC/FSE
2023, San Francisco, CA, USA, December 3-9, 2023. ACM, 146–158.

[65] Yanlin Wang, Daya Guo, Jiachi Chen, Ruikai Zhang, Yuchi Ma, and Zibin Zheng.
2024. RLCoder: Reinforcement Learning for Repository-Level Code Completion.
CoRR abs/2407.19487 (2024).

[66] YueWang,WeishiWang, Shafiq Joty, and Steven CHHoi. 2021. CodeT5: Identifier-
aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and
Generation. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing. 8696–8708.

[67] Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. 2024.
Magicoder: Empowering Code Generation with OSS-Instruct. In Forty-first Inter-
national Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27,
2024. OpenReview.net.

[68] Xin-Cheng Wen, Cuiyun Gao, Shuzheng Gao, Yang Xiao, and Michael R. Lyu.
2024. SCALE: Constructing Structured Natural Language Comment Trees for
Software Vulnerability Detection. In Proceedings of the 33rd ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis, ISSTA 2024, Vienna, Austria,
September 16-20, 2024. ACM, 235–247.

[69] F George Wilkie and B Hylands. 1998. Measuring complexity in C++ application
software. Software: Practice and Experience 28, 5 (1998), 513–546.

[70] Wai Kin Wong, Huaijin Wang, Zongjie Li, Zhibo Liu, Shuai Wang, Qiyi Tang, Sen
Nie, and Shi Wu. 2023. Refining decompiled c code with large language models.
arXiv preprint arXiv:2310.06530 (2023).

[71] Peng Xu, Wei Ping, Xianchao Wu, Chejian Xu, Zihan Liu, Mohammad Shoeybi,
and Bryan Catanzaro. 2024. Chatqa 2: Bridging the gap to proprietary llms in
long context and rag capabilities. arXiv preprint arXiv:2407.14482 (2024).

[72] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. 2024. Qwen2. 5
Technical Report. arXiv preprint arXiv:2412.15115 (2024).

[73] Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin Liu, Daoguang Zan, Yi Mao,
Jian-Guang Lou, and Weizhu Chen. 2023. RepoCoder: Repository-Level Code
Completion Through Iterative Retrieval and Generation. In Proceedings of the
2023 Conference on Empirical Methods in Natural Language Processing, EMNLP
2023, Singapore, December 6-10, 2023. Association for Computational Linguistics,
2471–2484.

[74] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, and Xudong Liu. 2020.
Retrieval-based neural source code summarization. In ICSE ’20: 42nd International
Conference on Software Engineering, Seoul, South Korea, 27 June - 19 July, 2020.
ACM, 1385–1397.

[75] Kunpeng Zhang, Zongjie Li, Daoyuan Wu, Shuai Wang, and Xin Xia. 2025. Low-
Cost and Comprehensive Non-textual Input Fuzzing with LLM-Synthesized Input
Generators. arXiv preprint arXiv:2501.19282 (2025).

https://doi.org/10.1145/3722554
https://qdrant.tech//
https://github.com/quickwit-oss/tantivy
https://tree-sitter.github.io/tree-sitter/

	Abstract
	1 Introduction
	2 Research Methodology
	2.1 Data Preparation
	2.2 Retrieval Augmented Generation
	2.3 Fine-Tuning

	3 Experimental Setup
	3.1 Selected LCMs
	3.2 Evaluation Metrics
	3.3 Embedding Models
	3.4 Research Questions
	3.5 Implementation Details

	4 Experiment Results
	4.1 RQ1: Effectiveness of RAG and Fine-Tuning
	4.2 RQ2: Combining RAG and Fine-Tuning
	4.3 RQ3: Efficiency of RAG and Fine-Tuning
	4.4 RQ4: Parameter Analysis

	5 Discussion
	5.1 Impact of Fine-tuning on Model's Generalization Ability
	5.2 Implication of Findings
	5.3 Case Study
	5.4 Threat to Validity

	6 Related Work
	6.1 Retrieval-Augmented Generation
	6.2 Large Code Models
	6.3 Code Completion

	7 Conclusion
	References

