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Abstract—Software plays a crucial role in our daily lives,
and therefore the quality and security of software systems
have become increasingly important. However, vulnerabilities in
software still pose a significant threat, as they can have serious
consequences. Recent advances in automated program repair
have sought to automatically detect and fix bugs using data-driven
techniques. Sophisticated deep learning methods have been ap-
plied to this area and have achieved promising results. However,
existing benchmarks for training and evaluating these techniques
remain limited, as they tend to focus on a single programming
language and have relatively small datasets. Moreover, many
benchmarks tend to be outdated and lack diversity, focusing on
a specific codebase. Worse still, the quality of bug explanations
in existing datasets is low, as they typically use imprecise and
uninformative commit messages as explanations.

To address these issues, we propose an automated collecting
framework REEF to collect REal-world vulnErabilities and Fixes
from open-source repositories. We focus on vulnerabilities since
they are exploitable and have serious consequences. We develop
a multi-language crawler to collect vulnerabilities and their fixes,
and design metrics to filter for high-quality vulnerability-fix
pairs. Furthermore, we propose a neural language model-based
approach to generate high-quality vulnerability explanations,
which is key to producing informative fix messages. Through
extensive experiments, we demonstrate that our approach can
collect high-quality vulnerability-fix pairs and generate strong
explanations. The dataset we collect contains 4,466 CVEs with
30,987 patches (including 236 CWE) across 7 programming
languages with detailed related information, which is superior to
existing benchmarks in scale, coverage, and quality. Evaluations
by human experts further confirm that our framework produces
high-quality vulnerability explanations.

Index Terms—Vulnerability, Data collection, Bug fix

I. INTRODUCTION

Software powers an increasing number of critical systems in

the modern world, from people’s daily life applications [1] to

critical industrial scenarios [2] or even military systems [3].

However, software often contains bugs that can cause sub-

stantial losses [4]. In this paper, we focus on vulnerabilities

since they are a more severe type of bug related to software

security that may have serious consequences. The Common

Vulnerabilities and Exposures (CVE) database tracks pub-

licly disclosed cybersecurity vulnerabilities and the number

¶ These authors contribute equally.
* Cuiyun Gao is the corresponding author.

of reported CVEs has been growing rapidly over the past

decade [5], highlighting the scale and significance of this

problem; this growth is largely attributed to the increasing

number of open-source software applications, as well as the

increasing sophistication of cyber-attacks and vulnerability

discovery methods. To combat the potential risk in real-world

software, various approaches have been proposed to detect and

fix bugs.

Traditionally, static analysis tools have been used to analyze

source code and detect potential bugs. A large number of

mature tools such as Coverity [6] have been maintained and

improved for several decades, applying to real-world projects

to discover potential flaws. More recently, query-based code

search tools like CodeQL [7] and Semgrep [8] have enabled

developers to detect bugs by writing semantic queries to

explore code bases. The core idea behind the tools is to provide

basic analysis capabilities to developers and let them write

queries to detect bugs. The effectiveness of these tools depends

on the quality of the queries [9], which keeps the detection

process both flexible and scalable.

Besides the traditional static analysis and query-based code

search tools, data-driven approaches [10]–[19] are also promis-

ing for detecting and fixing bugs. Different from analyzing the

source code with predefined rules along with complex analysis

techniques (e.g., dataflow analysis and control flow analysis),

data-driven approaches leverage large-scale data from open-

source communities such as GitHub to learn the patterns of

bugs and fixes. Techniques such as zero-day detector [20] gen-

erate candidate patches and validate them to find viable fixes.

Other data-driven methods learn developer-written patches

from open-source repositories and apply them to repair new

bugs.

The advantages of the data-driven approaches are two-fold.

First, they are easier to implement than traditional static anal-

ysis tools. The traditional tools require complex analysis tech-

niques to analyze the source code, which is time-consuming

and hard to scale. For example, when facing a wide variety

of software vulnerabilities, professional developers must care-

fully design appropriate detection rules or techniques [6], [7].

In contrast, the data-driven approaches only require large-scale

data from open-source repositories, which is easy to obtain
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and scale. Second, they are more flexible than the traditional

tools. The traditional tools are usually language-agnostic and

designed for specific types of bugs, which are hard to extend

to other programming languages or other types of bugs [21]–

[23]. The data-driven approaches are more flexible, as they

can be easily extended to other types of bugs by learning the

patterns of bugs and fixes from the large-scale data.

Data-driven approaches for automated bug detection and

repair rely on the availability of large-scale, high-quality

datasets. The efficacy of these techniques is directly dependent

on the precision and comprehensiveness of the data used

to train machine learning models. Specifically, accurately

identifying bug locations and patches can bolster the precision

of the trained models, improving the accuracy of bug detection

and fixing. Furthermore, incorporating metadata on bug types

and commit messages provides models with more granular

information about bugs, which can enhance their performance

on detection and repair tasks [24]. This additional context

may also aid developers during debugging and code review

by giving them more targeted insights.

However, current datasets for data-driven software analysis

have several key limitations that hamper their effectiveness.

First, the granularity of most datasets is at the function level,

lacking precise records of bug locations and fixes. In reality,

bugs often span multiple levels of abstraction and a single

CVE may impact various, disparate parts of a codebase [25].

Thus, there is a shortage of systematically curated, real-world

vulnerability data. Second, metadata about bug types is often

inaccurate or imprecise. Currently, bug types are typically

inferred from commit messages, which can be inaccurate

and even sometimes wrong [26]. Such an error-prone process

would possibly yield incorrect or misleading labels. Third,

most current datasets [27] are outdated, failing to capture

the latest state of constantly evolving software systems. Bugs

that were previously patched may be reintroduced, tending to

render existing records obsolete.

Technical Challenges and Solutions. We aim to develop

a framework for automatically collecting and curating high-

quality code snippets containing vulnerabilities, fixes, loca-

tions, their types, and messages from open-source repositories.

It is thus required to prepare a large dataset incorporating this

information to gain insights into real-world bugs and fixes,

facilitating further research and applications. To achieve the

above goals, our approach comprises three steps: � Newest

CVE capture: current datasets focus on simple and outdated

vulnerability patterns without clear location information as

well as the patch. To develop a comprehensive dataset that

is close to real-world situations, we primarily focus on the

recently revealed CVEs that share clear fix log and location

information. This results in a dataset with about eighteen

thousand CVEs that are recently revealed with documented

fixes. � Large Language Model (LLM)-based explanation

with human agreement: Current datasets adopt the commit

information as the comment for the vulnerability content,

which is proved to be unreliable [28], [29]. Considering

the powerful capability of LLM in code understanding [30],

[31], we leverage the large language model to automatically

comprehend the bug patterns and fixes from the CVEs and use

them as the additional message. To ensure the quality of the

mined results, we carefully design the prompt system with a

pilot study. Moreover, we conduct a human agreement study to

evaluate the mined results. � Analysis of the collected dataset:

we conduct further analysis of the dataset to understand the

characteristics of real-world bugs and fixes, providing details

on each data point to benefit future studies or applications.

Our contributions are summarized as follows:

• We propose REEF, a framework to mine up-to-date, real-

world vulnerabilities automatically. Incorporated with the

corresponding fix patches from CVEs, we have collected

a large-scale dataset with 30,987 bug location, type, and

fix information. Our dataset consists of a wide variety of

vulnerabilities across various languages, platforms, and

granularity.

• We employ large language models to generate explana-

tory messages for the CVEs, supplementing unreliable

commit information. We carefully design prompts and

conduct a human evaluation to ensure message quality.

• We conduct an extensive analysis of the collected dataset

and provide detailed insights into real-world vulnerabil-

ities and fix characteristics to guide future research and

applications.

• We have publicly released the code for our REEF tool on

GitHub at https://github.com/ASE-REEF/REEF-script,
along with the vulnerability data we have collected,

which is also available on GitHub at https://github.com/
ASE-REEF/REEF-data.

II. RELATED WORK

In this section, we introduce the related work from three

threads including automated program repair, static analysis

tools, and large language models for code, respectively.

A. Automated Program Repair

Automatic program repair (APR) has garnered significant

attention in recent years as a crucial approach to enhanc-

ing software reliability. Various techniques have been devel-

oped within the APR domain, including template-based [32],

[33], search-based [34], [35], constraint-based [36], [37], and

learning-based approaches [10]–[19]. Among these categories,

learning-based methods have achieved the greatest success and

become the most popular in recent years. SequenceR [10]

combines LSTM encoder-decoder architecture with copy

mechanism for program repair. DLFix [13] uses a tree-based

RNN to capture the structure of the source code and learn code

transformations. CoCoNuT [14] uses ensemble learning on the

combination of different networks to automatically fix bugs

in multiple programming languages, separating the context

and buggy lines in NMT-based APR. CURE [15] integrates

pre-trained programming language models and significantly

improves repair quality. Recoder [11] uses a syntax-guided

edit decoder to guide the generation of syntactically correct

repair patches. RewardRepair [16] employs execution-based
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backpropagation to enhance the compilation rate of patches

generated by NMT-based APR approaches. DEAR [17] gen-

erate multi-hunk, multi-statement fix patches with a divide-

and-conquer strategy. AlphaRepair [12] utilizes a large pre-

trained code model and generates patches in a fill-in-the-

blank way. Zhong et al. [38] build a standard benchmark

dataset and an extensive framework tool to mitigate threats

for comparison in program repair. Xia et al. [39] evaluate

the effectiveness of LLMs on program repair. KNOD [18]

incorporates domain knowledge to guide patch generation in

a direct and comprehensive way. TypeFix [19] is a prompt-

based approach with fix templates incorporated for repairing

Python type errors.

B. Static Analysis Tools

Static analysis tools analyze source code without executing

the program to detect potential bugs and vulnerabilities. They

codify definitions of unsafe coding patterns and scan code-

bases to identify matches. Over the past decade, static analysis

has become a popular approach for detecting vulnerabilities

in software [40], and techniques including data flow analy-

sis [41], [42], typestate analysis [43], type inference [44] and

specific pointer analysis [45] have been developed to improve

the precision and recall of bug detection.

Recently, query-based static analysis tools like CodeQL [7]

have gained increasing attention from both academia and

industry. These tools codify vulnerability patterns as SQL-like

queries, facilitating knowledge sharing and reuse across enti-

ties and software systems. Software is treated as data [46], with

programs parsed into hierarchical representations, often stored

in databases. Unlike traditional static analysis tools [6], [47],

query-based tools primarily focus on parsing software into

rich, query-friendly representations and rely on crowdsourced

communities to continually develop queries addressing newly

discovered vulnerabilities. Established query-based tools cul-

tivate active communities and offer bounty programs [48]

to encourage query contribution and improvement. In turn,

these communities help enrich and refine queries to target

vulnerabilities proliferating in real-world software.

There is a huge effort to establish comprehensive bench-

marks to evaluate the quality of analysis tools, which fur-

ther helps find real-world vulnerabilities. However, existing

benchmarks for evaluating static analysis tools typically use

synthetic datasets. For instance, the Juliet [21] benchmark for

C/C++ and the Defects4J [22] in Java language. These follow

prescribed patterns and quickly become outdated, unable to

represent the complexity of real-world CVEs. Although built

around the Common Weakness Enumeration (CWE) to provide

reasonable, well-defined examples, they cannot capture the

nuances of most vulnerabilities. Some works collect datasets

from real CVEs and make complex processes to filter the

suitable ones. For instance, Ruohonen [49] targets Python

and collects samples from popular repositories and Linares

et al. [50] analyze Android apps. These narrow scopes limit

the types of vulnerabilities and coding patterns addressed,

impeding holistic analysis. However, these works usually focus

on particular programming languages or codebases, lacking

diversity.

While static analysis shows promise for detecting vulnera-

bilities at scale, evaluating tools remains challenging due to

the lack of comprehensive benchmarks reflecting the diversity

of real-world bugs. Real CVEs offer a rich source for dataset

generation but are difficult and time-consuming to gather and

curate. Progress in static analysis thus depends on developing

datasets that mirror the heterogeneity of vulnerabilities in real

code. Automated or semi-automated methods for collecting

and labeling examples from a wide range of open-source

repositories directly show potential for advancing research and

practice in this crucial area of software security, which is the

focus of our work.

C. Large Language Models for Code

Recently, significant advancements in SE research have been

brought by Large Language Models (LLMs), which brought

impressive improvements in a wide range of code-related

tasks. One notable model is Incoder [51], which employs a

causal masking training objective to excel in code infilling

and synthesis. Another popular model is Codex [52], a sizable

pre-trained code model introduced by OpenAI, which supports

the Copilot service on various code-related tasks [53]. The

models recently released by OpenAI, such as ChatGPT [54]

and GPT-4 [55], are also pre-trained with source code data and

show remarkable programming capabilities. AlphaCode [56]

has been specifically trained for generating code for pro-

gramming competitions like Codeforces. CodeCMR [57] and

IRGEN [58] are pre-trained models designed for low-level

code on various code-related tasks. CodeGen [59] is a large

pre-trained model for multi-turn program synthesis with more

than 16B parameters, while CodeGeeX [60] is a recently

proposed open-source multilingual code generation model

with 13 billion parameters. BigCode Project has developed and

open sourced StarCoder [61] which contains 15.5B parameter.

A recent work WizardCoder [62] is fine-tuned with Evol-

Instruct and achieves state-of-the-art performance surpassing

all existing open-source Code LLMs.

In-context learning (ICL) [63], [64] is a recent paradigm that

enables LLMs to learn from just a few examples without fine-

tuning. It concatenates a few input-output examples with the

query question to form an input for the language model and get

the prediction. Recently, there has been increasing interest in

applying in-context learning to code-related tasks [39], [65]–

[67]. CEDAR [66] retrieves similar examples and constructs

the demonstrations for assert generation and program repair.

Synchromesh [68] retrieves few-shot examples by Target

Similarity Tuning and samples programs using Constrained

Semantic Decoding. A recent work [69] empirically studies

the impact of three demonstration construction factors on in-

context learning in code intelligence tasks. Geng et al. [70]

enhance in-context learning for multi-intent code comment

generation by selecting similar examples and re-ranking the

output candidates. Ahmed et al. [71] propose to incorporate
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static analysis results into the in-context prompt to code

summarization.

III. WORKFLOW

Fig. 1 presents our pipeline for collecting real-world vulner-

abilities and constructing the dataset. Our pipeline consists of

three steps: � CVE capturing and collection. To address the

limitations of current benchmarks, we gather recent real-world

vulnerabilities from CVEs that have been newly disclosed,

including related bug reports and source code. We use an

automated crawler to collect the latest CVEs and then filter

out irrelevant ones based on metrics like CVSS scores. �
LLM message supplementation. To account for uneven commit

message quality and potential bias, we leverage the ability of

large language models [72] to generate vulnerability expla-

nations for each commit. Following standard bug description

guidelines [73], we design a prompt for the vulnerability expla-

nations using advanced LLM, enabling the model to formulate

consistent, unified messages through contextual learning. �
Dataset analysis. We introduce metrics to assess our dataset’s

quality and compare it with current benchmarks to deter-

mine effectiveness in supporting existing tools. We analyze

the generated messages and compare them with committed

information to evaluate our approach. Finally, we conduct

human studies to assess the quality of the generated messages.

To evaluate the effectiveness of our approach to collect

code vulnerability and the quality of our proposed dataset,

we investigate the following three research questions (RQs):

RQ1: What is the advantage of our dataset compared to

existing benchmarks?

RQ2: To what extent the prompt design affects the gener-

ated message?

RQ3: How are the generated messages in alignment with

experts?

Specifically, we analyze our collected dataset and compare

it with current benchmarks to explore whether it is effective

and diverse in RQ1 (in Section IV-A). As we use the code

understanding ability of LLM, in RQ2 we further study how

the prompt would affect the performance of generated bug

explanation compared to the commit information in Section

IV-B. Finally in RQ3, by comparing the patches we collected

as well as the generated message, we study to what extent

humans are in agreement with the generated code explanation

as discussed in Section IV-C.

Notably, we focus on a wide variety of vulnerabilities

across various languages and platforms, not only including

the commonly-seen pattern bugs occur at the function level

or statement level, but also the complex vulnerabilities across

multiple files and functions, which we believe is more chal-

lenging for the current tools to detect and can better benefit

the community.

A. Data Collection

Creating an exhaustive dataset including real-world code

snippets with vulnerabilities, fixes, locations, and types is

challenging, let alone including vulnerability explanations.

To develop a dataset reflecting real-world scenarios, we first

gather real-world vulnerabilities from multiple sources, includ-

ing the NVD database and CVE list maintained by Mend [74],

which is a comprehensive open-source vulnerabilities database

from hundreds of both popular and under-the-radar community

resources. Users can also specify additional sources as needed.

If a vulnerability has a clear report, proof-of-concept, and

publicly available source code before and after fixing, we

collect the related bug reports and source code, and store them

in our raw dataset. Notably, it would be possible that a single

vulnerability may be linked to multiple commits and files; we

gather all related commits and files accordingly.

As shown in Fig. 1, we design a filter to remove less severe

vulnerabilities from the raw dataset. We first eliminate those

with a low CVSS score which indicates relatively low impact

and damage potential. We then assign a “fix score” based on

the number of related commits and a weighted score to each

commit based on the number of files modified. Vulnerabilities

with low “fix scores” are excluded from the final dataset.

To expand the dataset’s potential applications and adapt it

for various downstream tasks, we incorporate disclosure date

information for each item. Specifically, we keep the complete

CVE name indicating when each vulnerability was disclosed

and assigned a unique number. Users preferring more recent

data can easily filter out vulnerabilities disclosed during a

given time period.

B. LLM Message Supplementation

To construct a comprehensive, informative dataset, vulnera-

bility descriptions are crucial since they provide rationale and

fix details, helping downstream tools better understand vul-

nerabilities. This is especially useful for data-driven methods,

as natural language is easier to comprehend than code [75].

However, commit messages are not always available and may

be uninformative, biased [76], or misleading [26] in explaining

vulnerabilities. Worse yet, the existing commit messages could

be missing, impairing downstream approaches. To address this,

we leverage large language models to generate vulnerability

explanations for each commit. Following standard bug descrip-

tion guidelines [73], we empirically design a prompt for the

vulnerability explanations using advanced LLM, enabling the

model to formulate consistent, unified messages through in-

context learning.

After collecting the responses from the large language

model, we further conduct a human inspection to evaluate

whether the generated message is in alignment with experts

and whether it is informative enough to explain the vulnera-

bility. Only the generated message that is in agreement with

the experts would be included in the final dataset.

We provide a complete list of field names for our col-

lected dataset in Table I. The fields can be categorized into

four groups: (1) metadata, (2) vulnerability information, (3)

LLM-enhanced information, and (4) project information. The

metadata describes the programming language and index for

each data item. The vulnerability information contains CVE

details documenting the real-world impact of the bugs. The
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Vulnerability Database

Candidate
Vulnerabilities

Severe
Vulnerabilities

High-Quality
Fix Commits

CVSS
Filtering

Fix Score
Filtering

GitHub Source Repos

Commit
Fetching

Data Collection Commit Message
Generation

Large Language
Models

Prompts

In-context
Learning

Generated Commit
Message

Aligned Commit
Message

Human
Evaluation

+

High-Quality
Fix Commits

Verified Fix Commits

Static
Analysis

Statistical
Analysis

Dataset Analysis

Index: 1
CVE ID: 
CVE-2023-0415
Language: C
CVSS: 6.5
....

Index: 2
CVE ID: 
CVE-2023-0341
Language: C
CVSS: 7.8
....

Dataset

Fig. 1. The pipeline of our REEF for gathering vulnerabilities, enriching data, and analyzing the dataset.

@@ -140,8 +140,10 @@ 
AP4_AtomSampleTable::GetSample(AP4_Ordinal index,
AP4_UI32 cts_offset = 0;
AP4_UI64 dts = 0;
AP4_UI32 duration = 0;
// Omitted for brevity

sample.SetDuration(duration);
sample.SetDts(dts);
if (m_CttsAtom == NULL) {
// Omitted for brevity

+ if (m_SttsAtom) {
+ result = m_SttsAtom->GetDts(index, dts, &duration);
+ if (AP4_FAILED(result)) return result;
+ }

- result = m_SttsAtom->GetDts(index, dts, &duration);
- if (AP4_FAILED(result)) return result;

Patch

Original Patch Message
Fix for #183

The given patch for CVE-476 addresses a 
potential vulnerability in the 
AP4_AtomSampleTable class by ensuring that 
the GetSample() method correctly calculates 
the duration of a sample.

LLM Patch Message

Basic Information (part)
CVE_id: CVE-2017-14640
CWEs: [CWE-476]
CVSS: 6.5
Language: C++

Fig. 2. Example of data instance with enhanced patch messages.

LLM-enhanced messages are generated descriptions of the

vulnerabilities.

The project information stores data on the code repositories

mined for bugs, including website details. In summary, our

dataset incorporates comprehensive metadata, security details,

generated explanatory messages, and provenance information

to enable in-depth analysis of real-world vulnerabilities. The

multi-faceted data provides insights into vulnerability proper-

ties, remediation, language model performance, and codebase

characteristics.

C. Dataset Analysis

To rigorously evaluate our dataset’s quality, we conduct an

exhaustive analysis. Conceptually, we compare our dataset

to current benchmarks across several axes: supported pro-

gramming languages, fixing information integrity, granularity,

data source, corpus size, and CWE coverage, respectively.

A comparative analysis along these dimensions provides a

holistic sense of relative strengths. A systematic assessment of

vulnerability type diversity examines coverage of the Common

Weakness Enumeration (CWE). We posit that a dataset exhibit-

ing a wider range of CWE types affords more comprehensive

vulnerability modeling, with greater potential to generalize

across systems. By comparing the number of CWE types,

we gain quantitative insight into our dataset’s diversity. We

further evaluate the challenge to current tools using Sem-

grep [8], a ubiquitous query-based static analysis tool, to

detect vulnerabilities in our dataset. A higher proportion of

vulnerabilities evading detection suggests greater resilience

against existing methods, indicating the dataset poses a more

TABLE I
DESCRIPTION OF FIELDS IN THE JSON FILE OF OUR DATASET.

Field Name in JSON Description

Metadata

index The index of the instance in the dataset

language The programming language of the instance

Vulnerability Information

cve_id The identifier of CVE that the instance belongs to

cvss The CVSS score reflecting the severity of the CVE

cwes The CWEs, i.e., the common weaknesses in the CVE

LLM-enchanced Information

llm_message The commit message generated by LLMs

Project Information

origin_message The original commit message

url The URL of the commit on GitHub REST API

html_url The URL that locates the webpage of the commit

raw_url The URL of the source file changed in the commit

raw_code The source code of the file changed in the commit

formidable evaluation benchmark. Missed vulnerabilities point

to remaining gaps in vulnerability modeling and detection that

the dataset could help address through continued research. Fi-

nally, we conduct an in-depth statistical analysis of our dataset

itself to glean qualitative details that inform future work.

Summary statistics on parameters like vulnerabilities’ average

severity and exploitability, bug fix length, and explanation

shine a light on real-world characteristics underrepresented in

synthetic data. A granular exploration of attributes exposes

new problem dimensions beyond the capabilities of simplified

synthetic benchmarks.

These complementary analyses, systematically connected

through a logical pipeline, provide empirical evidence and

qualitative characterization to demonstrate our dataset’s diver-

sity, challenge, and fidelity in emulating real-world scenarios.

The rigor and depth of our evaluative approach underline

the dataset’s potential to serve as a foundation for future

research advancing the state of the art in software vulnerability

detection and automatic program repair.
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IV. EVALUATION

A. RQ1: What is the advantage of our dataset compared to
existing benchmarks?

Conceptual comparison. We first conduct a conceptual com-

parison between our selected dataset and current datasets, in

which we compare the differences during the dataset collection

process, including the multi-language support, fix information,

location, related message, granularity, source, and size.

As shown in Table II, our dataset has the following ad-

vantages compared to current benchmarks: (1) Detailed fix

information. Compared to other benchmarks that only include

fix patterns, our dataset contains detailed fix information,

including the bug location and fix information. (2) Multi-

language support. Different from the existing datasets that

focus on specific languages, ours incorporate vulnerabilities in

multiple languages, including C/C++, Java, C#, and Python.

(3) Multi-level granularity. Our dataset contains vulnerabilities

at multiple levels, including function-level, statement-level,

and expression-level. (4) Real-world CVE. The dataset we

collected contains real-world CVEs, which are more repre-

sentative than synthetic vulnerabilities. (5) Large-scale. A vast

volume of 30,987 vulnerability patches enables robust statis-

tics and enhances machine learning via increased instances,

far more than other benchmarks’ limited samples.

In summary, at the conceptual level, our dataset is more

comprehensive and representative than existing ones.

Dataset coverage. As discussed in Sec. III-C, we further ana-

lyze the coverage of Common Weakness Enumeration (CWE)

types in our dataset compared to other benchmarks. Our

hypothesis is that a dataset exhibiting a wider range of CWE

types will enable more comprehensive vulnerability modeling

with greater potential for generalization across systems.

As shown in Table II, our dataset covers more CWE types

than all other benchmarks. Due to the limitation of space,

we only show the total number of all CWE types across

languages, but our dataset covers more CWE types even when

focusing on one specific language. For example, our dataset

covers 134 CWE types in C/C++, while Juliet-C++ benchmark

only covers 118 CWE types. Notably, it would be hard to

estimate a clear number of potential CWEs in a specific

language, since some of the CWEs are not language-specific.

However, we can still observe that our dataset covers more

CWE types than other benchmarks, which indicates that our

dataset provides more comprehensive vulnerability coverage

compared to existing benchmarks.

Beyond CWE coverage analysis, we also evaluate detected

CWE coverage using a static analysis tool. The intuition is

that a lower proportion of successfully detected vulnerabilities

suggests a more challenging dataset, as existing flaws are

harder to discover with standard tools. Such difficulty high-

lights the potential utility of advanced models. Specifically,

we use Semgrep [8], a popular query-based static analysis

tool, to detect potential vulnerabilities. We use its default

ruleset, which contains 1,088 rules for Java, 655 rules for

Python, and 133 rules for JS, to detect vulnerabilities in our

dataset and other benchmarks. Defects4J only provides code

patches, which makes analyzing it difficult. Consequently,

we do not compare our benchmark with Defects4J. Juliet-

C++ has a notably high detection rate at 35.7%, presumably

because it is a synthetic dataset. LinuxFlaw and FUNDED, the

benchmarks containing real-world CVEs, have substantially

lower detection rates of 2.2% and 4.0%, respectively. In

contrast, our dataset has an even lower detection rate of 1.2%,

indicating that our dataset poses a more challenging problem.

This is likely due to the fact that our dataset comprises more

recent and intricate real-world vulnerabilities mined from up-

to-date CVEs. Consequently, defects in our dataset may be

more difficult to be detected using current approaches.

In summary, our collected dataset covers more CWE types

and is more challenging for standard static analysis tools to

assess, suggesting it is more comprehensive and representative

than existing benchmarks. The broader range of hard-to-

detect vulnerabilities in our dataset could support more robust

vulnerability modeling and lead to repair systems with stronger

generalization ability.

Dataset statistics. We first analyze the statistics of our col-

lected dataset. As shown in Table III, our dataset contains 4466

vulnerabilities across seven languages. For each vulnerability,

we report the average number of changed files, patch numbers,

and changed lines of code, with results shown in the table.

These results demonstrate that Java and C# vulnerabilities are

substantially more complex than those in the other languages,

with average values for all metrics nearly double those of the

other languages. This aligns with our expectation that these

are usually served as Object-Oriented (OO) languages, and

appear more compact in the coding specification. Moreover,

we observe that C language still consists of a large proportion

of vulnerabilities, which indicates that (1) C language is still

widely used in practice. (2) The unfamiliarity with the C

language leads to ongoing vulnerability discovery. As an old

language compared to Python, the language abstraction of C

is relatively low, and developers need to manage memory

manually (e.g. buffer overflows and memory leaks). This

feature makes C language more error-prone, which leads to

a large number of vulnerabilities.

Beyond analysis at the source code level, we also examine

our dataset in terms of vulnerability types. As shown in

Fig. 3, the top 15 CWE types constitute over 55% of our

dataset, indicating it is comprehensive and representative.

We also observe that Java and Python have similar CWE

type distributions, while C/C++ has a distinct distribution.

The top five CWE types are CWE-79 (Cross-Site Scripting),

CWE-125 (Out-of-bounds Read), CWE-787 (Out-of-bounds

Write), CWE-20 (Improper Input Validation), and CWE-119

(Improper Restriction of Operations within the Bounds of

a Memory Buffer). It is unsurprising that the dataset over-

represents these CWE types, which are archetypical examples

of memory-related vulnerabilities. Overall, these statistics sug-

gest that our dataset effectively samples from the space of

vulnerabilities and contains a diversity of complexity levels

and types, especially for C/C++ and low-level languages.

1957

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 23,2023 at 10:02:52 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II
COMPARASION OUR COLLECTED DATASET AND CURRENT BENCHMARKS�, ♦,� DENOTE SUPPORT, PARTIALLY SUPPORT, AND NOT SUPPORT,

RESPECTIVELY.

# Sup language Fix information location Related Msg Granularity Source Size # CWE Types

Juliet-C++ [21] 1 � � � statement-level Synthetic 64,099 118

Defects4J [22] 1 � � � function-level Synthetic 835 -

LinuxFlaw [23] 1 � � � multi-level CVE 368 18

FUNDED [77] 4 � � � function-level Synthetic & CVE 6561 54

Ours 7 � � � multi-level CVE 30,987 236

TABLE III
STATISTICS OF OUR COLLECTED DATASET.

Languages # Case # Func # Avg diff file # Avg patch # Avg COL
C++ 411 2244 2.88 5.46 86.81
C 1575 6957 2.14 4.42 62.97
Java 541 6207 5.74 11.47 297.13
Python 863 5797 3.26 6.72 113.2
JS 636 5066 4.26 7.97 130.32
Go 355 3187 4.54 8.98 195.43
C# 85 1529 8.98 17.99 201.29
Total 4466 30987 4.54 9.0 155.30

Fig. 3. Top-15 CWE types of our dataset.

Finding 1: REEF, the framework we propose to collect the

code vulnerabilities, considers more aspects than existing

benchmarks, which in turn makes the dataset more practical

to the real world. Through comprehensive analysis, we

demonstrate that our dataset covers more CWE types and is

more challenging than other benchmarks, indicating its com-

prehensiveness and representativity than other benchmarks.

B. RQ2: To what extent does the prompt design affect the
generated message?

We answer RQ2 from two aspects. First, we conduct a pilot

study on C/C++ projects to analyze the generated message

from the perspective of their basic understanding of vulnera-

bilities and fix records. Second, we generate the message by

using three commonly-used prompt patterns and compare them

with the original message.

Pilot Study. Inspired by [78], we list the investigated LLMs

in Table IV. We use GPT-Neo [79], Llama-7B, and Llama-

13B [80] fine-tuned on Alpaca [81] and released by LM-

Flow [82]. Vicuna is Llama-based and fine-tuned on user-

TABLE IV
LLMS USED IN THE EXPERIMENT, WITH PLAUSIBILITY COUNTS FOR

“COMPLETELY TRACEABLE”, “SOMEWHAT TRACEABLE” AND

“NON-TRACEABLE” LABELS. THE SYMBOL “-” DENOTES THAT THE

CORRESPONDING STATISTIC IS UNKNOWN.

Model Vendor Year # Para. Traceability
GPT-Neo [79] EleutherAI 2021 2.7B 5/3/7
Llama-7B [80] Meta 2023 7B 5/6/4
Llama-13B [80] Meta 2023 13B 7/4/4
ChatGLM [83] THU 2023 6B 10/4/1
Vicuna [84] BAIR 2023 13B 13/0/2
ChatGPT [54] OpenAI 2022 - 13/1/1
Tongyi [85] Alibaba 2023 - 13/1/1
GPT-4 [55] OpenAI 2023 - 15/0/0

shared conversations. ChatGLM [83] and Vicuna [84] models

use official code. We also include commercial LLMs Chat-

GPT [54] and GPT-4 [55]. To make a fair comparison, we use

the same prompt for all models. Moreover, we randomly select

15 CVE cases from C/C++ vulnerabilities. After generating

the message, we manually label the message as “completely

traceable”, “somewhat traceable” and “non-traceable”. Where

if the message incorporates the information in the CVE patch

or the vulnerability rationale, we label it as “completely

traceable”; if the message incorporates the information in the

CVE patch or the vulnerability rationale partially, we label

it as “somewhat traceable”; otherwise, we label it as “non-

traceable”.

From the results, we observe that ChatGPT and Tongyi gain

competitive performance in generating messages that are trace-

able to the CVE patch or the vulnerability rationale besides

GPT-4. Considering the limitations of APIs’ accessibility and

academic resources, we use Tongyi as the baseline model in

the following experiments.

Prompt pattern comparison. Notably, we only generate

one summarization message for each CVE, regardless of the

number of commits and files. It could be the situation that one

CVE contains multiple commits and files, which means the

generated message is a summarization of all the commits and

files. However, since the input token length is limited, we set

the maximum number of generated explanation tokens to 256.

Once the input surpasses the limit, we truncate the input and

generate the message based on the truncated input. Users can

increase this number to generate more detailed explanations if

needed.

Besides the token length, the prompt pattern is also a key

point. It has been demonstrated that the output performance for

code-related tasks is largely influenced by the type of prompt
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Fig. 4. Example of the prompt we used to query large language models.

pattern [86]. Specifically, we select 20 cases to generate

messages based on the three prompt patterns, named “Zero-

shot”, “One-shot” and “Few-shot”.

The prompts used to generate patch messages in the zero-

shot setting are presented in Figure 4. For one-shot and few-

shot prompts, we give the large language model one or a few

human-authored examples to guide the model in generating

high-quality patch messages. Here we do not consider the

Chain-of-thought [87] pattern since no suitable rationale for

code is available. For each prompt pattern, we generate the

message based on the CVE patch and the vulnerability ra-

tionale. We then invite five experts to evaluate the generated

message based on the following criteria:

• Comprehensiveness: whether the message is comprehen-

sive enough to explain the vulnerability and fix.

• Consistency: whether the message is consistent with the

CVE patch and the vulnerability rationale.

• Traceability: whether the message is traceable to the

CVE patch and the vulnerability rationale.

Each expert is asked to give a score range of 0 to 1 to

demonstrate the generated quality regarding the corresponding

criteria. After collecting the evaluation results, we calculate the

average score for each prompt pattern. The results are shown

in Table V. From the results, we observe that the “Few-shot”

pattern achieves the highest score in all three criteria, while

the “One-shot” pattern shares competitive results. As a trade-

off between the performance and computation cost, we adopt

“One-shot” as the default prompt pattern in this work.

TABLE V
PROMPT PATTERN COMPARISON.

Prompt Pattern Comprehensiveness Consistency Traceability
Zero-shot 0.65 0.7 0.6
One-shot 1.0 0.95 0.95
Few-shot 1.0 1.0 0.95

Finding 2: Large language models differ in their ability to

generate vulnerability explanations traceable to source code

and rationale. Tongyi and GPT models excelled in a pilot

study, while a “one-shot learning” prompt achieved a satis-

fying performance for generating comprehensive, consistent,

and traceable explanations in a prompt pattern comparison

with an affordable query budget.

C. RQ3: How are generated messages in alignment with
experts?

To answer RQ3, we first present statistics comparing our

generated messages to the original commit messages. We

then conduct a human evaluation to assess the quality of

our generated messages relative to the corresponding commit

messages.

Statistics comparison We report statistics for our generated

messages and the original commit messages in Table VI. On

average, our generated messages contain 397.08 characters,

1.92 times more than the original commit messages. Moreover,

the median length of our generated messages is 356, also

higher than for the original commit messages. We attribute

this to the fact that original commit messages are written

by developers with varying perspectives and goals, yielding

greater diversity than our generated messages.

Notably, some original commit messages are of low quality

for two reasons: (1) They are auto-filled by the GitHub

platform. (2) They are too short (less than 20 characters.) We

count the number of these low-quality commit messages and

report them in the “Lcmsg” column of Table III. Of the original

commit messages in our dataset, nearly 5% of messages are

viewed as of low quality. They are unsuitable for providing

informative vulnerability explanations and were thus excluded

from our analyses, further motivating our work to generate

comprehensive, high-quality vulnerability explanations.

The statistics demonstrate that our generated messages are

substantially more detailed and consistent than the origi-

nal commit messages. The higher word count suggests our

messages provide more structured and in-depth vulnerability

explanations overall compared to original commit messages,

which are often quite brief and arbitrary. The filtering of low-

quality messages is also prudent, as their inclusion could skew

the statistics and make the dataset unsuitable for modeling.

These results thus indicate we achieve our aim of generating

high-quality, comprehensive vulnerability explanations.

Human Study. We conduct a human evaluation to assess the

quality of the generated messages. We recruit five experts,

including two industrial developers and three academic re-

searchers with expertise in software vulnerability detection,

as participants. We randomly select 40 samples and create an

online questionnaire for them. For each sample, we provide

two messages without specifying their origin. On a scale of 1

to 5 (1 being completely unsatisfactory, 5 being fully satisfac-

tory), participants score each message. To ensure participants

understand the task, we include five sanity check (SC) test

items, considering only participants who answer all SC items

correctly. Each participant evaluates 35 real samples and five
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TABLE VI
STATISTICS OF OUR GENERATED MESSAGE AND THE ORIGINAL COMMIT

MESSAGE.

Languages # Case # Lcmsg # Acmsg (Med.) # Agmsg (Med.)
C++ 411 21 234.93 (156) 415.02 (364)
C 1,575 122 380.0 (148) 389.78 (351)
Java 541 38 152.63 (68) 399.51 (356)
Python 863 36 204.11 (125) 408.19 (363)
JS 636 60 123.74 (57.0) 382.84 (346.0)
Go 355 20 237.68 (86) 401.15 (376)
C# 85 3 109.85 (52) 383.13 (340)
Total 4,466 300 206.13 (98.85) 397.08 (356.57)

SC items; we assign each sample to five participants. All

participants pass the SC, taking an average of 35 minutes.

The human evaluation finds an average score of 3.05 for

original messages and 3.70 for generated messages, a 21.31%

relative gain. Analysis of all responses shows that for 7.14%

of cases, the generated message seems worse, while for the

remaining 92.86%, the generated message is equal to or better

than the original. The Fleiss’ Kappa [88] of 0.92 indicates

“almost perfect agreement” between participants. These results

suggest the generated messages are well-aligned with expert

assessments and higher in quality than the original commit

messages. The small minority of cases where the generated

message seems inferior could be anomalous or reflects subtle

aspects not captured in our message-generation approach.

But the overwhelming expert preference for the generated

messages, further evidenced by strong inter-rater agreement,

indicates their quality is superior overall.

Finding 3: Our generated vulnerability explanations are

of superior quality to original commit messages according

to both expert human evaluations and quantitative message

statistics. Though a small fraction of generated messages

are inferior, experts overwhelmingly prefer our generated

explanations, indicating they are well-aligned with human

assessments of explanation quality.

V. DISCUSSION

Limitations and Threats to Validity. We now discuss the

validity and limitations of this work. In this research, we

collect the dataset from the real-world CVEs where the open-

source projects are hosted on GitHub. However, not all open-

source projects are hosted on GitHub, and we may miss some

projects that are hosted on other platforms. Moreover, since

we only collect the CVEs from 2016, the previous CVEs are

not included in our dataset. This may cause bias in the dataset,

as some of the critical vulnerabilities may be discovered and

fixed in previous years. In addition, we only collect the CVEs

that are fixed by the developers. However, some CVEs are not

fixed by the developers, or the developers have already fixed

the vulnerabilities but did not report or confirm the CVEs. In

summary, our collection framework tried to collect the CVEs

as much as possible, but it is still possible that some CVEs

are missing in our dataset, where future work can improve.

Message bias. In this work, we leverage the code understand-

ing ability of large language models to generate additional

messages for the collected vulnerabilities. Although we have

specified strict rules as well as a dedicated designed prompt

system, and our human evaluation shows that the generated

messages are of high quality, some of the generated messages

may still be biased or unsatisfactory. For example, when the

input code snippet is either too long or too short, the generated

message may not be as good as the other cases. However,

their superior ratings compared to original commit messages,

as assessed by experts, indicate they still achieve the aim

of producing informative vulnerability explanations, even if

imperfect. Moreover, the quality of generated messages can

be further improved with the help of more advanced language

models.

VI. CONCLUSION

In this paper, we propose a novel and practical approach to

collect the real-world CVEs with detailed information auto-

matically, and we leverage the code understanding ability of

large language models to generate additional messages for the

collected vulnerabilities. Our framework successfully collects

4,466 CVEs from 2016 to 2023 and incorporates 30,987

messages for the collected patches. The collected dataset has

been evaluated by the developers, and the results show that

the generated messages are of high quality and can help the

developers to understand the vulnerabilities. This work serves

as a roadmap for researchers to construct better data-driven

bug detection and auto-fix techniques.
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