
Eadro: An End-to-End Troubleshooting Framework
for Microservices on Multi-source Data

Cheryl Lee∗, Tianyi Yang∗, Zhuangbin Chen∗, Yuxin Su†, and Michael R. Lyu∗
∗Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China.

Email: cheryllee@link.cuhk.edu.hk, {tyyang, zbchen, lyu}@cse.cuhk.edu.hk
†Sun Yat-sen University, Guangzhou, China. Email: suyx35@mail.sysu.edu.cn

Abstract—The complexity and dynamism of microservices
pose significant challenges to system reliability, and thereby,
automated troubleshooting is crucial. Effective root cause lo-
calization after anomaly detection is crucial for ensuring the
reliability of microservice systems. However, two significant
issues rest in existing approaches: (1) Microservices generate
traces, system logs, and key performance indicators (KPIs),
but existing approaches usually consider traces only, failing to
understand the system fully as traces cannot depict all anomalies;
(2) Troubleshooting microservices generally contains two main
phases, i.e., anomaly detection and root cause localization. Ex-
isting studies regard these two phases as independent, ignoring
their close correlation. Even worse, inaccurate detection results
can deeply affect localization effectiveness. To overcome these
limitations, we propose Eadro, the first end-to-end framework to
integrate anomaly detection and root cause localization based on
multi-source data for troubleshooting large-scale microservices.
The key insights of Eadro are the anomaly manifestations on
different data sources and the close connection between detection
and localization. Thus, Eadro models intra-service behaviors and
inter-service dependencies from traces, logs, and KPIs, all the
while leveraging the shared knowledge of the two phases via
multi-task learning. Experiments on two widely-used benchmark
microservices demonstrate that Eadro outperforms state-of-the-
art approaches by a large margin. The results also show the
usefulness of integrating multi-source data. We also release our
code and data to facilitate future research.

Index Terms—Microservices, Root Cause Localization,
Anomaly Detection, Traces

I. INTRODUCTION

Microservice systems are increasingly appealing to cloud-

native enterprise applications for several reasons, including re-

source flexibility, loosely-coupled architecture, and lightweight

deployment [1]. However, anomalies are inevitable in mi-

croservices due to their complexity and dynamism. An

anomaly in one microservice could propagate to others and

magnify its impact, resulting in considerable revenue and

reputation loss for companies [2]. Figure 1 shows an example

where a failure in one microservice may delay all microser-

vices on the invocation chain.

Therefore, developers must closely monitor the microservice

status via run-time information (e.g., traces, system logs, and

KPIs) to discover and tackle potential failures in their earliest

efforts. Yet, thousands of microservices are usually running in

distributed machines in a large-scale industrial microservice

system. As each microservice can launch multiple instances,

Yuxin Su is the corresponding author.

order

security

preserve
order-other

concats 3009.6

3.1
19119.7

2.7
Request

frontend

unit: (ms)

20916.3

Fig. 1. A failure in “order” indirectly delays other microservices on the
invocation chain, while microservices off the chain are unaffected.

a system can produce billions of run-time records per day [1],

[2]. The explosion of monitoring data makes automated trou-

bleshooting techniques imperative.

Many efforts have been devoted to this end, focusing either

on anomaly detection [3]–[5] or on root cause localization [6]–

[11]. Anomaly detection tells whether an anomaly exists, and

root cause localization identifies the culprit microservice upon

the existence of an anomaly. Previous approaches usually

leverage statistical models or machine learning techniques to

mine information from traces, as traces profile and monitor

microservice executions and record essential inter-service in-

formation (e.g., request duration). However, we identify two

main limitations of the existing troubleshooting approaches.

(1) Insufficient exploitation of monitoring data: different

from operation teams that pay close attention to diverse

sources of run-time information, existing research deeply relies

on traces and exploits other data sources insufficiently. This

gap stems from the complexity of multi-source data analysis,

which is much harder than single-source data analysis, as

multi-source data is heterogeneous, frequently interacting, and

very large [12]. However, on the one hand, traces contain

important information for troubleshooting but are insufficient

to reveal all typical types of anomalies. On the other hand,

different types of data, such as logs and KPIs, can reveal

anomalies collaboratively and bring more clues about potential

failures. For example, a CPU exhaustion fault can cause

abnormally high values in the CPU usage indicator and trigger

warnings recorded in logs, but the traces may not exhibit

abnormal patterns (such as high latency).

(2) Disconnection in closely related tasks: Generally, root

cause localization follows anomaly detection since we must

discover an anomaly before analyzing it. Current studies of

microservice reliability regard the two phases as indepen-

dent, despite their shared inputs and knowledge about the

1750

2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE)

1558-1225/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSE48619.2023.00150

20
23

 IE
EE

/A
CM

 4
5t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 S
of

tw
ar

e
En

gi
ne

er
in

g
(IC

SE
) |

 9
78

-1
-6

65
4-

57
01

-9
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

SE
48

61
9.

20
23

.0
01

50

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 18,2023 at 11:52:21 UTC from IEEE Xplore. Restrictions apply.

microservice status. Existing approaches usually deal with

the same inputs redundantly and waste the rich correlation

information between anomaly detection and root cause lo-

calization. Moreover, the contradiction between computing

efficiency and accuracy limits the simple combination of state-

of-the-art anomaly detectors and root cause localizers. For a

two-stage troubleshooting approach, it is generally a little late

to use an advanced anomaly detector and then analyze the root

cause. Thus, root cause localization-focused studies usually

apply oversimplified anomaly detectors (e.g., N-sigma), and

unfortunately, the resulting detection outputs can contain many

noisy labels and thereby affect the effectiveness of downstream

root cause localization.

To overcome the above limitations, we propose Eadro, the

first End-to-end framework integrating Anomaly Detection and

Root cause lOcalization to troubleshoot microservice systems

based on multi-source monitoring data. The key ideas are

1) learning discriminative representations of the microservice

status via multi-modal learning and 2) forcing the model

to learn fundamental features revealing anomalies via multi-

task learning. Therefore, Eadro can fully exploit meaningful

information from different data sources that can all manifest

anomalies. Also, it allows information to be inputted once and

used to tackle anomaly detection and root cause localization

together and avoids incorrect detection results hindering next-

phase root cause localization.

Specifically, Eadro consists of three components: (1) Modal-
wise learning contains modality-specific modules for learning

intra-service behaviors from logs, KPIs, and traces. We apply

Hawkes process [13] and a fully connected (FC) layer to model

the log event occurrences. KPIs are fed into a dilated causal

convolution (DCC) layer [14] to learn temporal dependencies

and inter-series associations. We also use DCC to capture

meaningful fluctuations of latency in traces, such as extremely

high values. (2) Dependency-aware status learning aims to

model the intra- and inter-dependencies between microser-

vices. It first fuses the multi-modal representations via gated

concentration and feeds the fused representation into a graph

attention network (GAT), where the topological dependency

is built on historical invocations. (3) Joint detection and
localization contains an anomaly detector and a root cause

localizer sharing representations and an objective. It predicts

the existence of anomalies and the probability of each mi-

croservice being the culprit upon an anomaly alarm.

Experimental results on two datasets collected from two

widely-used benchmark microservice systems demonstrate the

effectiveness of Eadro. For anomaly detection, Eadro sur-

passes all compared approaches by a large margin in F1
(53.82%˜92.68%), and also increases F1 by 11.47% on aver-

age compared to our derived multi-source data-based methods.

For root cause localization, Eadro achieves state-of-the-art

results with 290%˜5068% higher in HR@1 (Top-1 Hit Rate)

than five advanced baselines and outperforms our derived

methods by 43.06% in HR@1 on average. An extensive

ablation study further confirms the contributions of modeling

different data sources.

Our main contributions are highlighted as follows:

• We identify two limitations of existing approaches for

troubleshooting microservices, motivated by which we

are the first to explore the opportunity and necessity to

integrate anomaly detection and root cause localization,

as well as exploit logs, KPIs, and traces together.

• We propose the first end-to-end troubleshooting frame-

work (Eadro) to jointly conduct anomaly detection and

root cause localization for microservices based on multi-

source data. Eadro models intra-service behaviors and

inter-service dependencies.

• We conduct extensive experiments on two benchmark

datasets. The results demonstrate that Eadro outperforms

all compared approaches, including state-of-the-art ap-

proaches and derived multi-source baselines on both

anomaly detection and root cause localization. We also

conduct ablation studies to further validate the contribu-

tions of different data sources.

• Our code and data 1 are made public for practitioners to

adopt, replicate or extend Eadro.

II. PROBLEM STATEMENT

This section introduces important terminologies and defines

the problem of integrating anomaly detection and root cause

localization with the same inputs.

A. Terminologies

Traces record the process of the microservice system re-

sponding to a user request (e.g., click “create an order” on

an online shopping website). Different microservice instances

then conduct a series of small actions to respond to the request.

For example, the request “create an order” may contain steps

“create an order in pending”, “reserve credit”, and “update

the order state.” A microservice (caller) can invoke another

microservice (callee) to conduct the following action (e.g.,

microservice “Query” asks microservice “Check” to check the

order after finishing the action “query the stock of goods”),

and the callee will return the result of the action to the caller.

We name this process as invocation. The time consumed by

the whole invocation (i.e., from initializing the invocation to

returning the result) is called invocation latency, including

the request processing time inside a microservice and the

time spent on communicating between the caller and the

callee. A trace records the information during processing a

user request [15] (including multiple invocations), such as the

invocation latency, the total time of processing the request, the

HTTP response code, etc.

Meanwhile, system logs are generated when system events

are triggered. A log message (or log for short) is a line of the

standard output of logging statements, composed of constant

strings (written by developers) and variable values (determined

by the system) [16]. If the variable values are removed, the

remaining constant strings constitute a log event. KPIs are the

numerical measurements of system performance (e.g., disk I/O

1https://github.com/BEbillionaireUSD/Eadro

1751

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 18,2023 at 11:52:21 UTC from IEEE Xplore. Restrictions apply.

rate) and the usage of resources (e.g., CPU, memory, disk) that

are sampled uniformly.

B. Problem Formulation

Consider a large-scale system with M microservices, system

logs, KPIs, and traces are aggregated individually at each

microservice. In a T -length observation window (data obtained

in a window constitute a sample), we have multi-source data

defined as X = {(XL
m,XK

m,XT
m)}Mm=1, where at the m-th

microservice, XL
m represents the log events chronologically

arranged; XK
m is a multivariate time series consisting of k

indicators; XT
m denotes the trace records. Our work attempts

to build an end-to-end framework achieving a two-stage goal:

Given X[1:M], the framework predicts the existence of anoma-

lies, denoted by y, a binary indicator represented as 0 (normal)

or 1 (abnormal). If y equals one, a localizer is triggered to

estimate the probability of each microservice to be the culprit,

denoted by P = [p1 · · · pM] ∈ [0, 1]M . The framework is built

on a parameterized model F : X→ (y,P).

III. MOTIVATION

This section introduces the motivation for this work, which

aims to address effective root cause localization by jointly

integrating an accurate anomaly detector and being driven

by multi-source monitoring data. The examples are taken

from data collected from a benchmark microservice system,

TrainTicket [17]. Details about data collection will be intro-

duced in § V-A.

A. Can different sources of data besides traces be helpful?

We find that traces are insufficient to reveal all potential
faults despite their wide usage. Most, if not all, previous

related works [3], [4], [7], [18]–[21] are trace-based, indicating

traces are informative and valuable. However, traces focus on

recording interactions between microservices and provide a

holistic view of the system in practice. Such high-level infor-

mation only enables basic queries for coarse-grained informa-

tion rather than intra-service information. For example, latency

or error rate in traces can suggest a microservice’s availability,

yet fine-grained information like memory usage reflecting the

intra-service status is unknowable. This is consistent with

our observation that latency is sensitive to network-related is-

sues but cannot adequately reflect resource exhaustion-related

anomalies. Figure 2 shows an example where a point denotes

an invocation taking the microservice “travel” as the callee.

When Network Jam or Packet Loss is injected, the latency is

abnormally high (marked with stars), but the latency during the

CPU exhaustion injection period does not display obviously

abnormal patterns. This case reminds us to be careful of

relying on traces only. Since traces are informative but cannot

reveal all anomalies, trace-based methods may omit potential

failures. We need extra information to mitigate the anomaly

omission problem.

We also notice that system logs and KPIs provide valuable
information manifesting anomalies in microservices.

0.625

1.25

1.875

2.5
Latency/s

CPU Exhaustion Network Jam Packet Loss

0 500 20001000 1000 Time/s

Fig. 2. Network-related faults incur obvious anomalies in latency of “travel”,
but the CPU exhaustion fault does not.

As for logs, we first parse all logs into events via Drain [22],

a popular log parser showing effectiveness in many stud-

ies [16], [23]. It is evident that some logs can report anomalies

semantically by including keywords such as “exception”,

“fail”, and “errors”. The event “Exception in monitor thread

while connecting to server <*>.” can be a good example.

Event occurrences can also manifest anomalies besides

semantics. Take the event “Route id: <*>” recorded by the

microservice “route” as an example. This event occurs when

the microservice completes the routing request. Figure 3 shows

that when network-related faults are injected, the example

event’s occurrence experiences a sudden drop and remains

at low values. The reason is that the routing invocations

become less since the communication between “route” and

its parent microservices (callers) is blocked. This case further

supports our intuition that system logs can provide clues about

microservice anomalies.

500

1000

1500

2000
Event Occurrences

CPU Exhaustion Network Jam Packet Loss

0 500 20001000 1000 Time/s

Fig. 3. The occurrences of related logs can reflect issues such as poor
communication.

KPIs are responsive to anomalies by continuously record-

ing run-time information. An example in Figure 4 gives a

closer look, which displays “total CPU usage” of microservice

“payment” during the period covering fault injections. Clearly,

“total CPU usage” responds to the fault CPU Exhaustion by

showing irregular jitters and abnormally high values. This

observation aligns with our a priori knowledge that KPIs

provide an external view of a microservice’s resource usage

and performance. Their fine-grained information can well

reflect anomalies, especially resource-related issues, which

require detailed analysis.

25

50

75

100
Total CPU Usage/%

CPU Exhaustion Network Jam Packet Loss

0 500 20001000 1000 Time/s

Fig. 4. A CPU exhaustion fault incurs abnormal jitters and high values in
“total CPU usage”.

However, only using logs and KPIs is not sufficient since

they are generated by each microservice individually at a local

level. As the example shown in Figure 1 (§ I), we need traces

1752

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 18,2023 at 11:52:21 UTC from IEEE Xplore. Restrictions apply.

to obtain inter-service dependencies to analyze the anomaly

propagation so as to draw a global picture of the system to

locate the root cause.

Traces are informative yet not sufficient to reflect all

anomalies. System logs and metrics provide valuable in-

formation manifesting anomalies by presenting abnormal

patterns, so they can serve as additional information.

B. Can current anomaly detectors provide accurate results?

This section demonstrates that current detectors attached
with localizers cannot deliver satisfying accuracy.

As far as we know, existing root cause localization ap-

proaches for microservices follow such a pipeline: 1) conduct

anomaly detection, and 2) if an anomaly is alarmed, then

the localizer is triggered. That is, the anomaly detector and

root cause localizer work separately. Unfortunately, incorrect

anomaly detection results can exert a negative impact on

the following root cause localization by introducing noisy

labels. To investigate whether current anomaly detectors are

satisfactory for downstream localizers, we first summarize

three main kinds of anomaly detection approaches used in root

cause localization papers. Note that since this paper targets

root cause localization, the listed approaches are root cause

localization-oriented anomaly detectors rather than sophisti-

cated approaches for general anomaly detection.

• N-sigma used in [20], [21] computes the mean (μ) and

the standard deviation (σ) of historical fault-free data. If

the maximum latency of the current observation window is

larger than μ + n · σ, an alarm will be triggered, where n
is an empirical parameter.

• Feature engineering + machine learning (FE+ML) [9],

[24] feeds manually derived features from traces into a

machine learning-based model such as OC-SVM [9] to

detect anomalies in a one-class-classification manner.

• SPOT [25] is an advanced algorithm for time series

anomaly detection based on the Extreme Value Theory.

Recent root cause analysis studies [6], [7] have applied it

for detecting anomalies.

TABLE I
COMPARISON OF COMMON ANOMALY DETECTORS

N-sigma FE+ML SPOT

FOR 0.632 0.830 0.638
FDR 0.418 0.095 0

#Infer/ms 0.207 1.361 549.169

We conduct effectiveness measurement experiments based

on our data on the three anomaly detectors following [6], [9],

[21], respectively. We focus on the false omission rate (FOR=
FN

FN+TN) and the false discovery rate (FDR= FP
FP+TN),

where TN is the number of successfully predicted normal

samples; FN is the number of undetected anomalies; FP is

the number of normal samples incorrectly triggering alarms.

Besides, #Infer/ms denotes the average inference time with the

unit of microseconds.

Table I lists the experimental results, demonstrating a large

improvement space for these anomaly detectors. The high FOR
and FDR indicate that the inputs of the root cause localizer

contain lots of noisy labels, thereby substantially influencing

localization performance. We attribute this partly to the closed-

world assumption relied on by these methods, that is, re-

garding normal but unseen data patterns as abnormal, thereby

incorrectly forcing the downstream localizer to search for the

“inexistent” root cause based on normal data. Also, latency is

insufficient to reveal all anomalies, as stated before, especially

those that do not severely delay inter-service communications,

represented by the high FOR.

In addition, complex methods (FE+ML and SPOT) have

better effectiveness than N-sigma yet burden the troubleshoot-

ing process by introducing extra computation. Since root

cause localization requires anomaly detection first, the detector

must be lightweight to mitigate the efficiency reduction. Even

worse, these machine learning-based approaches require ex-

tra hyperparameter tuning, making the entire troubleshooting

approach less practical.

Root cause localization requires anomalous data detected

by anomaly detectors, but current localization-oriented de-

tectors either deliver unsatisfactory accuracy and introduce

noisy data or reduce efficiency, making the following

localization troublesome.

In summary, these examples motivate us to design an end-

to-end framework that integrates effective anomaly detection

and root cause localization in microservices based on multi-

source information, i.e., logs, KPIs, and traces. Logs, KPIs,

and latency in traces provide local information on intra-service

behaviors, while invocation chains recorded in traces depict the

interactions between microservices, thereby providing a global

view of the system status. This results in Eadro, the first work

to enable jointly detecting anomalies and locating the root

cause, all the while attacking the above-mentioned limitations

by learning the microservice status concerning both intra- and

inter-service properties from various types of data.

IV. METHODOLOGY

The core idea of Eadro is to learn the intra-service behaviors

based on multi-modal data and capture dependencies between

microservices to infer a comprehensive picture of the system

status. Figure 5 displays the overview of Eadro, containing

three phases: modal-wise learning, dependency-aware status
learning, and joint detection and localization.

A. Modal-wise Learning

This phase aims to model the different sources of monitor-

ing data individually. We apply modality-specific models to

learn an informative representation for each modality.

1) Log Event Learning: We observe that both log semantics

and event occurrences can reflect anomalies (§ III-A), yet we

herein focus on event occurrences because of two reasons:

1) the logging behavior of microservices highly relies on the

1753

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 18,2023 at 11:52:21 UTC from IEEE Xplore. Restrictions apply.

1 Modal-wise Learning 2 Dependency-aware Status Learning 3 Joint Detection & Localization

MTS

Hawkes
Parse FC

Causal Conv

Causal Conv
Latency

Gated Fusion

Detector

Root Cause Localizer

Normal? Yes

No

[

[

P[1:M]

Logs

Metrics

Traces

Dependency Graph

GAT

Status
Representation

CulpritJoint Learning

Intensity Vectors

Fig. 5. Overview of Eadro

developers’ expertise, so the quality of log semantics cannot

be guaranteed [16]; 2) the complexity of microservices neces-

sitates lightweight techniques. As semantic extraction requires

computation-intensive natural language processing technolo-

gies, log semantic-based methods may pose challenges in

practical usage.

Therefore, we focus on modeling the occurrences of log

events instead of log semantics. An insight facilitates the

model. We observe that the past event increases the likeli-

hood of the event’s occurrence in the near future, which fits

the assumption of the self-exciting process [26]. Hence, we

initially propose to adopt the Hawkes process [13], a kind of

self-exciting point process, to model the event occurrences,

which is defined by the conditional intensity function:

λ∗
l (t) = μl(t) +

∑
τ<t

φl(t− τ) (1)

where l = 1, ..., L and L is the number of event types; for

the l-th event, μl is an estimated parameter and φl(·) is a

user-defined triggering kernel function. We use an exponential

parametrisation of the kernels herein following [27]: φl(·) =
αlβ exp(−βt)|t>0, where α1 · · ·αL are estimated parameters

and β is a hyper-parameter.

In brief, log learning is done in a three-step fashion:

A. Parsing: Eadro starts with parsing logs into events via

Drain [22] by removing variables in log messages.

B. Estimating: we then record the timestamps of event occur-

rences (relative to the starting timestamp of the observation

window) to estimate the parameters of the Hawkes model

with an exponential decay kernel. The estimation is imple-

mented via an open-source toolkit Tick [28]. In this way,

events XL at each microservice inside a window are trans-

formed into an intensity vector Λ = [λ∗
1, · · · , λ∗

L] ∈ R
L.

C. Embedding: the intensity vector Λ is embedded into a dense

vector HL ∈ R
EL

in the latent space via a fully connected

layer with the hidden size of EL.

2) KPI Learning: We first organize the KPIs XK with k
indicators of each microservice into a k-variate time series

with the length of T . Then we use a 1D dilated causal

convolution (DCC) [14] layer that is lightweight and paral-

lelizable to learn the temporal dependencies and cross-series

relations of KPIs. Previous studies have demonstrated DCC’s

computational efficiency and accuracy in feature extraction

of time series [29]. Afterward, we apply a self-attention [30]

operation to compute more reasonable representations, and the

attention weights are as computed in Equation 2.

Attn(X) = softmax

(
WqX · (WkX)T√

d
(WvX)

)
(2)

where Wq , Wk, and Wv are learnable parameters, and d is

an empirical scaling factor. This phase outputs HK ∈ R
EK

representing KPIs, where EK is the number of convolution

filters.

3) Trace Learning: Inspired by previous works [3], [6],

[31], we extract latency from trace files and transform it into a

time series by calculating the average latency at a time slot for

each callee. We obtain a T -length univariate latency time series

at each microservice (i.e., callee). Similarly, the latency time

series is fed into a 1D DCC layer followed by a self-attention

operation to learn the latent representation HT ∈ R
ET

, where

ET is the pre-defined number of filters. Note that we simply

pad time slots without corresponding invocations with zeros.

B. Dependency-aware Status Learning

In this phase, we aim to learn microservices’ overall status

and draw a comprehensive picture of the system. This module

consists of three steps: dependency graph construction, multi-

modal fusion, and dependency graph modeling. We first extract

a directional graph depicting the relationships among microser-

vices from historical traces. Afterward, we fuse the multi-

modal representations obtained from the previous phases into

latent node embeddings to represent the service-level status.

Messages within the constructed graph will be propagated

through a graph neural network so as to learn the neighboring

dependencies represented in the edge weights. Eventually, we

can obtain a dependency-aware representation representing the

overall status of the microservice system.

1) Dependency Graph Construction: By regarding mi-

croservices as nodes and invocations as directional edges, we

1754

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 18,2023 at 11:52:21 UTC from IEEE Xplore. Restrictions apply.

can extract a dependency graph G = {V,E} from histori-

cal traces to depict the dependencies between microservices.

Specifically, V is the node set and |V| = M , where M
is the number of microservices; E is the set of edges, and

�ea,b = (va, vb) ∈ E denotes an edge directed from va to vb,

that is, vb has invoked va at least once in the history.
2) Multi-modal Fusion: In general, there are three fusion

strategies [32]: early fusion carried out at the input level,

intermediate fusion for fusing cross-modal representations, and

late fusion at the decision level (e.g., voting). Research in

cross-modal learning [33], [34] and neuroscience [35], [36]

suggests that intermediate fusion usually facilitates modeling,

so we transform single-modal representations to a compact

multi-modal representation via intermediate fusion.

The fusion contains two steps:

A. We concatenate ([·||·]) all representations of each microser-

vice obtained from the previous phase to retain exhaustive

information. The resulting vector [HL||HK||HT] is sub-

sequently fed into a fully connected layer to be projected

into a lower-dimensional space, denoted by H ′S ∈ R
2E ,

where 2E < EL + EK + ET is an even number.

B. H ′S passes through a Gated Linear Unit (GLU) [37] to fuse

representations in a non-linear manner and filter potential

redundancy. GLU controls the bandwidth of information

flow and diminishes the vanishing gradient problem. It also

possesses extraordinary resilience to catastrophic forgetting.

As we have massive data and complex stacked neural

layers, GLU fits our scenario well. The computation follows

HS = GLU(H ′S) = H ′S
(1) ⊗ σ(H ′S

(2)), where H ′S
(1) is the

first half of H ′S and H ′S
(2) is the second half; ⊗ denotes

element-wise product, and σ is a sigmoid function.

Finally, we obtain HS ∈ R
E , a service-level representation

of each microservice.
3) Dependency Graph Learning: As interactions between

microservices can be naturally described by dependency

graphs, we apply graph neural networks to perform triage

inference. Particularly, we employ Graph Attention Network

(GAT) [38] to learn the dependency-aware status of the

microservice system. GAT enables learning node and edge

representations and dynamically assigns weights to neighbors

without requiring computation-consuming spectral decompo-

sitions. Hence, the model can pay attention to microservices

with abnormal behaviors or at the communication hub.

The local representation HS serves as the node feature, and

GAT learns the whole graph’s representation, where dynamic

weights of edges are computed as Equation 3.

ωa,b =
exp(LeakyReLU(vT[WHS

a ||WHS
b]))∑

k∈Na
exp(LeakyReLU(vT[WHS

a ||WHS
k]))

(3)

where ωa,b is the computed weight of edge �ea,b; Na is the set

of neighbor nodes of node a; HS
a is the inputted node feature

of a; W ∈ R
EG×E and v ∈ R

2EG
are learnable parameters.

EG is the dimension of the outputted representation, which

is calculated by ĤS
a = ψ(

∑
b∈Na

ωa,bWHS
b), where ψ(·) is

a customized activation function, usually ReLU. Eventually,

we perform global attention pooling [39] on the multi-modal

representations of all nodes. The final output is HF ∈ R
EF

, a

dependency-aware representation of the overall system status.

C. Joint Detection and Localization

Lastly, Eadro predicts whether the current observation win-

dow is abnormal and if so, it identifies which microser-

vice the root cause is. As demonstrated in § III-B, existing

troubleshooting methods regard anomaly detection and root

cause localization as independent and ignore their shared

knowledge. Besides, current anomaly detectors deliver un-

satisfactory results and affect the next-stage localization by

incorporating noisy labels. Therefore, we fully leverage the

shared knowledge and integrate two closely related tasks into

an end-to-end model.

1000

2000

3000

4000

5000

9:28 9:30 9:32 9:34 9:36 9:38

tx/b rx/b

0

0.003

0.005

0.008

0.01

9:28 9:30 9:32 9:34 9:36 9:38

cpu_sys cpu_total cpu_user Latency

0.0

2.0

4.0

6.0

8.0

9:28 9:30 9:32 9:34 9:36 9:38

order

Root Cause List

Service Probability

order

preserve

security

frontend

0.972

0.087

0.011

0.010

Frontend

Frequency: 2T

ts-order-service

Log File

Download

Trace File

Download

Overview Details Settings
User: Tim

Dependency

Eadro

Fig. 6. A demo for reviewing the suspicious status.

In particular, based on the previously obtained represen-

tation HF , a detector first conducts binary classification to

decide the existence of anomalies. If no anomaly exists,

Eadro directly outputs the result; if not, a localizer ranks

the microservices according to their probabilities of being the

culprit. The detector and the localizer are both composed of

stacked fully-connected layers and jointly trained by sharing

an objective. The detector aims to minimize the binary cross-

entropy loss:

L1 =
N∑
i=1

[−(yi log(ŷi) + (1− yi) log(1− ŷi))] (4)

where N is the number of historical samples; yi ∈ {0, 1}
is the ground truth indicating the presence of anomalies (1

denotes presence while 0 denotes absence), and ŷi ∈ [0, 1] is

the predicted indicator. Subsequently, all samples predicted as

normal (0) are masked, and samples predicted as abnormal (1)

pass through the localizer. The localizer attempts to narrow the

distance between the predicted and ground-truth probabilities,

whose objective is expressed by:

L2 =
N∑
i=1

M∑
s=1

ci,s log(pi,s) (5)

where M is the number of involved microservices. In the i-th
sample, ci,s ∈ {0, 1} is 1 if the culprit microservice is s and

0 otherwise; pi,s is the predicted probability of microservice s
being the culprit. The objective of Eadro is the weighted sum

1755

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 18,2023 at 11:52:21 UTC from IEEE Xplore. Restrictions apply.

of the two sub-objectives L = β ·L1+(1−β) ·L2, where β is

a hyper-parameter balancing the two tasks. Eventually, Eadro

outputs a ranked list of microservices to be checked according

to their predicted probabilities of being the root cause.

To sum up, Eadro can provide explicit clues about the

microservice status. Hence, troubleshooting is much more

convenient for operation engineers with the ranked list of

microservices. Figure 6 presents a visualized demo.

V. EVALUATION

This section answers the following research questions:

• RQ1: How effective is Eadro in anomaly detection?

• RQ2: How effective is Eadro in root cause localization?

• RQ3: How much does each data source contribute?

A. Data Collection

Since existing data collections of microservice systems [40],

[41] contain traces only, we deploy two benchmark microser-

vice systems and generate requests to collect multi-source

data, including logs, KPIs, and traces. Afterward, we inject

typical faults to simulate real-world anomalies. To our best

knowledge, it is the first triple-source data collection with

injected faults in the context of microservices.

1) Benchmark microservice systems: We first deploy two

open-source microservice benchmarks: TrainTicket [17] (TT)

and SocialNetwork [42] (SN). TT provides a railway ticketing

service where users can check, book, and pay for train

tickets. It is widely used in previous works [3], [15] with 41

microservices actively interacting with each other, and 27 of

them are business-related. SN implements a broadcast-style

social networking site. Users can create, read, favorite, and

repost posts. In this system, 21 microservices communicate

with each other via Thrift RPCs [43]. SN has 21 microservices,

14 of which are related to business logic.

We construct a distributed testbed to deploy the two systems

running in Docker containers and develop two request simu-

lators to simulate valid user requests. A series of open-source

monitoring tools are deployed for data collection. Microservice

instances send causally-related traces to a collector Jaeger [44].

We employ cAdvisor [45] and Prometheus [46] to monitor the

KPIs per second of each microservice. The KPIs are stored in

an instance of InfluxDB [47], including “CPU system usage”,

“CPU total usage”, “CPU user usage”, “memory usage”,

the amount of “working set memory”, “rx bytes” (received

bytes), and “tx bytes” (transmitted bytes). We also utilize

Elasticsearch [48], Fluentd [49], and Kibana [50] to collect,

aggregate, and store logs, respectively.

2) Fault Injection: Eadro can troubleshoot anomalies that

manifest themselves in performance degradations (logs and

KPIs) or latency deviations (traces). Referring to previous

studies [6], [21], [24], we inject three typical types of faults via

Chaosblade [51]. Specifically, we simulate CPU exhaustion by

putting a hog to consume CPU resource heavily. To simulate a

network jam, we delay the network packets of a microservice

instance. We also randomly drop network packets to simulate

stochastic packet loss that frequently occurs when excessive

data packets flood a network.

We generate 0.2∼0.5 and 2∼3 requests per second for TT

and SN at a uniform rate, respectively. Before fault injection,

we collect normal data under a fault-free setting for 7 hours

for TT and 1.2 hours for SN. Then, we set each fault duration

to 10 mins (with a 2-min interval between two injections) for

TT, while the fault duration is 2 mins and SN’s interval is half

a minute. Each fault is injected into one microservice once.

In total, we conduct 162 and 72 injection operations in TT

and SN, respectively. Such different setups are attributed to

the different processing capacities of the two systems, i.e., TT

usually takes more time to process a request than SN.

In this way, we collect two datasets (T T and SN) with

48,296 and 126,384 traces, respectively. Data produced in

different periods are divided into training (60%) data and

testing (40%) data, respectively. The data divisions share

similar distributions in abnormal/normal ratios and root causes.

B. Baselines

We compare Eadro with previous approaches and derived

methods integrating multi-source data. As our task is relatively

novel by incorporating more information than existing single-

source data-based studies, simply comparing our model with

previous approaches seems a bit unfair.

1) Advanced baselines: In terms of anomaly detection,

we consider two state-of-the-art baselines. TraceAnomaly [3]

uses a variational auto-encoder (VAE) to discover abnormal

invocations. MultimodalTrace [4] extracts operation sequences

and latency time series from traces and uses a multi-modal

Long Short-term Memory (LSTM) network to model the tem-

poral features. For root cause localization, we compare Eadro

with five trace-based baselines: TBAC [10], NetMedic [52],

MonitorRank [8], CloudRanger [11], and DyCause [6]. As far

as we know, no root cause localizers for microservices rely on

multi-modal data.

These methods use statistical models or heuristic methods

to locate the root cause. For example, TBAC, MonitorRank,

and DyCause applied the Pearson correlation coefficient, and

MonitorRank and DyCause also leveraged Random Walk. We

implement these baselines referring to the codes provided by

the original papers [3], [6], [21]. For the papers without open-

source codes, we carefully follow the papers and refer to the

baseline implementation released by [6].

2) Derived multi-source baselines: We also derive four

multi-source data-based methods for further comparison. In-

spired by [4], we transform all data sources into time series and

use learning-based algorithms for status inference. Specifically,

logs are represented by event occurrence sequences; traces are

denoted by latency time series; KPIs are natural time series.

Since previous studies are mainly machine learning-based, we

train practical machine learning methods, i.e., Random Forest

(RF) and Support Vector Machine (SVM), on the multi-source

time series. We derive MS-RF-AD and MS-SVM-AD for

anomaly detection as well as MS-RF-RCL and MS-SVM-RCL

1756

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 18,2023 at 11:52:21 UTC from IEEE Xplore. Restrictions apply.

for root cause localization. We also derive two methods (MS-

LSTM and MS-DCC) that employ deep learning techniques,

i.e., LSTM and 1D DCC, to extract representations from multi-

modal time series. The learned representations are fed into the

module of joint detection and localization, which is described

in IV-C.

C. Implementation

The experiments are conducted on a Linux server with an

NVIDIA GeForce GTX 1080 GPU via Python 3.7. As for the

hyper-parameters, the hidden size of all fully-connected layers

is 64, and every DCC layer shares the same filter number of

64 with a kernel size of three. The GAT’s hidden size and

the fusion dimension (i.e., 2E) are 128. We use a 4-head

mechanism of GAT’s attention layer, and the layer number of

all modalities’ models is only one for speeding up. Moreover,

Batch Normalization [53] is added after DCCs to mitigate

overfitting. We train Eadro using the Adam [54] optimizer

with an initial learning rate of 0.001, a batch size of 256, and

an epoch number of 50. All the collected data and our code

are released for replication.

D. Evaluation Measurements

The anomaly detection challenge is modeled in a binary

classification manner, so we apply the widely-used binary clas-

sification measurements to gauge the performance of models:

Recall (Rec)= TP
TP+FN , Precision (Pre)= TP

TP+FP , F1-score

(F1)= 2·Pre·Rec
Pre+Rec , where TP is the number of discovered

abnormal samples; FN and FP are defined in § III-B.

For root cause localization, we introduce the Hit Rate of

top-k (HR@k) and Normalized Discounted Cumulative Gain

of top-k (NDCG@k) for localizer evaluation. Herein, we set

k = 1, 3, 5. HR@k= 1
N

∑N
i=1(s

t
i ∈ Sp

i,[1:k]) calculates the

overall probability of the culprit microservice within the top-k

predicted candidates Sp
i,[1:k], where sti is the ground-truth root

cause for the i-th observation window, and N is the number of

samples to be tested. NDCG@k= 1
N

∑N
i=1(

∑M
j=1

pj

log2(j+1))
measures the ranking quality, where pj is the predicted prob-

ability of the j-th microservice, and M is the number of

microservices. NDCG@1 is left out because it is the same with

HR@1 in our scenario. The two evaluation metrics measure

how easily engineers find the culprit microservice. HR@k
directly measures how likely the root cause will be found

within k checks. NDCG@k measures to what extent the root

cause appears higher up in the ranked candidate list. Thus, the

higher the above measurements, the better.

E. RQ1: Effectiveness in Anomaly Detection

Ground truths are based on the known injection operations,

i.e., if a fault is injected, then the current observation window

is abnormal; otherwise, it is normal. Table II displays a

comparison of anomaly detection, from which we draw three

observations:

(1) Eadro outperforms all competitors significantly and

achieves very high scores in F1 (0.988), Rec (0.996), and

Pre (0.981), illustrating that Eadro generates very few missing

TABLE II
PERFORMANCE COMPARISON FOR ANOMALY DETECTION

Approaches T T SN
F1 Rec Pre F1 Rec Pre

TraceAnomaly 0.486 0.414 0.589 0.539 0.468 0.636
MultimodalTrace 0.608 0.576 0.644 0.676 0.632 0.726
MS-RF-AD 0.817 0.705 0.971 0.773 0.866 0.700
MS-SVM-AD 0.787 0.678 0.938 0.789 0.770 0.808
MS-LSTM 0.967 0.997 0.940 0.948 0.959 0.937
MS-DCC 0.965 0.993 0.938 0.948 0.962 0.934

Eadro 0.989 0.995 0.984 0.986 0.996 0.977

anomalies or false alarms. Eadro’s excellence can be attributed

to 1) Eadro applies modality-specific designs to model various

sources of data as well as a multi-modal fusion to wrangle

these modalities so that it can learn a distinguishable repre-

sentation of the status; 2) Eadro learns dependencies between

microservices to enable extraction of anomaly propagation to

facilitate tracing back to the root cause.

(2) Generally, multi-source data-based approaches, includ-

ing Eadro, perform much better than trace-relied baselines

because they incorporate extra essential information (i.e.,

logs and KPIs) besides traces. The results align with our

observations in § III-A that logs and KPIs provide valuable

clues about microservice anomalies, while traces cannot reveal

all anomalies. Trace-based methods can only detect anomalies

yielding an enormous impact on invocations, so they ignore

anomalies reflected by other data sources.

(3) Moreover, Eadro, MS-LSTM, and MS-DDC perform

better than MS-SVM and MS-RF. The superiority of the

former ones lies in applying deep learning and joint learn-

ing. Deep learning has demonstrated a powerful capacity in

extracting features from complicated time series [29], [55],

[56]. Joint learning allows capturing correlated knowledge

across detection and localization to exploit commonalities

across the two tasks. These two mechanisms are beneficial

to troubleshooting by enhancing representation learning.

In brief, Eadro is very effective in anomaly detection of

microservice systems and improves F1 by 53.82%∼92.68%

compared to baselines and 3.13%∼25.32% compared to de-

rived methods. The detector is of tremendous assistance for

next-stage root cause localization by reducing noisy labels

inside the localizer’s inputs.

F. RQ2: Effectiveness in Root Cause Localization

To focus on comparing the effectiveness of root cause

localization, we provide ground truths of anomaly existence

for baselines herein. In contrast, Eadro, MS-LSTM, and MS-

DCC use the predicted results of their detectors as they are

end-to-end approaches integrating the two tasks. Table III

presents the root cause localization comparison, underpinning

three observations:

(1) Eadro performs the best, taking all measurements into

consideration, achieving HR@1 of 0.982, HR@5 of 0.990,

and NDCG@5 of 0.989 on average. With the incorporation

of valuable logs and KPIs ignored by previous approaches,

1757

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 18,2023 at 11:52:21 UTC from IEEE Xplore. Restrictions apply.

TABLE III
PERFORMANCE COMPARISON FOR ROOT CAUSE LOCALIZATION

Approaches T T SN
HR@1 HR@3 HR@5 NDCG@3 NDCG@5 HR@1 HR@3 HR@5 NDCG@3 NDCG@5

TBAC 0.037 0.111 0.185 0.079 0.109 0.001 0.085 0.181 0.048 0.087
NetMedic 0.094 0.257 0.425 0.195 0.209 0.069 0.187 0.373 0.146 0.218
MonitorRank 0.086 0.199 0.331 0.142 0.196 0.068 0.118 0.221 0.095 0.137
CloudRanger 0.101 0.306 0.509 0.218 0.301 0.122 0.382 0.629 0.269 0.370
DyCause 0.231 0.615 0.808 0.448 0.607 0.273 0.636 0.727 0.301 0.353
MS-RF-RCL 0.637 0.922 0.970 0.807 0.827 0.704 0.908 0.970 0.825 0.851
MS-SVM-RCL 0.541 0.908 0.944 0.814 0.820 0.614 0.838 0.955 0.741 0.790
MS-LSTM 0.756 0.930 0.969 0.859 0.877 0.757 0.884 0.907 0.834 0.844
MS-DCC 0.767 0.938 0.972 0.870 0.882 0.789 0.968 0.985 0.898 0.905

Eadro 0.990 0.992 0.993 0.994 0.994 0.974 0.988 0.991 0.982 0.983

Eadro can depict the system status more accurately. Trace-

based approaches have difficulties in troubleshooting re-

source exhaustion-related anomalies or severe network-related

anomalies that block inter-service communications resulting

in few invocations. Besides, Eadro enables eavesdropping

across detection and localization via joint learning, which

encourages full use of the shared knowledge to enhance status

learning. Eadro also leverages powerful techniques to capture

meaningful patterns from multi-modal data, including designs

of modality-specific models and advanced GAT to exploit

graph-structure dependencies. Moreover, Eadro achieves a

much higher score in HR@1 than derived methods, while its

superiority in HR@5 and NDCG@5 is not particularly promi-

nent. The reason is that Eadro learns the dependency-aware

status besides intra-service behaviors, allowing to catch the

anomaly origin by tracing anomaly propagation. Other multi-

modal approaches capture dependency-agnostic information,

so they can pinpoint the scope of suspicious microservices

effectively rather than directly deciding the culprit.

(2) Multi-modal approaches considerably outperform

single-modal baselines, similar to the results in anomaly

detection. The superiority of multi-source derived methods is

more evident since localization is a more complicated task

than detection, so the advantage of incorporating diverse data

sources to learn the complementarity is fully demonstrated.

This situation is more revealing in T T because TrainTicket

responds more slowly, leading to sparse trace records, and

trace-based models get into trouble when few invocations

occur in the current observation window. In contrast, derived

approaches can accurately locate the culprit microservice in

such a system since they leverage various information sources

to obtain more clues.

(3) Considering multi-modal approaches, Eadro, MS-

LSTM, and MS-DCC deliver better performance (measured

by HR@1) than MS-RF-RCL and MS-SVM-RCL. The supe-

riority of the former approaches can be attributed to the strong

fitting ability of deep learning and the advantages brought by

the joint learning mechanism. However, MS-LSTM performs

poorer in narrowing the suspicious scope, especially in SN
(measured by HR@5 and NDCG@5). This may be because

that LSTMs’ training process is a lot more complicated than

DCCs or simple machine learning techniques. The scale of

SN is relatively small, so MS-LSTM cannot be thoroughly

trained and capture the most meaningful features.

To sum up, the results demonstrate the effectiveness of

Eadro in root cause localization. Eadro increases HR@1
by 290%∼5068% than baselines and 26.93%∼66.16% than

derived methods. Our approach shows effectiveness both in

anomaly detection and root cause localization, suggesting its

potential to automate labor-intensive troubleshooting.

G. RQ3: Contributions of Different Data Sources

We perform an ablation study to explore how different

data sources contribute by conducting source-wise-agnostic

experiments, so we derive the following variants:

• Eadro w/o L: drops logs while inputs traces and KPIs by

removing the log modeling module in § IV-A1.

• Eadro w/o M: drops KPIs while inputs traces and logs by

removing the KPI modeling module in § IV-A2.

• Eadro w/o T : drops latency extracted from traces by

removing the trace modeling module in § IV-A3.

• Eadro w/o G: replaces GAT by an FC layer to learn

dependency-agnostic representations.

TABLE IV
EXPERIMENTAL RESULTS OF THE ABLATION STUDY

Variants T T SN
HR@1 HR@5 F1 HR@1 HR@5 F1

Eadro 0.990 0.993 0.989 0.974 0.991 0.986

Eadro w/o L 0.926 0.993 0.964 0.902 0.954 0.972
Eadro w/o M 0.776 0.962 0.960 0.684 0.947 0.974
Eadro w/o T 0.785 0.930 0.945 0.627 0.930 0.957
Eadro w/o G 0.803 0.982 0.970 0.791 0.960 0.946

The ablation study results are shown in Table IV. Con-

sidering that root cause localization is a more difficult and

our major target and that all variants achieve relatively good

performance in anomaly detection, we focus on root cause

localization. Clearly, each source of information contributes

to the effectiveness of Eadro as it performs the best, while the

degrees of their contributions are not exactly the same.

1758

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 18,2023 at 11:52:21 UTC from IEEE Xplore. Restrictions apply.

Specifically, logs contribute the least as Eadro w/o L is

second-best. We attribute it to the lack of log semantics and the

low logging frequency. As the two benchmark systems were

recently proposed without multiple version iterations, only a

few events are recorded. We believe that logs would play a

greater value in the development of microservices.

In addition, we observe that the performance of

Eadro w/o M and Eadro w/o T degrades dramatically,

especially in HR@1, since traces and KPIs are essential

information that contributes the most to the identification of

the root cause microservice. This observation aligns with our

motivating cases, where we show some anomaly cases that

can be directly revealed by traces and KPIs.

Moreover, HR@5 of Eadro w/o G degrades slightly, indi-

cating that dependency-agnostic representations are useful to

narrow the suspicious scope. However, HR@1 of Eadro w/o G
decreases 23.21% as Eadro uses readily applicable GAT to

modal graph-structure inter-service dependencies, while FC

layers model the dependencies linearly, unable to capture

anomaly propagation well, leading to performance degradation

in determining the culprit.

To further demonstrate the benefits brought by KPIs and

logs, we visualize the latent representations of abnormal data

samples learned by Eadro, Eadro w/o L, and Eadro w/o M
via t-SNE [57] of the test set of SN , shown in Figures 7.

We can see that the representations learned by Eadro are

the most discriminative, and those learned by Eadro w/o L
are second-best, while those learned by Eadro w/o M are

the worst. Specifically, Eadro distributes representations corre-

sponding to different root causes into different clusters distant

from each other in the hyperspace. In contrast, Eadro w/o M
learns representations close in space, making it difficult to

distinguish them for triage. That is why Eadro w/o M
delivers poorer performance in localization than Eadro. The

visualization intuitively helps us grasp the usefulness of KPIs

in helping pinpoint the root cause. The discriminativeness of

the representations learned by Eadro w/o L is in-between,

where some clusters are pure while others seem to be a

mixture of representations corresponding to different root

causes, in line with the experiment results. We can attribute

part of the success of Eadro to incorporating KPIs and logs,

which encourages more discriminative representations of the

microservice status with extra clues.

In conclusion, the involved data sources can all contribute

to the effectiveness of Eadro to some degree, and traces con-

tribute the most to the overall effectiveness. This emphasizes

the insights about appropriately modeling multi-source data to

troubleshoot microservices effectively.

VI. DISUCUSSION

A. Limitations

We identify three limitations of Eadro: 1) the incapacity to

deal with bugs related to program logic; 2) the prerequisites for

multi-source data collection; 3) the requirement of annotated

data for training.

(a) Eadro

(b) Eadro w/o L

(c) Eadro w/o M

Fig. 7. Distributions of representations learned by Eadro and its variants.

As Eadro is an entirely data-driven approach targeting

the scope of reliability management, it is only applicable to

troubleshooting anomalies manifested in the involved data, so

logical bugs out of our scope and silent issues that do not

incur abnormal patterns in observed data can not be detected

or located.

Moreover, Eadro is basically well-suited for all microser-

vices where anomalies can be reflected in the involved three

types of data we employ. However, some practical systems

may lack the ability to collect the three types of data. Though

the low-coupled nature of the modal-wise learning module al-

lows the absence of some source of data, it is better to provide

all data types to fully leverage Eadro. Since we apply standard

1759

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 18,2023 at 11:52:21 UTC from IEEE Xplore. Restrictions apply.

open-source monitoring toolkits and these off-the-shelf toolkits

can be directly instrumented, enabling microservices with the

data collection ability is not difficult.

In addition, the supervised nature of Eadro requires a

large amount of labeled training data, which may be time-

consuming in the real world. Nevertheless, our approach

outperforms compared with unsupervised approaches by a

large margin, indicating that in practice, unsupervised methods

may be difficult to use because the accuracy rate is not

up to the required level, especially considering that realistic

microservices systems are much larger and more complex.

A common solution in companies is to use an unsupervised

model to generate coarse-grained pseudo-labels. Afterward,

experienced engineers manually review the labels with lower

confidence. The hybrid-generated labels are used for training

the supervised model, and eventually, the supervised approach

performs the troubleshooting work. Hence, Eadro will still

play an important role in practice and fulfill its potential.

B. Threat to Validity

1) Internal Threat: The main internal threat lies in the

correctness of baseline implementation. We reproduce the

baselines based on our understanding of their papers since

most baselines, except DyCause and TraceAnomaly, have not

released codes, but the understanding may not be accurate. To

mitigate the threat, we carefully follow the original papers and

refer to the baseline implementation released by [6].

2) External Threat: The external threats concern the gen-

eralizability of our experimental results. We evaluate our

approach on two simulated datasets since there is no publicly

available dataset containing multi-modal data. It is yet un-

known whether the performance of Eadro can be generalized

across other datasets. We alleviate this threat from two aspects.

First, the benchmark microservice systems are widely used

in existing comparable studies, and the injected faults are

also typical and broadly applied in previous studies [6], [21],

[24], thereby supporting the representativeness of the datasets.

Second, our approach is request- and fault-agnostic, so an

anomaly incurred by a fault beyond our injections can also

be discovered if it causes abnormalities in the observations.

VII. RELATED WORK

Previous anomaly detection approaches are usually based

on system logs [58]–[62] or KPIs [63]–[67], or both [68],

targeting traditional distributed systems without complex invo-

cation relationships. Recently, some studies [3], [4], [31] have

been presented to automate anomaly detection in microservice

systems. [3] proposed to employ a variational autoencoder

with a Bayes model to detect anomalies reflected by latency.

[4] extracted operation sequence and invocation latency from

traces and fed them into a multi-modal LSTM to identify

anomalies. These anomaly detection methods rely on single-

source data (i.e., traces) and ignore other informative data such

as logs and KPIs.

Tremendous efforts [7], [8], [10], [11], [19], [24], [52] have

been devoted to root cause localization in microservice or

service-oriented systems, most of which rely on traces only

and leverage traditional or naive machine learning techniques.

For example, [15] conducted manual feature engineering in

trace logs to predict latent errors and identify the faulty

microservice via a decision tree. [9] proposed a high-efficient

approach that dynamically constructs a service call graph and

ranks candidate root causes based on correlation analysis. A

recent study [6] designed a crowd-sourcing solution to resolve

user-space diagnosis for microservice kernel failures. These

methods work well when the latent features of microservices

are readily comprehensible but may lack scalability to larger-

scale microservice systems with more complex features. Deep

learning-based approaches explore meaningful features from

historical data to avoid manual feature engineering. Though

deep learning has not been applied to root cause localization

as far as we know, some approaches incorporated it for

performance debugging. For example, to handle traces, [69]

used convolution networks and LSTM, and [70] leveraged

causal Bayesian networks.

However, they rely on traces and ignore other data sources,

such as logs and KPIs, that can also reflect the microservice

status. Also, they either focus on anomaly detection or root

cause localization leading to the disconnection in the two

closely related tasks. The inaccurate results of naive anomaly

detectors affect the effectiveness of downstream localization.

Moreover, many methods combine manual feature engineering

with traditional algorithms, making it insufficiently practical

in large-scale systems.

VIII. CONCLUSION

This paper first identifies two limitations of current trou-

bleshooting approaches for microservices and aims to address

them. The motivation is based on two observations: 1) the

usefulness of logs and KPIs and the insufficiency of traces; 2)

the unsatisfactory results delivered by current anomaly detec-

tors. To this end, we propose an end-to-end troubleshooting

approach for microservices, Eadro, the first work to integrate

anomaly detection and root cause localization based on multi-

source monitoring data. Eadro consists of powerful modality-

specific models to learn intra-service behaviors from various

data sources and a graph attention network to learn inter-

service dependencies. Extensive experiments on two datasets

demonstrate the effectiveness of Eadro in both detection and

localization. It achieves F1 of 0.988 and HR@1 of 0.982 on av-

erage, vastly outperforming all competitors, including derived

multi-modal methods. The ablation study further validates the

contributions of the involved data sources. Lastly, we release

our code and data to facilitate future research.

ACKOWNLEDGEMENT

The work described in this paper was supported by the Na-

tional Natural Science Foundation of China (No. 62202511),

and the Research Grants Council of the Hong Kong Special

Administrative Region, China (No. CUHK 14206921 of the

General Research Fund).

1760

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 18,2023 at 11:52:21 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] S. Luo, H. Xu, C. Lu, K. Ye, G. Xu, L. Zhang, Y. Ding, J. He, and C. Xu,
“Characterizing microservice dependency and performance: Alibaba
trace analysis,” in SoCC ’21: ACM Symposium on Cloud Computing,
Seattle, WA, USA, November 1 - 4, 2021. ACM, 2021, pp. 412–426.

[2] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, W. Li, and D. Ding, “Fault
analysis and debugging of microservice systems: Industrial survey,
benchmark system, and empirical study,” IEEE Trans. Software Eng.,
vol. 47, no. 2, pp. 243–260, 2021.

[3] P. Liu, H. Xu, Q. Ouyang, R. Jiao, Z. Chen, S. Zhang, J. Yang, L. Mo,
J. Zeng, W. Xue, and D. Pei, “Unsupervised detection of microservice
trace anomalies through service-level deep bayesian networks,” in 31st
IEEE International Symposium on Software Reliability Engineering,
ISSRE 2020, Coimbra, Portugal, October 12-15, 2020. IEEE, 2020,
pp. 48–58.

[4] S. Nedelkoski, J. Cardoso, and O. Kao, “Anomaly detection from system
tracing data using multimodal deep learning,” in 12th IEEE International
Conference on Cloud Computing, CLOUD 2019, Milan, Italy, July 8-13,
2019. IEEE, 2019, pp. 179–186.

[5] C. Zhang, X. Peng, C. Sha, K. Zhang, Z. Fu, X. Wu, Q. Lin, and
D. Zhang, “Deeptralog: Trace-log combined microservice anomaly de-
tection through graph-based deep learning,” in 44th IEEE/ACM 44th
International Conference on Software Engineering, ICSE 2022, Pitts-
burgh, PA, USA, May 25-27, 2022. ACM, 2022, pp. 623–634.

[6] Y. Meng, S. Zhang, Y. Sun, R. Zhang, Z. Hu, Y. Zhang, C. Jia, Z. Wang,
and D. Pei, “Localizing failure root causes in a microservice through
causality inference,” in 28th IEEE/ACM International Symposium on
Quality of Service, IWQoS 2020, Hangzhou, China, June 15-17, 2020.
IEEE, 2020, pp. 1–10.

[7] ——, “Localizing failure root causes in a microservice through causality
inference,” in 28th IEEE/ACM International Symposium on Quality of
Service, IWQoS 2020, Hangzhou, China, June 15-17, 2020. IEEE,
2020, pp. 1–10.

[8] M. Kim, R. Sumbaly, and S. Shah, “Root cause detection in a service-
oriented architecture,” in ACM SIGMETRICS / International Conference
on Measurement and Modeling of Computer Systems, SIGMETRICS ’13,
Pittsburgh, PA, USA, June 17-21, 2013. ACM, 2013, pp. 93–104.

[9] D. Liu, C. He, X. Peng, F. Lin, C. Zhang, S. Gong, Z. Li, J. Ou, and
Z. Wu, “Microhecl: High-efficient root cause localization in large-scale
microservice systems,” in 43rd IEEE/ACM International Conference on
Software Engineering: Software Engineering in Practice, ICSE (SEIP)
2021, Madrid, Spain, May 25-28, 2021. IEEE, 2021, pp. 338–347.

[10] N. Marwede, M. Rohr, A. van Hoorn, and W. Hasselbring, “Automatic
failure diagnosis support in distributed large-scale software systems
based on timing behavior anomaly correlation,” in 13th European
Conference on Software Maintenance and Reengineering, CSMR 2009,
Architecture-Centric Maintenance of Large-SCale Software Systems,
Kaiserslautern, Germany, 24-27 March 2009. IEEE Computer Society,
2009, pp. 47–58.

[11] P. Wang, J. Xu, M. Ma, W. Lin, D. Pan, Y. Wang, and P. Chen,
“Cloudranger: Root cause identification for cloud native systems,” in
18th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, CCGRID 2018, Washington, DC, USA, May 1-4, 2018.
IEEE Computer Society, 2018, pp. 492–502.

[12] S. P. Uselton, L. Treinish, J. P. Ahrens, E. W. Bethel, and A. State,
“Multi-source data analysis challenges,” in 9th IEEE Visualization
Conference, IEEE Vis 1998, Research Triangle Park, North Carolina,
USA, October 18-23, 1998, Proceedings. IEEE Computer Society and
ACM, 1998, pp. 501–504.

[13] A. G. Hawkes, “Markov processes in APL,” in Conference Proceedings
on APL 90: For the Future, APL 1990, Copenhagen, Denmark, August
13-17, 1990. ACM, 1990, pp. 173–185.

[14] C. Lea, R. Vidal, A. Reiter, and G. D. Hager, “Temporal convolutional
networks: A unified approach to action segmentation,” in Computer
Vision - ECCV 2016 Workshops - Amsterdam, The Netherlands, October
8-10 and 15-16, 2016, Proceedings, Part III, ser. Lecture Notes in
Computer Science, vol. 9915, 2016, pp. 47–54.

[15] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, D. Liu, Q. Xiang, and C. He, “La-
tent error prediction and fault localization for microservice applications
by learning from system trace logs,” in Proceedings of the ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2019,
Tallinn, Estonia, August 26-30, 2019. ACM, 2019, pp. 683–694.

[16] S. He, P. He, Z. Chen, T. Yang, Y. Su, and M. R. Lyu, “A survey on
automated log analysis for reliability engineering,” ACM Comput. Surv.,
vol. 54, no. 6, pp. 130:1–130:37, 2021.

[17] X. Zhou, X. Peng, T. Xie, J. Sun, C. Xu, C. Ji, and W. Zhao, “Bench-
marking microservice systems for software engineering research,” in
Proceedings of the 40th International Conference on Software Engi-
neering: Companion Proceeedings, ICSE 2018, Gothenburg, Sweden,
May 27 - June 03, 2018. ACM, 2018, pp. 323–324.

[18] C. Pham, L. Wang, B. Tak, S. Baset, C. Tang, Z. T. Kalbarczyk, and
R. K. Iyer, “Failure diagnosis for distributed systems using targeted
fault injection,” IEEE Trans. Parallel Distributed Syst., vol. 28, no. 2,
pp. 503–516, 2017.

[19] Z. Li, J. Chen, R. Jiao, N. Zhao, Z. Wang, S. Zhang, Y. Wu, L. Jiang,
L. Yan, Z. Wang, Z. Chen, W. Zhang, X. Nie, K. Sui, and D. Pei,
“Practical root cause localization for microservice systems via trace
analysis,” in 29th IEEE/ACM International Symposium on Quality of
Service, IWQOS 2021, Tokyo, Japan, June 25-28, 2021. IEEE, 2021,
pp. 1–10.

[20] J. Lin, P. Chen, and Z. Zheng, “Microscope: Pinpoint performance
issues with causal graphs in micro-service environments,” in Service-
Oriented Computing - 16th International Conference, ICSOC 2018,
Hangzhou, China, November 12-15, 2018, Proceedings, ser. Lecture
Notes in Computer Science, vol. 11236. Springer, 2018, pp. 3–20.

[21] G. Yu, P. Chen, H. Chen, Z. Guan, Z. Huang, L. Jing, T. Weng, X. Sun,
and X. Li, “Microrank: End-to-end latency issue localization with
extended spectrum analysis in microservice environments,” in WWW
’21: The Web Conference 2021, Virtual Event / Ljubljana, Slovenia,
April 19-23, 2021. ACM / IW3C2, 2021, pp. 3087–3098.

[22] P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An online log parsing
approach with fixed depth tree,” in 2017 IEEE International Conference
on Web Services, ICWS 2017, Honolulu, HI, USA, June 25-30, 2017,
I. Altintas and S. Chen, Eds. IEEE, 2017, pp. 33–40.

[23] Z. Chen, J. Liu, W. Gu, Y. Su, and M. R. Lyu, “Experience
report: Deep learning-based system log analysis for anomaly
detection,” CoRR, vol. abs/2107.05908, 2021. [Online]. Available:
https://arxiv.org/abs/2107.05908

[24] M. Ma, J. Xu, Y. Wang, P. Chen, Z. Zhang, and P. Wang, “Automap:
Diagnose your microservice-based web applications automatically,” in
WWW ’20: The Web Conference 2020, Taipei, Taiwan, April 20-24,
2020. ACM / IW3C2, 2020, pp. 246–258.

[25] A. Siffer, P. Fouque, A. Termier, and C. Largouët, “Anomaly detection
in streams with extreme value theory,” in Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, Halifax, NS, Canada, August 13 - 17, 2017. ACM, 2017, pp.
1067–1075.

[26] A. Reinhart, “A review of self-exciting spatio-temporal point processes
and their applications,” Statistical Science, vol. 33, no. 3, pp. 299–318,
2018.

[27] K. Zhou, H. Zha, and L. Song, “Learning social infectivity in
sparse low-rank networks using multi-dimensional hawkes processes,”
in Proceedings of the Sixteenth International Conference on Artificial
Intelligence and Statistics, AISTATS 2013, Scottsdale, AZ, USA, April
29 - May 1, 2013, vol. 31. JMLR.org, 2013, pp. 641–649. [Online].
Available: http://proceedings.mlr.press/v31/zhou13a.html

[28] E. Bacry, M. Bompaire, S. Gaı̈ffas, and S. Poulsen, “tick: a Python
library for statistical learning, with a particular emphasis on time-
dependent modeling,” ArXiv e-prints, Jul. 2017.

[29] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation
of generic convolutional and recurrent networks for sequence
modeling,” CoRR, vol. abs/1803.01271, 2018. [Online]. Available:
http://arxiv.org/abs/1803.01271

[30] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long
Beach, CA, USA, 2017, pp. 5998–6008.

[31] T. Yang, J. Shen, Y. Su, X. Ling, Y. Yang, and M. R. Lyu, “AID: efficient
prediction of aggregated intensity of dependency in large-scale cloud
systems,” in 36th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2021, Melbourne, Australia, November 15-
19, 2021. IEEE, 2021, pp. 653–665.

[32] H. R. V. Joze, A. Shaban, M. L. Iuzzolino, and K. Koishida, “MMTM:
multimodal transfer module for CNN fusion,” in 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, CVPR 2020,

1761

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 18,2023 at 11:52:21 UTC from IEEE Xplore. Restrictions apply.

Seattle, WA, USA, June 13-19, 2020. Computer Vision Foundation /
IEEE, 2020, pp. 13 286–13 296.

[33] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
L. Fei-Fei, “Large-scale video classification with convolutional neural
networks,” in 2014 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2014, Columbus, OH, USA, June 23-28, 2014. IEEE
Computer Society, 2014, pp. 1725–1732.

[34] W. Liu, W. Zheng, and B. Lu, “Multimodal emotion recognition using
multimodal deep learning,” CoRR, vol. abs/1602.08225, 2016. [Online].
Available: http://arxiv.org/abs/1602.08225

[35] M. M. Murray, A. Thelen, S. Ionta, and M. T. Wallace, “Contributions
of intraindividual and interindividual differences to multisensory pro-
cesses,” J. Cogn. Neurosci., vol. 31, no. 3, 2019.

[36] M. Marucci, G. Di Flumeri, G. Borghini, N. Sciaraffa, M. Scandola, E. F.
Pavone, F. Babiloni, V. Betti, and P. Aricò, “The impact of multisensory
integration and perceptual load in virtual reality settings on performance,
workload and presence,” Scientific Reports, vol. 11, no. 1, p. 4831, Mar.
2021.

[37] Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier, “Language mod-
eling with gated convolutional networks,” in Proceedings of the 34th
International Conference on Machine Learning, ICML 2017, Sydney,
NSW, Australia, 6-11 August 2017, ser. Proceedings of Machine Learning
Research, vol. 70. PMLR, 2017, pp. 933–941.

[38] S. Brody, U. Alon, and E. Yahav, “How attentive are graph attention
networks?” CoRR, vol. abs/2105.14491, 2021. [Online]. Available:
https://arxiv.org/abs/2105.14491

[39] D. Beck, G. Haffari, and T. Cohn, “Graph-to-sequence learning using
gated graph neural networks,” in Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics, ACL 2018, Melbourne,
Australia, July 15-20, 2018, Volume 1: Long Papers. Association for
Computational Linguistics, 2018, pp. 273–283.

[40] N. L. of Tsinghua University. (2020) 2020 international aiops
challenge. [Online]. Available: https://github.com/NetManAIOps/
AIOps-Challenge-2020-Data

[41] H. Qiu, S. S. Banerjee, S. Jha, Z. T. Kalbarczyk, and R. Iyer. (2020)
Pre-processed tracing data for popular microservice benchmarks.

[42] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno,
J. Hu, B. Ritchken, B. Jackson, K. Hu, M. Pancholi, Y. He, B. Clancy,
C. Colen, F. Wen, C. Leung, S. Wang, L. Zaruvinsky, M. Espinosa,
R. Lin, Z. Liu, J. Padilla, and C. Delimitrou, “An open-source benchmark
suite for microservices and their hardware-software implications for
cloud & edge systems,” in Proceedings of the Twenty-Fourth Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS 2019, Providence, RI, USA, April 13-
17, 2019. ACM, 2019, pp. 3–18.

[43] Apache. (2022) Apache thrift. [Online]. Available: https://thrift.apache.
org/

[44] C. N. C. Foundation. (2022) Jaeger. [Online]. Available: https:
//www.jaegertracing.io/

[45] Google. (2022) Container advisor. [Online]. Available: https://github.
com/google/cadvisor

[46] C. N. C. Foundation. (2022) Prometheus. [Online]. Available:
https://prometheus.io/

[47] InfluxData. (2022) Influxdb. [Online]. Available: https://www.influxdata.
com/

[48] Elastic. (2022) Elasticsearch. [Online]. Available: https://www.elastic.co/
[49] S. Furuhashi. (2022) Fluentd. [Online]. Available: https://www.fluentd.

org/architecture
[50] Elastic. (2022) Kibana. [Online]. Available: https://www.elastic.co/cn/

kibana/
[51] Alibaba. (2022) Chaosblade. [Online]. Available: https://github.com/

chaosblade-io/chaosblade
[52] S. Kandula, R. Mahajan, P. Verkaik, S. Agarwal, J. Padhye, and

P. Bahl, “Detailed diagnosis in enterprise networks,” in Proceedings of
the ACM SIGCOMM 2009 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, Barcelona,
Spain, August 16-21, 2009. ACM, 2009, pp. 243–254.

[53] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proceedings of
the 32nd International Conference on Machine Learning, ICML 2015,
Lille, France, 6-11 July 2015, ser. JMLR Workshop and Conference
Proceedings, vol. 37. JMLR.org, 2015, pp. 448–456.

[54] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in 3rd International Conference on Learning Representations, ICLR

2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015. [Online]. Available: http://arxiv.org/abs/1412.6980

[55] H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P. Muller, “Deep
learning for time series classification: a review,” Data Min. Knowl.
Discov., vol. 33, no. 4, pp. 917–963, 2019.

[56] T. Fu, “A review on time series data mining,” Eng. Appl. Artif. Intell.,
vol. 24, no. 1, pp. 164–181, 2011.

[57] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal
of machine learning research, vol. 9, no. 11, 2008.

[58] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection
and diagnosis from system logs through deep learning,” in Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS 2017, Dallas, TX, USA, October 30 - November 03,
2017. ACM, 2017, pp. 1285–1298.

[59] W. Meng, Y. Liu, Y. Zhu, S. Zhang, D. Pei, Y. Liu, Y. Chen, R. Zhang,
S. Tao, P. Sun, and R. Zhou, “Loganomaly: Unsupervised detection of
sequential and quantitative anomalies in unstructured logs,” in Proceed-
ings of the Twenty-Eighth International Joint Conference on Artificial
Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019. ijcai.org,
2019, pp. 4739–4745.

[60] X. Zhang, Y. Xu, Q. Lin, B. Qiao, H. Zhang, Y. Dang, C. Xie, X. Yang,
Q. Cheng, Z. Li, J. Chen, X. He, R. Yao, J. Lou, M. Chintalapati, F. Shen,
and D. Zhang, “Robust log-based anomaly detection on unstable log
data,” in Proceedings of the ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30,
2019. ACM, 2019, pp. 807–817.

[61] X. Li, P. Chen, L. Jing, Z. He, and G. Yu, “Swisslog: Robust and
unified deep learning based log anomaly detection for diverse faults,” in
31st IEEE International Symposium on Software Reliability Engineering,
ISSRE 2020, Coimbra, Portugal, October 12-15, 2020. IEEE, 2020,
pp. 92–103.

[62] V. Le and H. Zhang, “Log-based anomaly detection without log
parsing,” CoRR, vol. abs/2108.01955, 2021. [Online]. Available:
https://arxiv.org/abs/2108.01955

[63] Z. Chen, J. Liu, Y. Su, H. Zhang, X. Ling, Y. Yang, and M. R. Lyu,
“Adaptive performance anomaly detection for online service systems
via pattern sketching,” CoRR, vol. abs/2201.02944, 2022. [Online].
Available: https://arxiv.org/abs/2201.02944

[64] H. Ren, B. Xu, Y. Wang, C. Yi, C. Huang, X. Kou, T. Xing, M. Yang,
J. Tong, and Q. Zhang, “Time-series anomaly detection service at
microsoft,” in Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD 2019,
Anchorage, AK, USA, August 4-8, 2019. ACM, 2019, pp. 3009–3017.

[65] Z. Li, Y. Zhao, J. Han, Y. Su, R. Jiao, X. Wen, and D. Pei, “Multivariate
time series anomaly detection and interpretation using hierarchical inter-
metric and temporal embedding,” in KDD ’21: The 27th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, Virtual Event,
Singapore, August 14-18, 2021. ACM, 2021, pp. 3220–3230.

[66] J. Audibert, P. Michiardi, F. Guyard, S. Marti, and M. A. Zuluaga,
“USAD: unsupervised anomaly detection on multivariate time series,” in
KDD ’20: The 26th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, Virtual Event, CA, USA, August 23-27, 2020. ACM,
2020, pp. 3395–3404.

[67] Y. Su, Y. Zhao, C. Niu, R. Liu, W. Sun, and D. Pei, “Robust anomaly
detection for multivariate time series through stochastic recurrent neural
network,” in Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD 2019,
Anchorage, AK, USA, August 4-8, 2019. ACM, 2019, pp. 2828–2837.

[68] C. Lee, T. Yang, Z. Chen, Y. Su, Y. Yang, and M. R. Lyu, “Hetero-
geneous anomaly detection for software systems via semi-supervised
cross-modal attention,” 2022.

[69] Y. Gan, Y. Zhang, K. Hu, D. Cheng, Y. He, M. Pancholi, and
C. Delimitrou, “Seer: Leveraging big data to navigate the complexity
of performance debugging in cloud microservices,” in Proceedings of
the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS 2019,
Providence, RI, USA, April 13-17, 2019. ACM, 2019, pp. 19–33.

[70] Y. Gan, M. Liang, S. Dev, D. Lo, and C. Delimitrou, “Sage: practical
and scalable ml-driven performance debugging in microservices,” in
ASPLOS ’21: 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Virtual
Event, USA, April 19-23, 2021. ACM, 2021, pp. 135–151.

1762

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 18,2023 at 11:52:21 UTC from IEEE Xplore. Restrictions apply.

