
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/2309804

Some Coupling Measures for C++ Programs

Article · October 1999

Source: CiteSeer

CITATIONS

14
READS

173

2 authors, including:

Some of the authors of this publication are also working on these related projects:

Distractor Generation View project

Question Generation View project

Michael R. Lyu

The Chinese University of Hong Kong

757 PUBLICATIONS 30,360 CITATIONS

SEE PROFILE

All content following this page was uploaded by Michael R. Lyu on 20 November 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/2309804_Some_Coupling_Measures_for_C_Programs?enrichId=rgreq-7c11af20f5afbad7e768a9bb6eeb4ed6-XXX&enrichSource=Y292ZXJQYWdlOzIzMDk4MDQ7QVM6MTY1NTc1ODk2NjA4NzcwQDE0MTY0ODc3Nzg3ODI%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/2309804_Some_Coupling_Measures_for_C_Programs?enrichId=rgreq-7c11af20f5afbad7e768a9bb6eeb4ed6-XXX&enrichSource=Y292ZXJQYWdlOzIzMDk4MDQ7QVM6MTY1NTc1ODk2NjA4NzcwQDE0MTY0ODc3Nzg3ODI%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Distractor-Generation?enrichId=rgreq-7c11af20f5afbad7e768a9bb6eeb4ed6-XXX&enrichSource=Y292ZXJQYWdlOzIzMDk4MDQ7QVM6MTY1NTc1ODk2NjA4NzcwQDE0MTY0ODc3Nzg3ODI%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Question-Generation?enrichId=rgreq-7c11af20f5afbad7e768a9bb6eeb4ed6-XXX&enrichSource=Y292ZXJQYWdlOzIzMDk4MDQ7QVM6MTY1NTc1ODk2NjA4NzcwQDE0MTY0ODc3Nzg3ODI%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-7c11af20f5afbad7e768a9bb6eeb4ed6-XXX&enrichSource=Y292ZXJQYWdlOzIzMDk4MDQ7QVM6MTY1NTc1ODk2NjA4NzcwQDE0MTY0ODc3Nzg3ODI%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Michael-Lyu?enrichId=rgreq-7c11af20f5afbad7e768a9bb6eeb4ed6-XXX&enrichSource=Y292ZXJQYWdlOzIzMDk4MDQ7QVM6MTY1NTc1ODk2NjA4NzcwQDE0MTY0ODc3Nzg3ODI%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Michael-Lyu?enrichId=rgreq-7c11af20f5afbad7e768a9bb6eeb4ed6-XXX&enrichSource=Y292ZXJQYWdlOzIzMDk4MDQ7QVM6MTY1NTc1ODk2NjA4NzcwQDE0MTY0ODc3Nzg3ODI%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/The_Chinese_University_of_Hong_Kong2?enrichId=rgreq-7c11af20f5afbad7e768a9bb6eeb4ed6-XXX&enrichSource=Y292ZXJQYWdlOzIzMDk4MDQ7QVM6MTY1NTc1ODk2NjA4NzcwQDE0MTY0ODc3Nzg3ODI%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Michael-Lyu?enrichId=rgreq-7c11af20f5afbad7e768a9bb6eeb4ed6-XXX&enrichSource=Y292ZXJQYWdlOzIzMDk4MDQ7QVM6MTY1NTc1ODk2NjA4NzcwQDE0MTY0ODc3Nzg3ODI%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Michael-Lyu?enrichId=rgreq-7c11af20f5afbad7e768a9bb6eeb4ed6-XXX&enrichSource=Y292ZXJQYWdlOzIzMDk4MDQ7QVM6MTY1NTc1ODk2NjA4NzcwQDE0MTY0ODc3Nzg3ODI%3D&el=1_x_10&_esc=publicationCoverPdf

Some Coupling Measures for C++ Programs

Chandrashekar Rajaraman Michael R. Lyu
CS Department Information Sciences and Technologies Research Lab.

The University of Iowa Bellcore, Morristown
<rajar@cs.uiowa.edu> <lyu@bellcore.com>

Abstract

There is a great deal of "hype" about the object-
oriented paradigm offering all the solutions to the
problems of software engineering. Goals of
software engineering like reliability, maintaina-
bility, and reusability are said to be more easily
achieved using this paradigm, than with tradi-
tional ones based on functional decomposition. In
order to monitor whether these goals are indeed
being achieved, appropriate measures are neces-
sary. Widely used complexity metrics like lines
of code, cyclomatic complexity, and Software
Science’s metrics may not be appropriate, since
they do not address object-oriented concepts like
inheritance and encapsulation, apart from having
other weaknesses. We consider one attribute of
object-oriented software - coupling - and define
some measures based in measurement theory.
Though these measures have been defined pri-
marily for C++, they could be extended to other
object-oriented languages. We then computed the
measures for five large (by university standards)
C++ software, and studied their correlation with
the difficulty of maintenance as perceived by the
developers of the software. Our preliminary
results show that our coupling measures correlate
better with difficulty of maintenance than the
three widely used complexity metrics.

I. Introduction

The object-oriented paradigm is revolution-
izing software engineering, by providing a new
and potentially better way to analyze a problem,
design a solution, and implement it. Many goals
of software engineering like maintainability, reli-
ability, and reusability, are said to be more easily
achieved using this paradigm than with tradi-
tional ones based on funtional decomposition.
According to Biggerstaff ([Bigge 87]), this para-
digm has a good balance between power and gen-
erality. In his framework, procedural-based solu-
tions are also depicted having a good balance, but
are considered less effective than object-oriented
(abbreviated as OO hereafter) solutions. Encap-
sulation capabilities create self-contained objects
that are easily incorporated into a new design,
thus promoting reusability [Kerni 84]. One study
determined that the object-oriented approach is
quantitatively more beneficial than a procedural
one in terms of software maintenance ([Henry
90], [Mancl 90]).

Some important questions that must be
answered at this juncture are: what makes the
object-oriented paradigm different from earlier
paradigms, how do these differences help in
achieving the goals of software engineering more
easily, and are these goals really being achieved
as claimed? In order to answer the italicized
question, the ability to measure is needed, for
which appropriate measures are required [Denic
81].

Some previous work has recognized the
shortcomings of extant metrics and the need for
new metrics for object-oriented software. Some
empirical suggestions have been made, but little
work ([Chida 91]) has been done to define
metrics with a sound theoretical foundation. In

- 2 -

this paper, we will define four measures of cou-
pling primarily for C++ software, though they
could be extended to other object-oriented
languages:

(1) Class Inheritance-related Coupling (CIC)
(2) Class Non-Inheritance-related Coupling (CNIC)
(3) Class Coupling (CC)
(4) Average Method Coupling (AMC)

The organization of this paper is thus: Sec-
tion II criticizes the three most widely used
metrics as to their aptness for object-oriented as
well as traditional software. Section III provides
some background about the foundations of
software measurement. Section IV defines our
coupling measures. Section V deals with our
validation approach. Section VI deals with the
collection of raw data. Section VII presents the
preliminary results of our study. Section VIII
contains our conclusions, and future research
direction. We will use "member function" and
"method" interchangeably.

II. A Criticism of Widely Used Complexity
Metrics

There are two types of criticisms that can
be applied to current software metrics for object-
oriented software. In the first category, we have
those that are directed against conventional
metrics that are applied to conventional, non-OO
software design and development. They are criti-
cized for having no firm theoretical bases ([Vesse
84], [Kearn 86]), and for failing to display "nor-
mal predictable behavior" [Weyuk 88]. Weyuker
defined a set of nine properties to serve as the
basis for the evaluation of syntactic software
complexity measures, which she used to evaluate
cyclomatic complexity, statement count,
Oviedo’s data flow complexity ([Ovied 80]), and
Halstead’s effort measure. Her study found seri-
ous drawbacks with all four metrics.

The second type of criticism that can be
applied to current software metrics is specific to
object-oriented design and development. In the
object-oriented approach, data and procedures are
not separated as they are in the older, conven-
tional approaches that take a function-oriented
view that clearly separates data and procedures.

Once we consider the different notions behind
these two views, it is not very surprising to dis-
cover that none of the traditional metrics
addresses concepts like inheritance, encapsula-
tion of procedures and data, and passing of mes-
sages.

(1) statement count

It is a very intuitive measure of software
complexity. From an abstract viewpoint, the
more detail that an entity possesses, the more
difficult it is to understand it. That is, the entity
is complex. So, a program (entity) that has 100
statements (details) is inherently more complex
than one that has 10 statements. However, a
drawback is - it is not easy to define what a state-
ment is. Once this definition is made, it is simple
to compute the statement count. Its simplicity is
the major reason for its wide use, despite its other
drawbacks [Weyuk 88]. Statement count views a
program’s components as possessing inherent
complexity regardless of their context in the pro-
gram, this means that it is insensitive to interac-
tions among the program’s various components.

(2) Halstead’s Software Science

Halstead introduced software science to
measure properties of programs [Halst 77]. Using
his notation,

n 1 = number of unique operators
n 2 = number of unique operands
N 1 = total number of operators
N 2 = total number of operands

Then, the program volume V is defined to be

V = (N 1+N 2)log2(n 1+n 2)

The potential volume V* is defined as the
minimum possible volume for a given algorithm.
Programming effort is then defined to be:

E = V 2/V*

The Halstead’s effort measure predicted
that it would take longer to produce the initial
part of the program than the entire program, and

- 3 -

by doing so, serious questions about its use as a
syntactic complexity measure are raised [Weyuk
88].

(3) McCabe’s Number or Cyclomatic Com-
plexity

McCabe ([Mccab 76]) has defined the com-
plexity of a program to be:

v = e − n + 2p

where
e = number of edges in a program flow graph
n = number of nodes
p = number of connected components

A drawback with the cyclomatic complex-
ity is that it rates too many programs as equally
complex, that is, it is not sensitive enough to cap-
ture what might be reasonably considered differ-
ences in program complexity [Weyuk 88]. More-
over, it views a program’s components as pos-
sessing intrinsic complexity, irrespective of their
context in the program. So, it does not account
for interactions among program units.

Nodes are sequential blocks of code, and
edges are decisions causing a branch. It is quite
obvious that the definition of nodes is not granu-
lar enough to account for the complexity of each
statement in nodes in a OO or non-OO program’s
flow graph. For instance, consider two consecu-
tive statements: an object sending a message to
another object, and an assignment statement.
They would both be "lumped" together in a node,
totally ignoring the fact that they differ in their
inherent complexities. Further, if p = 1, then v
= # + 1 where # is the number of predicates in the
program. One of the points of contention (appli-
cable to both OO and non-OO) in this definition
is: How to treat compound predicates ?

A simple count of lines, statements or
"tokens" in any program, whether OO or non-
OO, cannot fully capture its complexity. This is
because, in a program, there is a great deal of
interaction between modules, and in OO
software, you have classes in addition to
modules, adding a dimension to this interaction.
The above three metrics simply ignore such
dependencies, implicitly assuming that each

component of a program is a separate entity. On
the other hand, our metrics attempt to quantify
the interactions among classes assuming that the
interdependencies involved contribute to the total
complexity of the program units, and ultimately
to that of the whole software.

III. Software Measurement Foundations

Most of the software engineering methods
proposed in the last 25 years provide tools, rules,
and heuristics for producing software products
that are characterized by structure [Fento 90].
This structure is present in the development pro-
cess as well as in the products themselves. Its
presence in the products is identified as modular-
ity, low coupling, high cohesion, encapsulation
and others. These are all internal attributes.
Experts in software engineering agree that the
presence of these attributes will ensure the
existence of the external attributes expected by
software users, e.g. reliability, maintainability,
and usability. This is treated almost as an axiom.
Despite the important intuitive relationships that
exist between the internal structure of software
products and their external attributes, there has
been little scientific work to establish precise
relationships between the internal and external
attributes. An important reason for this is that
there is a lack of understanding of how to meas-
ure important internal software attributes of
software products [Fento 90].

Measurement theory provides a relevant
basis for deriving measures of software attributes
[Baker 90]. It gives us a framework for numeri-
cally characterizing intuitive properties or attri-
butes of objects and events. Applying the basic
criteria of measurement theory to software meas-
ures requires the identification and/or definition
of

g attributes of software products and
processes. These attributes need to be
aspects of software that have both intuitive
and well-understood meanings.

g abstractions that capture the attributes.

g important relationships and orderings that
exist between the objects being modelled

- 4 -

and that are determined by the attributes of
the models.

g order-preserving mappings from the models
to number systems.

If all of the above criteria are satisfied, then
the resultant mapping will be called a software
measure. With this background, we will now
define some measures of coupling, primarily for
C++ software, though they can be extended to
other object-oriented languages.

IV. Definition of Our Coupling Measures

Booch has defined object-oriented design as
the process of identifying objects and their attri-
butes, identifying operations suffered by and
required of each object, and establishing inter-
faces between objects [Booch 86]. The design of
objects involves three steps:

1) definition of objects

2) attributes of objects

3) communication between objects

The design of methods involves the
definition of procedures which implement the
attributes and operations suffered by objects. The
design of classes is therefore at a higher level of
abstraction than the traditional procedural
approach which is closer to methods design. The
task of class design makes OO design different
from procedural design.

The fundamental concepts of OO design as
outlined by Booch are shown in Figure 1, and
readers are referred to [Booch 86] for a more
detailed discussion.

Attribute: Coupling

The software attribute that we consider in this
paper is coupling. It has been defined as a meas-
ure of the degree of interdependence between
modules [Press87], and the degree of interaction
between modules [Myers 78]. Though coupling
is a notion from structured design, it is still appli-
cable to object-oriented design - at the levels of
modules, classes and objects. We are concerned
only with coupling between classes.

Coupling for a class has been defined as a
count of the number of non-inheritance related
couplings with other classes [Chida 91]. When
methods of one class use methods or instance
variables of one that belongs to another class
hierarchy, then we have coupling between the
classes. A class with strong coupling - high
interrelation with other classes - is harder to
understand, change, or correct by itself. The
greater the number of couplings, the higher the
sensitivity to changes in other parts of the design.
This makes maintenance more difficult. Coupling
also affects testing. The higher the inter-
object(class) coupling, the more rigorous the test-
ing needs to be [Chida 91]. A measure of cou-
pling would therefore be useful in identifying
parts of a product that are "complex" from the
point of view of maintenance and testing.

There is some clash of interests between
inheritance and coupling. While it is desirable to
have weak coupling between classes, inheritance
promotes coupling between superclasses and
their subclasses, to take advantage of the com-
monality among abstractions. There is no ques-
tion that inheritance is crucial to achieving reusa-
bility and extendibility, apart from being a
powerful modelling tool of key relationships
between concepts in the application domain, but
it has adverse effects on code understandability.
For example, polymorphism - the ability of an
entity to refer at run-time to instances of various
classes - can make code very difficult to under-
stand, especially in a dynamically typed environ-
ment ([Ponde 92], Taenz 89]). In object-oriented
systems that have a small number of large and
deep class hierarchies to exploit reuse, the widely
shared data and functions tend to move up
towards the roots, and you have problems associ-
ated with "global" data and functions. A class
that is low in a class hierarchy will be especially
difficult to modify compared to its parent (and
ancestor classes), since some understanding of
the higher level classes is required. The more a
class references variables and uses methods not
defined in the class, the less self-contained it is.
That is, greater are the dependencies in the class,
clearly, greater is the difficulty of testing and
maintaining the class. Therefore, we define cou-
pling as follows:

- 5 -

"Coupling is a measure of the associa-
tion, whether by inheritance or other-
wise, between classes in a software
product."

Abstraction: Directed Multigraph

The model that we use to study coupling is a
directed multigraph (Figure 2). It is a graph that
may have many arcs between two nodes. Each
node corresponds to a class, and each arc
corresponds to a variable reference or member
function use. For example, in Figure 2, an arc
from A to C signifies that class A makes a refer-
ence to or uses a member function that has been
defined in C.

(1) Class Inheritance-related Coupling and
(2) Class Non-Inheritance-related Coupling

For a class, there are usually two kinds of clients:
objects that invoke operations upon instances of
the class, and subclasses that inherit from the
class. With inheritance, coupling will occur
when a class accesses a variable or uses a
member function defined in a proper ancestor
class. For a class, we define a count of such
accesses and uses as Class Inheritance-related
Coupling (CIC).

A way in which non-inheritance-coupling
can occur is by the use of friends. A friend is
defined as a method typically involving two or
more objects of different classes, whose imple-
mentation for any one class may reference the
private parts of all the corresponding classes that
are also friends. Global variables and functions
also cause non-inheritance- related coupling. For
a class, Class Non-inheritance-related Cou-
pling (CNIC) is defined as a count of the
accesses to variables and uses of member func-
tions that have been defined neither in the class
nor in any of its proper ancestors.

We define Method Coupling (MC) as fol-
lows,

MC = number of non-local ref erences

For a method, we define a non-local reference as
one that references a variable or method not

defined in the class to which the method belongs.
MC is nothing but the sum of inheritance-related
and non-inheritance-related couplings at the
method level.

MC = gv + gf + om + iv

where
gv = # global variable references
gf = # global function uses
om = # messages to other classes
iv = # references to instance variables of other
classes

(3) Class Coupling (CC)

Consider a class C, with methods M 1, M 2, ...
Mn , where MC 1,MC 2,

. . . MCn are the method
couplings (MCs) of the respective methods, then

Class Coupling (CC) of C =
i = 1
Σ
n

MCi

where n is the number of methods belonging to
the class.

It is clear that CC of a class is a count of the
number of non-local references by the class (=
CIC + CNIC). This is equal to the number of
outgoing arcs from the node corresponding to the
class in the multigraph.

(4) Average Method Coupling (AMC):

For a class, this is defined as the ratio of its Class
Coupling to its number of member functions.

AMC = CC /n

where

CC = Class Coupling
n = number of member functions in the class

This measure would provide the average method
couplings of member functions in a class.

V. Validation Approach

All the classes in each of the five software
were ranked by the developers in the order of

- 6 -

perceived difficulty of maintenance. We then
computed CC and AMC for all the classes.
Corresponding values were computed using
LOC, Software Science, and Cyclomatic Com-
plexity. The classes were ranked based on CC
and AMC values, and corresponding values
obtained using the three widely used complexity
metrics. Rank correlations between the
coupling-based ranks and perceived-difficulty
ranks were then computed. The preliminary
results are given in Section VII.

VI. Data Collection

Our main concern was prompt and easy
access to the software developers for many rea-
sons - mainly to obtain perceived-difficulty data.
We also wanted to analyze "real" programs
instead of programs developed in a simulated
environment. We obtained four such software
from the Center for Computer-Aided Design,
Simulation and Design Optimization of Mechani-
cal Systems (CCAD) at the University of Iowa.
CCAD is actively engaged in the development of
software for CAD applications in mechanical
engineering. It consists of over a hundred stu-
dent research assistants, full-time research staff,
and faculty in the Department of Mechanical
Engineering. In fact, the research work being
conducted there has been largely responsible for
the University of Iowa being selected in a
nation-wide competition as the site for the $32
million National Advanced Driving Simulator
(NADS) project. Four software projects obtained
from CCAD (identified as "ccad_<id>"), together
with one from University of South Carolina
(identified as "usc_1"), are briefly described
below:

g ccad_1, ccad_11: They are class libraries
for dynamics computations. ccad_1 is an
earlier version of ccad_11. Both have over
10 classes; the former has over 89K LOC,
the latter has more than 137K LOC.

g ccad_2, ccad_22: They are also class
libraries for dynamics computations.
ccad_2 is a very early version of ccad_22;
the former has 27K LOC, the latter 167K
LOC.

g usc_1: It is a class library for image pro-
cessing applications, developed at the
University of South Carolina. It consists of
over 60 classes, and over 15K LOC.

To extract the data that we needed from our
five data points, we used "PC-Metric for C++"
marketed by SET Laboratories, and "CodeCheck
Tool" of Abraxas Software, and developed some
code of our own.

A point to note: there is a loss of quantita-
tive information by using reliability ranks. If
quantitative reliability data like mean time to
failure(mttf), and mean time to repair(mttr) were
available, then a "better" validation of our meas-
ures could have been done.

VII. Preliminary Results

The values that we computed from the five
software projects have been presented in Tables
1, 2, and 3. In this section we have the following
naming convention:

"loc" - Lines Of Code
"hss" - Halstead’s Software Science
"mn" - McCabe’s Number

For instance, CC refers to Class Coupling
defined earlier, while CC_mn refers to the
equivalent measure computed using cyclomatic
number; likewise for CC_hss, and CC_loc. This
naming convention applies to AMC also.

Table 1 shows #classes and #methods for
the investigated projects.

Table 2 lists sample CC and AMC data for
a data point: ccad_1. The correlation between
the ranks of the column headers versus the per-
ceived difficulty ranks will be presented in Table
3. For instance, the correlation coefficient
between CC_hss ranks and reliability ranks in
Table 2 is the entry (ccad_1, CC_hss) in Table 3.
Tables similar to Table 2 have been computed for
the other data points also, and they were used to
compute the correlation coefficients presented in
Table 3.

Table 3 contains the correlation coefficients
of CC vs perceived difficulty and AMC vs per-
ceived difficulty for all software projects. In

- 7 -

Table 3, columns 1, 3, 5, and 7 contain the corre-
lation values with perceived difficulty of CC,
CC_loc, CC_hss, and CC_mn respectively.
Columns 2, 4, 6, and 8 contain the correlation
values with perceived difficulty of AMC,
AMC_loc, AMC_hss, and AMC_mn respec-
tively. The correlations were done between the
ranks of the classes based on the different CC and
AMC values, versus their corresponding per-
ceived difficulty ranks.

Two observations were made:

(1) CC and AMC correlate with perceived
difficulty better than all the other CC and
AMC values, and this is true for all the
software projects analyzed.

(2) AMC_mn’s correlation with perceived
difficulty is comparable to those of our
metrics for all data points except usc_1.
Our speculation is that there is a definite
difference in the qualities of the software
developers; those of usc_1 are more
knowledgeable in C++ and object-oriented
programming, and hence have exploited its
language constructs more fully than those
of ccad_1, ccad_11, ccad_2, and ccad_22.
The latter developers may have pro-
grammed in C++ as they would in a
language based on functional decomposi-
tion like COBOL.

VIII. Conclusions and Future Research
Direction

This paper introduced four coupling meas-
ures for C++ programs. Two of them - CC and
AMC - and equivalent ones for the three widely
used complexity metrics were computed for five
C++ software projects. Rank correlations of CC
and AMC with perceived difficulty of mainte-
nance were computed. CC and AMC had the
maximum correlation, though the correlation was
not statistically significant.

We plan to study the well-definedness and
consistency of the measures over a larger cross
section of C++ software. We also plan to refine
the idea of CIC by taking into account the depth
in the class hierarchy tree the class making the
references and the classes it makes references to,

are. This would provide insights regarding the
manageable depth for a class hierarchy tree,
which in turn will affect class design. Since com-
munication between objects is at the heart of
object-oriented design, we hope our research
direction will take us to the optimal non-zero
value for coupling, which will correspond to
efficient communication between objects, and
reduce the difficulty of maintenance and testing.

References

[Baker 90]
Baker, A.L., J.M.Bieman, N.E.Fenton,
D.A.Gustafson, A.C.Melton, and
R.W.Witty, "A Philosophy for Software
Measurement," Journal of Systems and
Software, 12, pp. 277-281 (1990).

[Bigge 87]
Biggerstaff, T., and C. Richter, "Reusability
Framework, Assessment, and Directions,"
IEEE Software, March 1987, pp. 41-49.

[Booch 86]
Booch, Grady. "Object Oriented Develop-
ment," IEEE Tran. on Software Engineer-
ing, SE-12, February 1986, pp. 211-221.

[Chida 91]
Chidamber, Shyam R. and Chris F.
Kemerer., "Towards a Metrics Suite for
Object-Oriented Design," OOPSLA 1991.

[Denic 81]
Denicoff, Marvin and Robert Grafton
"Software Metrics: A Research Initiative,"
In Alan J. Perlis, Frederick Sayward, and
Mary Shaw editor, Software Metrics: An
Analysis and Evaluation. MIT Press, Cam-
bridge, Massachusetts, 1981.

[Fento 90]
Fenton, N. and A.Melton, "Deriving Struc-
turally Based Software Measures," Journal
of Systems and Software, 12, pp. 177-187,
1990.

- 8 -

[Halst 77]
Halstead, M.H., Elements of Software Sci-
ence, Elsevier, New York, 1977.

[Henry 90]
Henry, Sallie M. and Matt Humphrey, "A
Controlled Experiment to Evaluate Maintai-
nability of Object-Oriented Software,"
Proceedings of IEEE Conference on
Software Maintenance 1990, pp. 258-265.

[Kearn 86]
Kearney, J.K., et al. "Software Complexity
Measurement," Communications of the
ACM, 29 (11), 1986, pp. 1044-1050.

[Kerni 84]
Kernighan, B.W., "The Unix System and
Software Reusability," IEEE Transactions
on Software Engineering, September 1984,
pp. 513-518.

[Mancl 90]
Mancl, Dennis and William Havanas, "A
Study of the Impact of C++ on Software
Maintenance," Proceedings of IEEE Confer-
ence on Software Maintenance 1990, pp.
63-69.

[Mccab 76]
McCabe, T.J., "A Complexity Measure,"
IEEE Transactions on Software Engineer-
ing, 2(4), (1976).

[Myers 78]
Myers, G.J., Composite/Structural Design,
Van Nostrand Reinhold, New York, NY,
1978.

[Ovied 80]
Oviedo, E.I., "Control flow, data flow, and
program complexity," in Proceedings of
IEEE COMPSAC, Chicago, IL, Nov.1980,
pp.146-152.

[Ponde 92]
Ponder, Carl and Bill Bush, "Polymorphism
Considered Harmful," ACM SIGPLAN

Notices, Volume 27, Number 6, June 1992.

[Taenz 89]
Taenzer, et al. "OO SW Reuse: The Yoyo
Problem," Journal of Object-Oriented Pro-
gramming, September/October 1989, pp.
30-35.

[Vesse 84]
Vessey, I. and R.Weber, "Research on
Structured Programming: An Empiricist’s
Evaluation, " IEEE Transactions on
Software Engineering, SE-10(4), 1984, pp.
394- 407.

[Weyuk 88]
Weyuker, E., "Evaluating Software Com-
plexity Measures," IEEE Transactions on
Software Engineering, Volume 14, Number
9, September 1988, pp. 1357-1365.

- 9 -

Objects
Among

Communication

Design
Methods

Objects
Of

Attributes

Definition

Object

Design

Object

Design
Oriented
Object

Figure 1: Elements of Object Oriented Design

C

A

D

B

Figure 2: A Directed Multigraph

- 10 -

iiiiiiiiiiiiiiiiiiiiiiiiiiiiii
classes # methodsii

ccad_1 12 91iiiiiiiiiiiiiiiiiiiiiiiiiiiiii
ccad_11 16 97iiiiiiiiiiiiiiiiiiiiiiiiiiiiii
ccad_2 12 59iiiiiiiiiiiiiiiiiiiiiiiiiiiiii
ccad_22 40 321iiiiiiiiiiiiiiiiiiiiiiiiiiiiii
unc_1 70 279iiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc

c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

Table 1: Class and Method data for the investigated projects

ii
CC AMC CC_loc AMC_loc CC_hss AMC_hss CC_mn AMC_mn perceived_difficultyii

class 1 21 8.97 2134 508 123 53 12 4.3 1ii
class 2 10 7.86 4329 1296 163 46 12 4.5 2ii
class 3 22 4.6 8976 354 216 54 15 4.9 3ii
class 4 23 9.17 3209 325 287 65 15 4.9 4ii
class 5 23 8.9 7098 312 257 51 21 5.0 5ii
class 6 65 5.6 5690 929 234 67 15 5.2 6ii
class 7 55 10.23 11247 638 256 71 24 6.2 7ii
class 8 46 10.31 3431 523 293 56 17 5.2 8ii
class 9 50 12.23 7896 632 198 57 21 5.4 9ii
class 10 70 13.4 6654 865 365 60 28 6.2 10ii
class 11 40 17.32 17415 2112 241 63 30 5.3 11ii
class 12 56 13.34 10908 2206 265 78 30 5.6 12iicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 2: Sample CC and AMC data for the ccad_1 data point

ii
CC AMC CC_loc AMC_loc CC_hss AMC_hss CC_mn AMC_mnii

ccad_1 0.76 0.81 0.65 0.64 0.59 0.62 0.74 0.75ii
ccad_11 0.78 0.82 0.62 0.62 0.61 0.61 0.74 0.76ii
ccad_2 0.75 0.78 0.65 0.67 0.63 0.62 0.71 0.72ii
ccad_22 0.78 0.79 0.67 0.67 0.62 0.62 0.72 0.73ii
unc_1 0.74 0.77 0.65 0.66 0.64 0.63 0.63 0.62iicc

c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c

Table 3: Correlation Coefficients for all software projects

View publication statsView publication stats

https://www.researchgate.net/publication/2309804

