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Abstract 

In  this paper, we first describe how several existing 
software reliability growth models based on Non- 
homogeneous Poisson Processes (NHPPs) can be derived 
based on a unified theory for  NHPP models. Under this 
general framework, we can verrfL existing NHPP models 
and derive new NHPP models. The approach covers a 
number of known models under diflerent conditions. 
Based on these approaches, we show a method of 
estimating and computing software reliability growth 
during operational phase. We can use this method to 
describe the transitions from testing phase to operational 
phase. That is, we propose a method ofpredicting the fault 
detection rate to rejlect changes in the user's operational 
environments. The proposed method offers a quantitative 
analysis on software failure behavior in field operation 
and provides useful feedback information to the 
development process. 

1. Introduction 

In recent years, software permeates industrial 
equipment and consumer products. Software reliability 
may be the most important quality attribute of application 
software since it quantifies software failures during the 
software development process. Since software reliability 
represents a customer-oriented view of software quality, it 
relates to practical operation rather than design of program. 
Therefore, it is dynamic rather than static. The aim and 
objective of software reliability engineers are to increase 
the probability that a completed program will work as 
intended by the customers. Hence, measuring and 
computing the reliability of a software system are very 
important. Software reliability measurements can be used 
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for planning and controlling testing resources during 
development. They can also give us a confidence about the 
correctness of the completed software. 

Research efforts in software reliability engineering have 
been conducted over the past two decades and many 
software reliability growth models (SRGMs) have been 
proposed [l-31. They are used to evaluate software 
development status and software engineering technology 
quantitatively. Basically, SRGMs can help us in 
estimating the number of initial faults and understanding 
the effect of faults on software operation. In practice, the 
software reliability modeling techniques help us in 
predicting the reliability of software systems, the overall 
quality, and the optimal software release time [l]. 

From our previous studies in [4], several existing 
SRGMs can be unified under a general formulation. A 
unified theory is very usefd for the study of general 
models without making many assumptions [5-71. In this 
paper, we fust review the unification of SRGMs based on 
Non-Homogeneous Poisson Processes (NHPPs). Then we 
show how these existing SRGMs could be derived by 
applying the concept of three well-known means: weighted 
arithmetic mean, weighted geometric mean, and weighted 
harmonic mean [8]. Some recently proposed SRGMs can 
also be derived by the same way. Based on this framework, 
we fiu-ther present a new general NHPP model 
incorporating the concept of power transformation into the 
model unification. From the unified approach, we can 
derive not only existing NHPP models but also new NHPP 
models. Furthermore, we discuss some important 
mathematical relationships and use them to estimate 
software reliability from testing to operation. We propose 
an innovative approach to describe the transitions from the 
testing phase to the operational phase. This approach 
allows us to understand the software failure behavior 
during operation. That is, the method can offer a 
quantitative analysis of failure distribution in the field 
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operation and can also feedback some information to the 
development process. Consequently, it has a significant 
potential in predicting and controlling software reliability 
during operation. 

In Section 2, we discuss the unification of SRGMs 
based on NHPPs. Furthermore, we present a new general 
NHPP model with the power transformation. Section 3 
discusses the parameter estimation and mathematical 
properties. In Section 4, we estimate and compute the 
software operational reliability, using the unified theory. 
Finally, the conclusions are given in Section 5. 

2. Non-homogeneous Poisson process models 

2.1 Reviews of weighted arithmetic, weighted 
geometric, and weighted harmonic means 

Here we first review three well-known means: 
arithmetic, geometric, and harmonic means [4-5, 7-81. 
Let x 1 0 and y 2 0 ,  the arithmetic mean z of x and y is 
defined as 

1 1  

2 2  
z = - x + - y  . 

More generally, the weighted arithmetic mean z of x and y 
with weights w and 1-w is defined as 

z = wx+( 1 -w)y, o<w< 1 .  

The geometric mean z of x and y is defined as 

z = &  
That is, 

1 1 
lnz = - l n x + - h y .  

2 2 

Similarly, the weighted geometric mean z of x and y with 
weights w and 1 -w is defined as 

In z = w In x + (1 - w) In y , O<W<l.  

Finally, the harmonic mean z of x and y is defined as 

1 1 1  _ -  --+-, 
z 2x 2y 

and the weighted harmonic mean z of x and y with weights 
w and 1 -w is defined as 

1 1  1 

z x  Y 
- = w- + (1 - w)-, O<w<l. 

Based on the concept of weighted mean, we will derive a 
general discrete NHPP model in the next subsection. 

2 .2  A general discrete NHPP model 

For the discrete Goel-Okumoto model [ 1 1 ,  suppose that 
the expected number of errors detected per test run is 
proportional to the current error content of a software 
system, that is, 

m(i+l)-m(i) = b(a-m(i)) (1 1 
where a= m(w)  is the expected number of software errors 
to be eventually detected and b is the error detection rate 
per error which is a constant. Taking w=l-6, we have 

m(i+l) = wm(i) + (1-w)a (2) 

This shows that m(i+l) is expressed by the weighted 
arithmetic mean of m(i) and a. Now, consider the case that 
m(i+l) is equal to the weighted geometric mean of m(i) and 
a with weights w and 1-w, then 

1 1 
(3) 

I -- - w - + (1 - w) - 
m(i+ 1) m(i) U 

where O<w<l and a>O. 

Next, consider the case that m(i+ 1 )  is equal to the weighted 
harmonic mean of m(i) and a with weights w and 1-w, then 

(4) In m(i + 1) = w In m(i) + (1 - w) In a 

where O<w<l and a>O. 

More generally, let g be a real-valued and strictly 
monotonic function and m(i+l) be equal to the quasi- 
arithmetic mean of m(i) and a with weights w and I-w, 
respectively, then 

where O<w<l and a>O. 

If w in Eq. ( 5 )  is not a constant for all i, and let m(i+l) be 
equal to the quasi-arithmetic mean of m(i) and a with 
weights w(i) and 1-w(i), respectively, then Eq. (5) can be 
generalized as 

g(m(i + 1)) = w(i)g(m(i))  + (1 - w(i>>g(a> (6) 

where O<w(i)<l and a>O. 
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is the general discrete NHPP model. 

2.3 A general continuous software reliability 
growth model 

In this subsection, we will discuss a general continuous 
NHPP model. Similar to the above discussion in the 
discrete case, let m(t+ At ) be equal to the quasi-arithmetic 
mean of m(t) and a with weights w(t, At) and 1-w(t, At ), 
then 

g M t +  At )I= w(t, At ) g(m(t)>+( 1 -w(t, At ))g(a) (9) 
where O<w(t,At)<l and g is a real-valued, strictly 
monotonic, and differentiable function. 

That is, 
g(m(t + At)) - g(m(t)> 

At 
1 - w(t, At) 

- g(" (10) - - 
At 

where O< w(t, At )<1. 

Suppose ( 1  -w(t, At ))/At + b(t) as At +- 0, we get the 
differential equation 

d 
- g(m(tN = b(t)(g(a) - g(m( t ) )  
at 

(11) 

For g(x) = x in Eq. (11) (i.e., considering the weighted 
arithmetic mean considered), then 

Here, b(t) is the error detection rate per error. Furthermore, 
if b(t) = b, then the Goel-Okumoto model can be derived 
from Eq. (1 2). The differential equations for g(x) = Inx and 
g(x) = l/x can also be derived from Eq. (1 l), respectively. 

d 
Theorem 1: Let - g(m(t)) = b(t)(g(a) - g(m(t)) , 

where g is a real-valued, strictly monotonic, and 
differentiable function. We have [4] 

a t  

and B(t )  = $ b(u)du . 

Corollary 1: Based on the weighted arithmetic mean, take 
g(x) = x in Eq. (13) and let k = 1-m(O)/a, then 

1. m(t) = a(1 - k exp[-B(t)]), a>O, 0 < k 5 1 . 

2 .  A(t) = akb(t)exp[-B(t)] 

3 .  R(t I s) = exp[-ak(exp[-~(s)l-exp[-~(t+s)l] 

4. d(t) = b(t) 

Corollary 2: Based on the weighted geometric mean, take 
g(x) = lnx in Eq. (1 3) and let k = m(O)/a, then 

2. A(t) = -u(~nk)b(t)exn[-B(t)]k""~[-~")~ 
3 .  R(t I s) = exp[-a(P~[-B(ris)l - ~xP[-B(.~)I] 

4. d(t) = b(t)m(t)(lna-lnm(t))/(a-m(t)) 

5. If b(t) is non-decreasing in t, then d(t) is non-decreasing 

in t. 

Corollary 3: Based on the weighted harmonic mean, take 
g(x) = l/x in Eq. (13) and let k = dm(0) -1, then 

U 
1. m(t) = ,a>O, O < k < l .  

2 .  A(t) = 

1 + k exp[-B(t)] 
akb(t) exp[-B(t)] 

(1 + k e~p[-B(t)])~ 

- 1 

1 + k exp[-B(t + s)] 
3. R(t1.s) = e x p [ - a  x ( 

1 

1 + k exp[-B(s)] 
)I 

4. d(t) = b(t)m(t)/a 

We have already shown that several classical SRGMs 
based on NHPPs can be directly derived l7om Corollary 1, 
2,  or 3 in [4]. They are Goel-Okumoto model, Gompertz 
growth curve, Logistic growth curve, Goel generalized 
NHPP model, Delayed S-shaped model, Inflected S-shaped 
model, Modified Duane model, Two types of software 
errors model, and Weibull-type testing-effort function 
model [l-41. In the following we will show that other new 
SRGMs which are proposed recently can also be derived 
from these corollaries. 

Log-logistic software reliability growth model 
This model was proposed by Gokhale and Trivedi [9]. 
They tried to offer a decomposition of the mean value 
function of a finite failure NHPP model, which can capture 
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the increasingldecreasing nature of the hazard function. 
That is, the increasing/decreasing behavior of the failure 
occurrence rate per fault can be captured by the hazard 
function of the log-logistic distribution. 

Take g(x) = l/x and b(t) = Ut, then from Corollary 3, 
k ct 

1 +d(c tk)  
m(t) = a x  ,a > 0,c > 0,d > 0,k > 0. (14) 

Let c = hk and d = 1, we get the log-logistic form: 

In the field of software reliability modeling, Musa first 
discussed the validity of execution time theory by taking 
data sets from real software systems, as testing effort can 
be faithfully represented by execution time [2-31. 
However, most existing software reliability models do not 
take testing effort into consideration. Recently, we 
proposed a simple and new software reliability growth 
model with logistic testing-effort function [ll-121. This 
model attempts to account for the relationship among the 
calendar testing, the amount of testing-effort, and the 
number of software faults detected during testing. The 
testing-effort can be measured as the human power, the 
number of test cases, the number of CPU hours, ..., etc. 
The mean value function m(t) can be described as follow: 

SRGM with logistic testing-effort function 

m(t )  = a(1 - exp[-b(W(t) - W(0))l) 

wherea is the expected number of initial faults, b is the 
error detection rate per unit testing-effort at testing time t 
that satisfies b o ,  N is the total amount of testing effort to 
be eventually consumed, a is the consumption rate of 
testing-effort expenditures, and A is a constant. 

bNAaee-ar 

(1 + Ae-")2 
If we take g(x) = x and b(t) = , from 

Corollary 1, we have 
N - 

I (17) 
1 + Aexp[-at] 1 + A  

m(t )  = 4 1 -  k exp[-b 

N 

1 + Aexp[-az] 1 + A  
m ( t )  = a(1- exp[-b 

In addition to the previously mentioned three known 
means, we propose a more general transformation which 
includes a parametric family of power transformations: 

(18) g(x)=[e , a # o  

Inx , a=O 

Note g(x) is only one of many parametric families of 
transformations that can be applied for dada analysis. 

Corollary 4: Based on the power transformation, if we 

take g(x) = /e 3 a into Eq. (13) and 

\ 1nx , a = o  

k = 1 - then 
\ a /  

-W') 0 1. m(t)  = a(1-ke ) 

1 - a  

-B( i )  I/a 4. d ( t )  = 9 

1-(1-k ) 
a 

where k = I - (T) 
If a = 0 , then the result is the same as Corollary 2. 

Proof: 

(i) Since g(x) = - , a f 0 ,  that is, 
XQ -1 

a 
1 - 

g - b >  = (q + 1)". 

Furthermore, if k= 1 ,  then 
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Therefore, through some simple calculations, we obtain 

a 

a" -1  + k'x exp[-B(t)] -- - 
a 

m(0)" -a" m(O>" - 1  
where k '= 9 g(") = 7 

(2. a 
a .  a -1 

and g ( a )  = -. 
a 

Consequently, 

1 - a" -1 + k'x exp[-B(t)]) + 1)" - - ( a x ( -  
a 

1 - 
= (a* + (m(0)" - a") x exp[-~(t)l)" 

= ( a  x (1 - - x (a" - (m(0)" x exp[-~(t)l))" 
1 - a 1 

a 

1 - 
= (a" x (1 - k x e~p[-B( t ) ] ) )~  

= a  x (1 - k x exp[-B(t)])" , 
1 - 

where k = 1 -  - 

The proofs for (ii) to (v) are straightforward and omitted 
here. 

re,)" 
Altogether, based on the Corollary 4, we can generate 
some new models with various b(t): 

(i) If b(t) = b, i.e. B(t) = bt, then the new mean value 
function (MVF) is 

(19) 
-bt 11" m ( t ) = a ( l - e  ) ,a#O.  

(ii) If b(t)  = bctc-', i.e. B ( t )  = btc , then the new mean 
value function (MVF) is 

(20) 

(iii) If b(t) = -, i.e. B(t) = c In - , then the new 

-btc lla m(t) = a(1- ke ) , a  + O .  

C b + t  

b + t  b 
mean value function (MVF) is 

b + t  c I la m(t) = a(1- k(-)  ) ,a + 0 .  (21) 
b 

,i.e. B(t) = bt - ln(l + bt), then 
b2t 

(iv) If b(t) = - 
1 + bt 

the new mean value hnction (MVF) is 

m(t) = a(1 - (1 + bt)ke-b')'l" ,a f 0 . (22) 

b .  1 + 
(v) If b(t) = - , z.e. B(t) = bt + In ~, 

1 + I + C  
then the new mean value function (MVF) is 

k( l  + c)e-b' 
m(t) = a(1 - ) ' la ,a  + 0 .  (23) 

1 + C C b *  

3. Parameter estimation and model properties 

3.1 Maximum likelihood estimation and least 
squares estimation 

Fitting a proposed model to actual failure data involves 
estimating the model's parameters from the real test data 
sets. Maximum likelihood estimation is one of the most 
popular estimation techniques. The maximum likelihood 
technique estimates parameters by solving a set of 
simultaneous equations and it is easy to derive confidence 
intervals [27]. 

Let {tk, kl, 2, ...} denote the sequence of times 
between successive software failures. Then tk is the time 
between (k-l)th and k"' failure. Let S,denote the time to 
failure k,  then 

k 

r=l 
s, = E t , .  

For a given sequence of software failure times S =(S,, 
S,, ... , S,,), the joint density or the likelihood function of S,, 
S,, ... , S, can be written as 

fs1,s2 ,.., s n , ( ~ ~ ,  s 2 ,  ..., sn) = ;I n ( s . 1  
i = l  

Thus the log likelihood in the case of power transformation 
of NHPP model can be written as: 

L ( a , a , k ( s )  = -a(l - ke-B(Sn)) l l"  + nlogak + 

Maximizing the above equation with respect to a, k and a ,  
we have: 
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dL - = 0 ,  that is 
da 

0 

(25) 
n - B ( s n )  I / a  - = ( 1 - k e  ) 
a 

aL 
0 -- - 0 ,  that is 

da 

-&SI)  
I-a 

aa(1-  ke-B(Sn))  a + t log(1-  ke ) = 0 (26) 
i=l 

aL 
0 - = 0 ,  that is 

dk 

Solving these three non-linear equations simultaneously, 
we can obtain the point estimates of a, k and a. In addition, 
for Least Squares Estimation, generally the data set is 
given in the form: 

where m, is the total number of faults detected by time t,. 

For this method, the evaluation formula S(a, r)  is 
n 

(28) 
2 

S(a, r )  = i m k  - m(tk  )I 
k=l 

where mk is the cumulative number of detected faults in a 
given time interval (0, tk] and m(tk) is the estimated 
cumulative number of detected faults in the mean value 
function. 

Differentiating S with respect to a and r, setting the 
partial derivatives to zero, and rearranging these terms, we 
can solve the nonlinear least square problem’. 

3.2 Mathematical properties 

From the discussions in Section 2, we know that 
SRGMs can be used to estimate the number of residual 
faults and different models can obtain different mean value 
functions, i.e., the cumulative number of discovered faults. 
Here, we discuss some important mathematical properties 
about the proposed mean value function m(t). 

A continuous functionfix) is called a concave curve if 

d 2 f  d f  

du2 dx 
- <O, that is, - is decreasing in x, and then we have 

Generally, the DNCONF subroutine of IMSL MATH Library can be 
used to obtain the parameter estimates. However, there are still many 
mathematical software packages available in workstations or PCs which 
are easier to use to help us in estimating these parameters. 

If we consider that a discrete functionfix,) is concave, then 
Eq. (29) can be modified as 

(30) 
f ( x i  1 - f (xi-1) f ( x j + l ) -  f ( x i  1 

> 
xi+l - xi x .  - x .  

1 2-1 
where ,x,~I<xl<x,+I. 
Furthermore, assuming x,- x , - ~  = x,,~ - x, for i 2 1, then Eq. 
(30) can be reduced to 

Similarly, a continuous function f ix )  is called a convex 

curve if - >O, that is, - is increasing in x, and then we 

have 

d 2 f  d f  

dx2 du 

f ( x )  - f ( x  - h )  
(32) 

f ( x  + h )  - f ( X I  
lim < lim 
h+O h h+O h 

If we consider that a discrete functionfix,) is convex, then 
Eq. (1 5) can be modified to be 

(33) 
f ( x i  1 - f (xj-1) < f ( x i + l )  - f ( X i  

xi - x .  1-1 xi+l - x i  
Furthermore, assuming xl- x , . ~  = x,,~ -x, for i2  1 ,  then Eq. 
(33) can be reduced to 

f ( X i + l )  + f ( X j - 1 )  - 2f ( X i )  > 0, i=1,2,... 

d 2 f  

(34) 

In addition, a continuous function f ix )  is called an S- 

shaped curve if there exists an X such that 7 2 0 for all 

x<X and 7 <O for all x2X.  Assuming that x,-x,-, = x,+~ 

-x, for i2 1 and by the same argument above, a discrete 
function fix,) can represent an S-shaped curve if there 
exists a finite integer I > 1 such that 

du 

d 2 f  

dx 

f ) + f (xi-l ) - 2 f (x i  ) 2 0, for all i<I 

f (xi+l ) + f ( x i - ]  ) - 2 f (.xi) < 0, for all i2 I.  

The point where ~ = 0  is called the inflection point of 

the curve. For example, using the mean value function 
(MVF) we proposed in Eq. (1 7), we know this mean value 
function is positive and monotonically increasing. 
Therefore, we obtain 

and 

d 2 f  
dx 
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and 

d2WW 2 at -at -3 
-- - -a NA x (ex~[-] + Aexp[-1) 

dt 2 2 
x 

N 

1 + Ae-a' 
where w*(t) = W(t)-W(0) and W ( t )  = 

The second derivatives of W(t) and m(t) can determine 
when the inflection point will occur. 

Definition 1: Let b(t) = - w(t )  - r(w(t))' and we call 

K t )  the inflectional factor of the mean value function m(t) 
at time t. 

d 

dt 

That is, by calculating &(t), we can know whether the 
mean value function m(t) of Eq. (1 7) is a concave or convex 
curve in certain interval. Therefore, through some 
calculations, it is noted that W(t) has only one inflection 

point at t = - , m(t) has only one inflection point at 
* In A 

CY - - 

* *  
and t,, < t 

Similarly, based on Corollary 4, we can generate a new 
mean value hnction in Eq. ( 1  9), i.e., 

-B(t)  1 l a  m ( t ) = a ( l - k e  ) ,a + O .  

and use it to estimate software reliability. 

If we let 

there will exist an r ]  such that D(r]) = 0 .  That is, we can 
treat r ]  as the inflection point for this mean value function. 
In fact, the inflection point can be easily derived by using 

dt 

For example, if B(t) = bt and a =  1 (i.e. the G-0 model), 

then the inflection point occurs when t = - . 
In 2k 

b 

4. Software operational reliability estimation 

In general, the performance of a software system 
strongly depends on its execution environment. That is, 
the reliability of a software system depends on how it is 
executed. In general, the software execution environment 
includes the operating system (OS), the hardware platform, 
the workload, and the operational profile [14]. In practice, 
the fault detection phenomenon in the operational phase is 
different from that in the testing phase [14-201. However, 
this fact is not distinctly incorporated in many software 
reliability modeling efforts. Here, we attempt to describe 
the fault detection behavior using the unified theory of 
NHPP models during the operational phase. That is, 
similar to the fault detection process in the software-testing 
phase, we can formulate and simulate the fault detection 
process in the operational phase. For example, by re- 
arranging Eq. (17), the detection rate per remaining fault at 
testing time t can be described. This represents the 
detectability of a fault for the current fault content [l-3, 
14-20]: 

dm(t) I dt 

a - m(t) 
d ( t )  = = b x w(t )  (3 8) 

where w(t) is current testing-effort consumption at time I ,  
b is the fault detection rate (FDR) per unit testing-effort 

By using Eq. (38), Fig. 1 describes the relationship 
between the fault detection and the testing-effort 
expenditures for Ohba's data set [21]. It is noted that the 
software development process is in the testing phase before 
the 19Ih week. However, after the 19th week, anytime can 
be the optimal release time depending on the cost, 
reliability, and/or cost-reliability requirements. Thus the 
detectability of faults during software testing and 
operational phase may be assumed as [ 101 

(3 9) b x w( t )  2 bop x wop(s) 

where bo,, is the fault detection rate per unit operation-effort, 
wop (s) is the operation-effort expenditures consumed at 
time s, and s is the time interval in the operational phase. 

Note the values of bo,, and wop (s) can be estimated and 
computed from the past experience before the operational 
phase begins. Suppose that if bop is half of b, i.e., 
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bup=0.5 X b, then we find that the slope of fault detectability 
d(t) decreases very slowly. The reason is that the 
remaining faults of a software system are relatively 
difficult to find. On the other hand, if this software is very 
popular in the market, there may be many “excellent 
testers” to test and debug it. Hence, the d(t) will decrease 
more rapidly. However, wop (s) is usually assumed to be a 
constant [ 101. Hence, fault detectability in the operational 
phase is dominated by bu,, , and bop is significantly affected 
by b. Consequently, we can conclude that bop and b are the 
key parameters in modeling software reliability during 
software development process. 

d It) =1.5*b+w It) 
-.-d (t) =O. 5*b*w 1 t) 

0.1 

0.08 

0.06 

0.04 

0.02’ 

0 Time(Weeks) 
10 20 30 40 50 

Figure 1: The detectability of faults during 
software testing and operational phase 
for Ohba’s data set. 

It has been widely conceived that the operational profile 
of a software system may be essentially different fiom the 
profile used during testing [ 14-20]. In any case, we wish 
to establish a simple link between testing and operation to 
model software reliability. Among various NHPP SRGMs, 
the two most important parameters are the number of initial 
faults and the fault detection rate. The number of initial 
faults is the number of faults in the software at the 
beginning of test and this value will not normally be 
changed except for imperfect debugging when switching 
from software testing to operation. We do not need to 
assume perfect debugging here since it is beyond the scope 
of this paper. In contrast, the fault detection rate is used to 
measure the effectiveness of detecting faults by test 
techniques and test cases, which is more likely to change. 
Therefore, we concentrate on the FDR transformation from 
the testing phase into the operational phase. 

In order to describe the possible fault detection process, 
to derive the best-fitted mean value function, and to 
provide accurate estimates of needed parameters during 
operation, we now introduce a new approach to estimate 
software reliability during the operational phase. 

Definition 2: Let T :  R + R be a projection, which 
indicates the transformation of fault detection rate function 
from software testing to operation. 

Based on the unified theory of general continuous 
NHPP models in the previous section, we can obtain 
several useful transformations of FDR function from 
software testing to operation. Under the assumption of 
using the same g(x) (if the original FDR is a constant), then 
we can compute the best-fitted FDR function in order to 
reflect the user’s operational environment. Based on 
Theorem 1 and Definition 2, lets denote the interval and b 
denote the FDR, we obtain the following scenarios for 
describing the software operational reliability 
transformation from testing to operation. 

Case I :  If T ( s  I b) = b,  that is, the FDR is unchanged 
when software life cycle proceeds to the operational phase, 
then we can get the estimated mean value function during 
software execution as 

m(s )  = a(l - k exp(-bs)), 0 < t, < s < CO (40) 

where t, is the time to end the testing. 

The failure intensity during operation is 

/Zo(s) = abk exp(-bs) . (41) 

Case 2: If T ( s  I b) = bcsc -* ,  then we can get the 
estimated mean value function during operation as 

m(s) = a(1- k exp(-bsc)), 0 < t1 < s < C O .  (42) 

The failure intensity function during operation is 

A,@)= abcksC - ’ exp(-bsc) . (43) 

Through Eq. (41) and Eq. (43), we know 

Eq. (44) is an index that shows whether the FDR 
transformation is reasonable or not. Choosing 01, we can 
get a proper transformation of FDR function from testing 
to operational phase, where h,(s) decreases more rapidly 
than A&), meaning that a transformation from A&) (in 
testing) to A,@) (in operation). 
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b 

1 + c exp(-bs) 
Case 3: If T ( s  16) = 

estimated mean value function during operation as 

, then we can get the 

(1 + c)exp(-bs) 

1 + c exp(-bs) 
m(s)  = a(1- k ) , O < t ,  < s < 0 O .  (45) 

The failure intensity function during operation is 

l + c  

1 + c exp(-bs) 
A, (s) = abk exp(-bs) (46) 

Through Eq. (41) and Eq. (46), we know 

l + c  
(47) -- - 4 (s) 

&(s) 1 + cexp(-bs) 

Since 0 I exp(-bs) 2 1 ,  Eq. (47) is bigger than 1, 
indicating a transformation from h,(s) to h,(s) could not be 
reasonable. 

, then we can get the estimated 
b2s 

Case 4: If T ( s  I b) = - 
1 + bs 

mean value function during operation as 

m(s)  = a(1- k(l + bs) exp(-bs)) , O  < t ,  < s < 00 . (48) 

Therefore, the failure intensity function during operation is 

A, (s) = ab’ks exp(-bs) (49) 

Similarly, through Eq. (41) and Eq. (49), we know 

Again, we note that the above transformation may not be 
reasonable for general case. 

Figure 2 depicts the ratio of failure intensity functions 
from software testing to operational phase for the Ohba’s 
data set [21]. From Fig. 2(a), we find that the transitions 
from case 1 to case 2 are reasonable as the ratio of 
h,(s)/h,(s) show a decreasing trend. Note that our new 
models during operational phase are isomorphic to their 
original models during testing. Most published papers 
assumed that the operational mean value function has the 
same structure compared with the mean value function 
during testing [14-201. The main differences among these 
schemes are in the estimates of key parameters. Basically 

existing models first compute the number of remaining 
faults at the end of software testing phase and then adjust 
the notations and re-compute the values of the parameters 
[19]. Our approaches, on the other hand, do not require 
these computations. We only need to get the possible FDR 
transition (projection) function and understand the nature 
attribute of the software product during testing and 
operation according to previous software development 
experiences or software releases. 

In addition, Fig. 2(b) and Fig. 2(c) depict the ratio of 
failure intensity function transitions from software testing 
to operational phase when 

2.25 

1 + 1.25 exp(-0.04272 x s) 
(51) -- - A, (s) 

A, (s) 

and 

(52) -- - 0.0427223 x s . 
A, (0 

Through these two figures and Eq. (47) and Eq. (50), it 
is obvious that these two transformations are not 
reasonable for general case. Finally, so far we have 
illustrated our approach for g(x)=x and four possible FDR 
transformations: 

T ( s I b ) = b  

0 T ( s  

0 T ( s  

0 T ( s  

b) = bcsC - ’, 
b 

1 + c exp(-bs) 
b) = 

b2s 

1 + bs 
6) = - 

However, following the similar procedures and steps, 
different g(x) with different FDR transformations can also 
be derived. Using these methods, software developers can 
obtain an early estimate of software failure behavior 
distribution. Besides, we can predict the FDR of 
discovering remaining fault contents in software during 
operation. Maintenance activities can thus be planned 
accordingly. 
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R a t i o  5. Conclusions 
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Figure 2: Ratio of failure intensity functions from 
software testing to operational phase 
for the Ohba's data set. 

In this paper, we first reviewed how several existing 
software reliability growth models based on Non- 
homogeneous Poisson Processes could be derived by 
adopting the concept of weighted arithmetic, weighted 
geometric, and weighted harmonic means. Then we 
proposed a more general NHPP model using the power 
transformation. With the proposed unified theory, many 
existing NHPP SRGMs can be derived. Our goal is not to 
add one more model to the already large collection of 
SRGMS, but to emphasize new approaches for model 
development and classification. We showed that most 
existing NHPP SRGMs could be treated as special cases of 
our general NHPP model. We discussed parameter 
estimation and related mathematical properties of our new 
model. Besides, we also proposed a method of computing 
the operational mean value function and the software 
operational reliability. One major contribution of this 
paper is an integrated approach for a comprehensive 
reliability growth modeling effort during the testing phase 
and the operational phase. We established an easy and 
simple link to model possible FDR transformations 
between these phases. Our approaches of describing the 
working status of various software operational 
environments are flexible as we can model various 
environments ranging from an exponential NHPP to an S- 
shaped SRGM curve. Based on the integrated theoretical 
foundation, the technologies and approaches presented in 
this paper offer a unified and consistent software reliability 
evaluation scheme from testing to operation. 
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